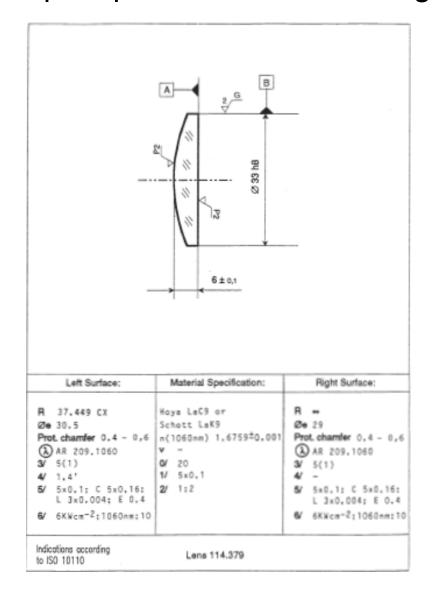
Introduction to ISO 10110


Preparation of drawings for optical elements and systems

and a few words about other optical standards

Parts of ISO 10110

- 1. General Differences between optical and mechanical drawings
- 2. Material imperfections Stress birefringence 0/
- 3. Material imperfections Bubbles and inclusions 1/
- 4. Material imperfections Inhomogeneity and striae 2/
- 5. Surface form tolerances 3/
- 6. Centering tolerances 4/
- 7. Surface imperfection tolerances -5/
- 8. Surface texture
- 9. Surface treatment and coating
- 10. Table representing data of a lens element
- 11. Non-toleranced data
- 12. Aspheric surfaces
- 13. Laser irradiation damage threshold

Simple optical element drawing

Part 2 Material imperfections – Stress birefringence

Indication in drawing – 0/X where X is the max. birefringence in nm/cm

OPD due to stress birefringence = $a^*\sigma^*K$ where

a = sample path length in cm

 σ = residual stress in N/mm

K = difference in photoelastic constants in 10⁻⁷ mm/N

A retardation > 20 nm/cm corresponds to a "coarse" anneal

A retardation of < 10 nm/cm is referred to as "fine" anneal

Part 3 Imperfections – Bubbles and inclusions

Indication in drawing – 1/NxA where

N is the number of allowed bubbles or inclusions

A is the length of the side of a square in units of mm

(Thus A² is the area the bubble or inclusion obscures)

The obscured area may be sub-divided into smaller bubbles provided the obscured area is no larger than that designated. Table shows an example

A typical designation might be 1/3x.1

The same system of designation is used for surface defects in

Part 7

	Multiplication factors				
	1	2,5	6.3	16	
	0,006				
	0,010	0,006			
	0,016	0,010	0,006		
	0,025	0,016	0,010	0,006	
	0,040	0,025	0,016	0,010	
Ŧ	0,063	0,040	0,025	0,016	
e e	0,10	0,063	0,040	0,025	
ŝ	0,16	0,10	0,063	0,040	
Grade numbers [mm]	0,25	0,16	0,10	0,063	
	0,40	0,25	0,16	0,10	
	0,63	0,40	0,25	0,16	
	1,0	0,63	0,40	0,25	
	1,6	1,0	0,63	0,40	
	2,5	1,6	1,0	0,63	
	4,0	2.5	1,6	1,0	

Part 4 Imperfections – Inhomogeneity and striae

Indication in drawing – 2/A;B where

A is the class number for inhomogeneity

B is the class for striae

Table 1 Inhomogeneity classes

Class	Maximum permissible variation of refractive index within a part [10 ⁻⁶]	
0	± 50	
1	± 20	
2	± 5	
3	± 2	
4	± 1	
5	± 0,5	

Table 2 Classes of striae

Striae class	Density of striae causing an optical path difference of at least 30 nm in %
1	≤ 10
2	≤ 5
3	≤ 2
4	≤ 1

5	Extremely free of striae The restriction to striae exceeding 30 nm does not apply
	Further information to be specified in a note

Part 5 Surface form tolerances

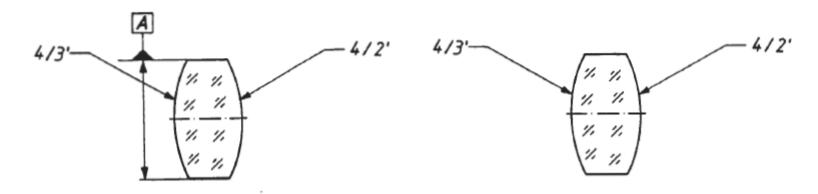
Indication in drawing -3/A(B/C)

where A is the maximum spherical sag error from test plate

or a dash (-) where the radius tolerance is a dimension

B is the p-v maximum irregularity

C is the maximum rationally symmetric p-v figure error


The units are fringes (or fringe spacings)

