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OPTI 421/521 – Introductory Optomechanical Engineering 
 

6. Mirror matrices 
 

Matrix formalism is used to model reflection from plane mirrors. 
 
Start with the vector law of reflection: 
 
 

nnkkk ˆ)ˆˆ(2ˆˆ
112 •−=  

 
 
The hats indicate unit vectors 
k1 = incident ray 
k2 = reflected ray 
n = surface normal 
 
 
 
 
 
 
For a plane mirror with its normal vector n with (x,y,z) components (nx,ny,nz) 
 
 
Using the standard vector representation with unit vectors, 
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The matrix representation of this vector is  
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The vector law of reflection can be written in matrix form as 
 

k2 = M k1 
 
 
Where the mirror matrix M is calculated to be 
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M can be expanded as  
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After calculating this mirror matrix, any vector k1 gets changed by reflection from the 
mirror to a new vector k2, calculated by simple matrix multiplication 
 
 

k2
.M k1 

 
 
If the initial vector k1 is the direction the ray incident on the mirror, then k2 is the 
direction of the reflected ray.   
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A series of reflections is modeled by successive mirror matrix multiplications.  If light 
bounces off mirror 1, then 2 then 3, the net effect of these three reflections is  
 

k4
...M 3 M 2 M 1 k1 

 

which reduces to a single effective mirror matrix M eff ..M 3 M 2 M 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So the effect of any set of mirrors can be reduced to a single 3x3 matrix. 
 
 

k1 incident ray 
k4 final reflected ray 
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k4 = M3 M2 M1 k1 
    = Meff k1 
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The mirror matrix shows the reflected coordinates, not just the incident ray.  Initial 
coordinates (i,j,k) get reflected to a new set (i’,j’,k’) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For example, a mirror with its normal in the z direction would be described by Mz 
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A set of coordinates would be reflected so that  
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An incident ray traveling in the +z direction will be reflected to travel in the –z 
direction.  Images of the x and y axes do not change. 
 
 
Image orientation can be computed by transforming the "up" and "right" axes in 
object space using the mirror matrix M to find the orientation and parity in image 
space.  Each direction of the coordinate system is transformed by the mirror matrix 
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Parity 
 
The parity of this one mirror is of course odd (–1).  The image of a right handed 
coordinate system will appear to be left handed in the reflection.  This means that 
clockwise rotation about any basis vector will appear counter-clockwise in the image. 
 
 
In general, the determinant of the mirror matrix gives the parity of the system.   

• An even number of reflections will cause the image to be right-handed, or to 
have parity = det(M) = 1. 

• A system with an odd number of reflections will cause the image to be left-
handed, or to have parity = det(M) = -1. 

 
Mirrors with any orientation can be defined using rotations.  The matrix method uses 
well defined coordinate transformations which use simple matrix multiplications.  The 
effect of rotating a mirror M, or system of mirrors that has equivalent matrix M is  
 

T
r RMRM ⋅⋅=  

 
where Mr is the new matrix and R is the rotation matrix given below 
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(The rotation matrices have the special property  
that RT = R-1. Transpose operation, swap rows with columns: 
 
 
  

1 2 3 1 4 7
4 5 6 2 5 8
7 8 9 3 6 9

T
   
   =   
      
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In many cases you can write down the mirror matrix by inspection.  You can trace 
the x, y, and z unit vectors through the prism by reflecting the vectors one at a time 
using the bouncing pencil paradigm.  In fact, you only need to trace two axes 
through and use the parity to get the third. 
 
Use these coordinates to evaluate how object motion relates to image motion, both 
for translation and rotation.  Remember to reverse the direction of rotation if the 
system has –1 parity. 
 
To find the effect of small rotations of any prism, apply the rotation transformations 
to the prism matrix Mp 
   

Mr = Rx(α) Mp Rx(α)T 
 
This new matrix defines the new line of sight as well as any image rotation 
 
For small angles (jitter), you can use the small angle approximation and apply a 
perturbation: 
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If you take the incident light direction as z, the last row gives z’, the new direction 
after the perturbation.  For image rotation, compare the perturbed directions of x’ 
and y’ with the unperturbed values.  For example, a 45° mirror, giving 90° reflection. 
 
 
 
 
 
Rotate about z axis, (the incident line of sight) 
 
 
 
 
 
 
Upon rotation, the new propagation direction z’ is deviated by an amount γ into the x 
direction.  The change in the x-y plane defines image rotation.  These coordinates 
are reflected to the x-(-z) plane.  The mirror rotation rotates this coordinate frame by 
an amount γ about the z’ (or –y) axis. 
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Some common types of mirrors: 
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insensitive to x rotation 
2θ for y and z rotations 

insensitive to z rotation 
2θ for x and y rotations 

insensitive to y rotation 
2θ for x and z rotations 

insensitive to x rotation 
2θ for y and z rotations 

insensitive to y rotation 
2θ for x and z rotations 

insensitive to z rotation 
2θ for x and y rotations 

90° deviation 
insensitive to x rotation 
θ for y and z rotations 

retro-reflects 
insensitive to all rotations 


