2) First order optics

Motion of optical elements affects the optical performance?
1. by moving the image
2. higher order things (aberrations)

The first order effects are most important

Snell’s law for refraction

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

In air \(n = 1.000 \) so

\[\frac{\sin \theta_1}{n_2} = \sin \theta_2 \]

Reciprocity: Works the same from left to right as right to left, same coming and going.

Small angle approximation: \(n_1 \theta_1 = n_2 \theta_2 \)

Expansion

\[\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - ... \]
Small angle prism in air

\[\text{deviation } \delta = \alpha (n-1) \]

Define Line of Sight (LOS): Where the optical system is looking

One easy way to determine the line of sight is to imagine that your optical system is “projecting” like a laser projector. Light travels the same path in either direction. Your Line of Sight will be defined by this imaginary projected beam
A rigid body always has 6 degrees of freedom:
Translation in x, y, and z
Rotation about x-axis, y-axis, z-axis

Motion of thin prism:
The only motion that affects the line of sight light is θ_z, rotation about the optical axis.
Risley prisms

Steer the line of sight by using rotation of prisms
Rotation of one prism moves LOS in a circle
Separate rotation of a second prism allows two-axis control of LOS

\[\delta = \delta_1 + \delta_2 \]
\[\delta x = \delta_1 \cos \phi_1 + \delta_2 \cos \phi_2 \]
\[\delta y = \delta_1 \sin \phi_1 + \delta_2 \sin \phi_2 \]
Plane Parallel Plate

No angular change of line of sight

However, tilted plate causes a linear deviation

Approximately:

$$t \theta (n-1)$$

For glass, 45° tilt, \(\Delta y \approx \frac{t}{3} \)
Plane Parallel Plate

Focus shift in a converging or diverging beam

Approximately:

For glass, \(\Delta z \approx \frac{t}{3} \)

Does not depend on position or orientation
Plane Parallel Plate

in a converging or diverging beam: **causes aberrations**

\[W_{SA} = -\frac{t(n^2 - 1)}{(f/\#)^4 128n^3} \]

\[W_{COMA} = -\frac{t\theta(n^2 - 1)}{(f/\#)^3 16n^3} \]

\[W_{ASTIG} = -\frac{t\theta^2(n^2 - 1)}{(f/\#)^2 8n^3} \]

transverse color

\[W_{x\lambda} = \frac{t\theta(n-1)}{n^2 v} \]

longitudinal color

\[W_{z\lambda} = -\frac{t(n-1)}{n^2 v} \]
Reflection from a Plane mirror

Law of reflection

\[\theta_i = \theta_r \]

Reflected ray in plane with incident ray and surface normal

In vector form:

\[\hat{k}_r = \hat{k}_i - 2(\hat{k}_i \cdot \hat{n})\hat{n} \]
Plane mirror creates "mirror image"
Image orientation
Motion of a plane mirror

Tilt: LOS is rotated 2 times the mirror motion
Motion of a plane mirror

Z translation: image moves two times mirror motion

ΔZ

$2\Delta Z$
Motion of a plane mirror

Three degrees of freedom do not matter

rotation

translation

or
Imaging systems

Positive thin lens, creates real image

\[\frac{1}{f} = \frac{1}{o} + \frac{1}{i} \]

\text{magnification}

image is rotated 180°, maintains ‘handedness’

\[m = \frac{y_i}{y_o} = -\frac{i}{o} \]

Object at infinity, \(m = 0 \)
Object at focal point, \(m = -\infty \)
Object at \(o = 2f \), image at \(i = 2f \), \(m = -1 \)
If the object moves, how much does the image move?

For lateral motion, simply scales by magnification

Motion of Δy_0 in object space appears as Δy_i in image space

$$\frac{\Delta y_i}{\Delta y_o} = m$$

What about motion along the axis:

For axial motion, differentiate:

$$-\frac{di}{i^2} + \frac{-do}{o^2} = 0$$

$$\frac{di}{do} = -\frac{i^2}{o^2} = -m^2$$

This is often called the axial magnification

(Object and image always move in the same direction)
Focal ratio

Simple case
stop at lens, object at infinity

\[F\# = \frac{f}{D} \]

100 mm focal length, 10 mm diameter lens -- \(f/10 \)

Numerical aperture \(NA \)
(in medium with refractive index \(n \))

\[NA = n \sin \theta \approx \frac{1}{2F\#} \]

Diffraction limit:

Width of Airy function = 2.44 \(\lambda \) \(F\# \)
(\(\text{FWHM} = \lambda \) \(F\# \))

Depth of focus : \(\Delta z = \pm 2 \lambda (F\#)^2 \)

MTF cutoff : \(f_c = 1/(\lambda F\#) \)
Positive lens

Object at infinity

\[m = 0 \]

Object at FFP

\[m = -1 \]

Image at infinity

\[m = \text{-Inf} \]

Object inside FFP

Virtual Image

\[m > 1 \]

Object at Lens

Lens has no effect

\[m = 1 \]
Negative Lens

object at ∞

virtual object

Virtual object at focal point

real object

object at lens

virtual image

virt object

Image at Infinity

no effect

virtual image

 virt object

$m=0$

$m=1$

$m=\infty$

$m>1$

$0<m<1$

$m=1$
Unfolding systems with mirrors

Positive mirror

Negative mirror

Unfold each mirror:

Equivalent system using lenses

positive element bi-convex lens or concave mirror

\[
\begin{align*}
\text{positive element} & \quad \begin{array}{c}
\text{bi-convex lens} \\
\text{or} \\
\text{concave mirror}
\end{array} = \\
\begin{array}{c}
\text{negative element} \\
\text{bi-concave lens} \\
\text{or} \\
\text{convex mirror}
\end{array}
\end{align*}
\]
Lateral motion of lens

We treat the case where the lens moves, yet the object and the image plane do not. To calculate the amount of image motion, simply sketch this out.

