OPTI 421/521 - Introductory Optomechanical Engineering

5. Prisms

a) Tunnel diagrams and reduced thickness
 b) Motion of prisms
 beam steering
 image rotation
 c) Common prisms and uses

90° Beam deviation
Right angle prism
Porro (Right angle prism with roof)
Penta prism (and roof penta prism)

Image rotators
Dove (+array)
K mirrors
Abbe (+ folded)
Delta prism
Pechan
180° beam deviation
plane mirror
Porro
Cube corner

Other
Rhomboid
Porro erecting prisms
Abbe erecting prisms
Anamorphic prisms
References:
Mil-HDBK-141
W. Smith, Modern Optical Engineering (McGraw-Hill, 2000).
W. Wolfe, "Non-dispersing prisms" Ch. 4 in Handbook of Optics, Vol II, $2^{\text {nd }}$ ed. (McGraw Hill, 1996).

Yoder, P. R., Design and Mounting of Prisms and Mirrors in Optical Instruments, (SPIE vol. TT32, 1998)
D. Swift, "Image rotation devices - a comparative survey", Optics and Laser Technology, Vol. 4, pp 175-188 (1972).

Prof. Shack's prism program

Tunnel diagrams and reduced distance
The optical performance of a prism can be represented by a combination of the methods used for plane mirrors and optical windows.

Unfolding
All of the reflections can be unfolded.

Figure 4.16
(Smith)

Reflections in glass

Use total internal reflection if

$$
\mathbf{n} \sin \theta>1
$$

(for all angles of incidence)
This is lossless!
However, the surface must be protected. A little smudge ruins it.
For $n=1.52$, critical angle is 41°
Otherwise, must use reflective coatings

Size of elliptical beamprint

Defined by intersection of light cone with tilted plane

FIGURE 8.8 Geometric relationships used to define the beam print of a rotationally symmetric inclined mirror. (Adapted from Schubert, F., Mach. Des., 51, 128, 1979.)

$$
\begin{array}{lc}
W=D+2 L \tan \alpha & A=E+F \\
E=\frac{W \cos \alpha}{2 \sin (\theta-\alpha)} & G=(\mathrm{A} / 2)-F \\
F=\frac{W \cos \alpha}{2 \sin (\theta+\alpha)} & B=\frac{A W}{\left(A^{2}-4 G^{2}\right)^{1 / 2}}
\end{array}
$$

Yoder, Paul R., Jr., Opto-Mechanical Systems Design, $3^{\text {rd }}$ Ed., (CRC Press, 2006)

Reduced distance

Remember that plane parallel plate causes an image shift

The effect of the image shift from the glass can be accommodated by replacing the glass with the air-space equivalent. If the path length in glass (with refractive index n) is L, then the reduced distance is L / n.

Tunnel diagrams

To represent the first-order properties of the prism, first unfold all reflections, then squash the length to the reduced distance.

Penta prism gives 90° deviation

Image orientations

Prism deviation

Direct vision

Or

45° deviation

90° deviation

180° deviation

Prism Rotation

Send coordinate system through

$$
\text { Line of sight (LOS) } z \rightarrow z^{\prime}
$$ use symmetry to send x ar y

check parity
Even top reflections
Even parity - Right Handed odd of reflections odd parity Laft.thurded

odd

90° deviation prisms

Right angle prism

(Mil-Hdbk-141)
Amici prism (sometimes called a roof prism)

The "V" indicates roof

Porro prism

This gives 180° deviation + inversion

Deviation is insensitive to prism pitch

Tunnel diagram

Figure 13.28-Porro prism tunnel diagram.

Figure 13.29-The Porro prism.

Figure 4.24 Porro prism system (first type) (a) indicating the way the Porro system erects an inverted image. (b) Porro prisms are usually fabricated with rounded ends to save space and weight. Note that the spacing between the prisms has been shown increased for clarity.

(b)

Figure 4.25 Porro prism system (second type) (a) indicating the erection of an inverted image. This system is shown made from two prisms in (a) and from three prisms in (b).

Penta prism

Deviates light by 90° (independent of prism pitch angle)
(This is one of the "magic" prisms)

(a)

(Smith)

What about roll and yaw?

Direct Vision prisms

Rhomboid

(a)

(b)

Figure 4.30 (a) Rhomboid prism. (b) An equivalent mirror system. Both systems displace the optical axis without deviation or reorientation of the image.

This is a "magic" prism.

It deviates the light, but does not change the angle even if the prism is rotated about all axes

Can be used in a system to create binocular output

Microscope Observation Tube Prisms and Beamsplitter

[^0]
Image rotators

For θ rotation about optical axis, Image rotates 2θ
Dove prism is most common.

(Mil-Hdbk-141)

(Smith)

Dove prisms can be used in pairs and arrays

(Swift)

Pechan prism

Compact image rotator
Expensive

(Mil-Hdbk-141, Swift)

Pechan-Schmidt or "Roof Prism" for image inversion

Abbe Rotation prism

Fig. 12 Abbe type rotator

This can be made from 3 plane mirrors - same geometry "K-mirrors"

Also, it can be folded:

Fig. 15 Folded Abbe type rotator
(Swift)

Add a roof, Abbe-Koenig for inversion

Few surfaces !

Look at coordinate system in and out. Why does the roof convert the prism from an image rotation prism to an image inversion prism

Delta rotator prism

Compact image rotator (sometimes called Schmidt rotator)
Folded Dove prism
Must be used in collimated light

Fig. 7 Schmidt type rotator

Fig. 8 Schmidt type rotator tunnel diagram
2
Add a roof
(Swift)

Corner Cube

(aka Cube Corner, retroreflector)
3 mirrors, arranged at 90° like a corner

"Magic" prism

Light that hits all 3 mirrors is reflected in the opposite direction as the incident light - independent of orientation of the prism

Prism - solid glass uses inside reflections: can be TIR or silver

These are often used in arrays

Hollow- uses first surface mirrors

SMR - Spherical mounted retroreflector

Anamorphic prism pairs

Expands beam in one direction, not in the other
Used to create circular beam from laser diodes

Prisms (from Shack)

HTPCTIिN

[^0]: (Mil-Hdbk-141)