There is a provision for RMS specification in fringes

Part 6 Centring tolerances

Indication in drawing $-4/\alpha$

where α is the angle between the datum and surface

The indication is always the same for each surface but the method of indicating the datum follows mechanical drawing practice

A polished surface can be a datum and is often the best choice of datum

Part 7 Surface imperfection tolerances

Indication in drawing – 5/NxA

Where N is the number of allowed imperfections

A is the length of the side of a square in mm

so NxA² is the total area obscured by imperfections

Coating imperfections are preceded by a C

Long scratches by an L

Edge chips by an E

Sub-division is permissible the same as with bubbles and inclusions

Example – 5/NxA; CN'xA'; LN"xA", EA'''

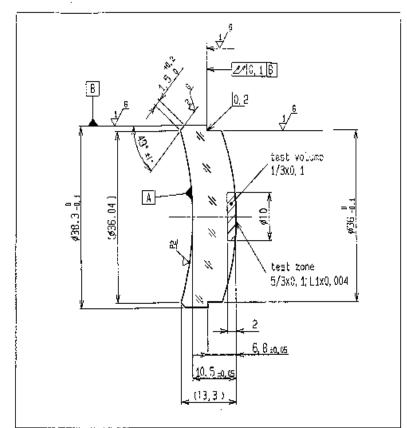
Part 8 Surface texture

Indication on drawing -

Type of measurement and
Magnitude

Scan length

Type of texture – G for ground or matt, P for polished


Type of measurement – Rq, RMS or PSD (Power spectral density)

Scan length and increment – minimum resolution and scan distance

Part 9 Surface treatment and coating

Part 10 Table representing data of a lens element

- Shows the simple element drawing shown at beginning
- Table 1 is useful check list to see if drawing is complete
- Also a quick summary of the symbols used in optical drawings
- Several examples of lens element drawings

Left Surface:	Material Specification:	Right Surface:
R 60,43 CC Øe 35 Prot. chamfer C,2 - 0,4 (2) AR 207b 3/ 2(0,5) 4/ - 5/ 5x0,16; L 2x0,04; E 0.5	8k7 ne 1,51872±0,001 ve 63.96±0,8% Q/ 10 1/ 5x0,16 2/ 1;2	R 50,17 0X Øe 34 Prot. chamier 0,2 - 0,4 (\$\overline{\lambda}\$ - 3/ 3(1) 4/ 2' 5/ 5x0,16; L 2x0,04; E 0,5
Indications according to ISC 10113	Lens 124.736	To be demended

Figure 3 Example of tabular indication of data for a lens element

Part 11 Non-toleranced data

	Range of maximum (diagonal) dimension of the part [mm]			
Property	up to 10	over 10 up to 30	over 30 up to 100	over 100 up to 300
Edge length, diameter [mm]	±0,2	±0,5	±1	±1,5
Thickness [mm]	±0,1	±0,2	±0,4	±0,8
Angle deviation of prisms and plate	±30'	±30°	±30'	±30'
Width of protective chamfer [mm]	0,1 - 0,3	0,2 - 0,5	0,3 - 0,8	0,5 - 1,6
Stress birefringence acc. to ISO/DIS 10110-2 [nm/cm]	0/20	0/20	-	
Bubbles and inclusions acc. to ISO/DIS 10110-3	1/3x0,16	1/5x0,25	1/5x0,4	1/5x0,63
Inhomogeneity and striae acc. to ISO/DIS 10110-4	2/1;1	2/1;1		
Surface form tolerances acc. to ISO/DIS 10110-5	3/5(1)	3/10(2)	3/10(2) (all Ø 30)	3/10(2) (all Ø 60)
Centring tolerances acc. to ISO/DIS 10110-6	4/30'	4/20'	4/10'	4/10'
Surface imperfection tolerances acc. to ISO/DIS 10110-7	5/3×0,16	5/5×0,25	5/5×0,4	5/5×0,63

Part 12 Aspheric surfaces

- Just the sag formulas in most lens design software
- One comment on Zernike polynomials
 - The standard uses the FRINGE monomial p-v ordering
 - I think this is short sighted
 - You should use double indices as in $\, lpha_i^{\, J} \,$
 - Where I is the power of the radial parameter, and
 - j is the angular order

Part 13 Laser irradiation damage threshold

- Here to let you know this part exists
- Has commercial use for lasers used in processing materials
- These days commercial lasers powerful enough to damage coatings

- Just looked at ISO 10110
- There are over 200 ISO optical standards dealing with
 - Coatings
 - Environmental tests
 - Microscopes, telescopes, endoscopes and ophthalmics
 - Laser devices
 - Optical materials and glasses
 - Vocabulary and definitions
- More are being added all the time
- Also there is a whole body of Mechanical standards
 - TR 5460 is great on GDT
- The US participates in the standards writing
- The standards are copywritten material
 - Proceeds from their purchase supports standards writing efforts