You can solve this using similar triangles

\[
\frac{i}{o} = -m
\]

New Axis, angle \(\alpha = \frac{\Delta X_L}{o} \)

Image moves \(\alpha (o + i) = \Delta X_i \)

\[
\Delta X_i = \Delta X_L \frac{o + i}{o}
\]

\[
\Delta X_i = \Delta X_L (1 - m)
\]

For object at infinity, \(\Delta X_i = \Delta X_L \)

(Mirrors behave the same way)
Axial motion of lens

We treat the case where the lens moves axially, yet the object and the image plane do not. To calculate the amount of image defocus, you need to be careful. Make a good sketch!

Absolute image motion = Lens motion + (Image motion relative to lens)

![Diagram of lens system](image)

Using the geometry of the system above, the following relationships can be defined:

\[o' = o + \Delta z_L \]
\[i' = i - \Delta z_L + \Delta z_f \]

Rearranging these two equations yields:

\[\Delta o = o - o' = -\Delta z_L \]
\[\Delta i = i - i' = \Delta z_L - \Delta z_f \]

From the imaging equation,

\[\frac{1}{i} + \frac{1}{o} = \frac{1}{f} \]

where \(f \) is the focal length of the lens, we can differentiate to obtain,

\[-\frac{\partial i}{i^2} + \frac{\partial o}{o^2} = 0 \]

Equation 6

When \(\partial i \) and \(\partial o \) are small, we can make the estimation that \(\partial i \approx \Delta i \) and \(\partial o \approx \Delta o \). Rearranging Equation 6 we find,

\[\frac{\Delta i}{\Delta o} = -\frac{1}{o^2} = -m^2 \]

Equation 7

where \(m \) is the magnification of the lens. Inserting Equations 3 and 4 from above and rearranging we find the expression:

\[\Delta z_f = \Delta z_L (1 - m^2) \]

Equation 8

Object at infinity, \(m = 0 \), \(\frac{\Delta z_f}{\Delta z_L} = 1 \)

1:1 conjugate, \(m = -1 \), \(\frac{\Delta z_f}{\Delta z_L} = 0 \) (stationary point)

Be careful with mirrors!
Tilt of optical element

Tilt an element about its center, what happens to the image?

For thin lens- No significant effects

(Large tilt cause aberrations)

For Mirrors

Follow the chief ray!!
Motion of detector

The “detector” could be film, CCD, fiber end, …

What we care about is motion of the image with respect to the detector.

This motion would cause a blurred image, tracking error, or degraded coupling efficiency.

If the image and detector move together, the system performs perfectly. Motion of the detector has the same (but opposite sign) as motion of the image.

Although pointing performance is defined by image motion on the detector, it is usually not specified in image space where problem occurs, but it is referred back to object space.

You must be able to go efficiently back and forth between these two spaces:

\[\Delta x_i = m \Delta x_o \]

For object at infinity, \(m = 0 \)

\[\Delta x_i = EFL \cdot \Delta \alpha_o \]

Where \(\Delta \alpha_o \) gives the angle in object space.
Definition of cardinal points – project rays from object and image space

- **Object space**
- **Image space**
- **PP2**
- **PP1**
- **RFP**
- **BFD**
- **EFL**
- **FFP**

Key Points:
- **PP1:** Front principal point
- **PP2:** Rear principal point
- **FFP:** Front focal point
- **RFP:** Rear focal point (image of object at infinity)
- **EFL:** Effective focal length
- **BFD:** Back focal distance

J. Burge
University of Arizona
25
Nodal point at rear principal plane

In air, object at infinity, nodal point is coincident with rear principal point

Rotation of lens system about nodal point does not move image

Simple proof (for images in air):
Object at field angle α has image height of $EFL \times \alpha$ relative to axis
Lens rotation α about PP_2 moves system axis at focal plane by $EFL \times \alpha$
Lens rotation α causes a fixed object to shift by angle $-\alpha$ relative to axis

The absolute image motion is

\[
\text{image motion relative to lens axis} = \text{EFL} \times -\alpha + \text{EFL} \times \alpha
\]

\[
\text{motion of lens axis} = 0, \text{no motion}
\]

Only for the case where the system is rotated about the rear principal point.
Rigid body rotation

Rotation about one point on an object is equivalent to rotation about any other point plus a translation.

\[\alpha^\circ \text{ rotation about this corner} \]

is equivalent to

\[\alpha^\circ \text{ rotation about this corner} \]

plus a translation

(Calculate the magnitude of the translation using trigonometry)

You can choose any point you want to rotate about as long as you keep track of the translation

To calculate effect of rotating an optical system:

1. Decompose rotation to
 a. translation of the nodal point
 b. rotation about that point
2. Image motion will be caused only by *translation* of nodal point
Definition of pupils

Aperture stop
Actual “hole” that defines which rays get through the system

Marginal ray – on axis ray that goes through edge of stop

Chief ray – off axis ray that goes through center of stop

Entrance pupil
Image of the stop in object space

Located where chief ray cross the axis in object space

Sized by marginal ray height of pupil image in object space

Exit pupil
Image of the stop in image space

Located where chief ray cross the axis in image space

Sized by marginal ray height of pupil image in image space
Afocal systems

Do not create a real image -- object at infinity, image at infinity

$D_1 = $ Entrance Pupil
$D_2 = $ Exit pupil

It makes stuff appear larger -- magnifying power

$$ MP = \frac{\alpha_2}{\alpha_1} $$

LaGrange Invariant requires $D_1 \alpha_1 = D_2 \alpha_2$

Examples:
Galilean, Keplerian telescope, laser beam projector
Binoculars