Optical Materials

Important properties:

- Optical
 - Wavelength range
 - Refractive index
 - **o Dispersion**
 - \circ dn/dT
 - Optical quality
 - transmission, bubbles, homogeneity, birefringence, ..
- . Mechanical
 - o CTE
 - Young's modulus
 - Density
 - Thermal conductivity
 - o Specific heat
 - o Hardness
 - Melting point
 - Fracture toughness
 - Climatic resistance

Glasses:

Transmit from near UV to near IR Wide variety for color correction

Low conductivity, fairly low CTE

Isotropic

Hard (cannot be diamond turned to optical finish) Crystals

Wider wavelength range Wider range of mechanical properties Can have severe anisotropy Many can be diamond turned

$ \begin{array}{cccc} n_{d} = 1.51680 & \nu_{d} = 64.17 & n_{F} - n_{c} = 0.008054 \\ n_{e} = 1.51872 & \nu_{e} = 63.96 & n_{F} - n_{c'} = 0.008110 \end{array} $
--

Internal transmittance τ μm] τ_i [10mm]

0.67

0.79

0.930

0.992

0.999

0.998

0.998

0.998

0.998

0.998

0.998

0.997

0.997

0.997

0.997

0.997

0.996

0.993

0.991

0.988

0.967

0.910

0.77

0.57

0.29

0.06

λ[μm] 2500

2325

1970

1530

1060

700

660

620

580

546

500

460

436

420

405

400

390

380

370

365

350

334

320

310

300

290

 τ_{i} [25mm]

0.36

0.56

0.84

0.980

0.997

0.996

0.994

0.994

0.995

0.996

0.994

0.993

0.992

0.993

0.993

0.992

0.989

0.983

0.977

0.971

0.920

0.78

0.52

0.25

0.05

b

	λ [nm]	
n _{2325.4}	2325.4	1.48921
¹¹ 1970.1	1970.1	1.49485
"1529.6	1529.6	1.50091
"1060.0	1060.0	1.50669
n.	1014.0	1.50731
n	852.1	1.50980
	706.5	1.51289
n,	656.3	1.51432
"c'	643.8	1.51472
632.8	632.8	1.51509
10	589.3	1.51673
n.	587.6	1.51680
''e	546.1	1.51872
''F	486.1	1.52238
n _F	480.0	1.52283
n_	435.8	1.52668
n _h	404.7	1.53024
	365.0	1.53627
n _{334.1}	334.1	1.54272
n 312.6	312.6	1.54862
296.7	296.7	
n _{280.4}	280.4	
n _{248.3}	248.3	
		1
onstants or	dispersion for	mula

Conductor dispersion formula					
B ₁	1.03961212·10 ⁺⁰⁰				
B ₂	2.31792344·10 ⁻⁰¹				
B ₃	1.01046945·10 ⁺⁰⁰				
C ₁	6.00069867·10 ⁻⁰³				
C ₂	2.00179144·10 ⁻⁰²				
C ₃	1.03580653·10 ⁺⁰²				

Constants of	formula dn/dT
Do	1.86·10 ⁻⁰⁶
D ₁	1.31·10 ⁻⁰⁸
D ₂	-1.37·10 ⁻¹¹
E ₀	4.34·10 ⁻⁰⁷
E ₁	6.27·10 ⁻¹⁰
λ _{TK} [μm]	0.170

Color code	
λ ₈₀ /λ ₅	33/29
Remarks	

Temperat	ture coefficent	s of refractiv	/e index			
	Δn _{ref} /ΔT [10 ⁻⁶ /K]		Δr	abs/∆T [10 ^{-€}	⁵ /K]	
[°C]	1060.0	е	g	1060.0	е	g
-40/-20	2.4	2.9	3.3	0.3	0.8	1.2
+20/+40	2.4	3.0	3.5	1.1	1.6	2.1
+60/+80	2.5	3.1	3.7	1.5	2.1	2.7

Relative partial dispersion			
P _{s,t}	0.3098		
P _{C,s}	0.5612		
d,C	0.3076		
P _{e,d}	0.2386		
g,F	0.5349		
P _{i,h}	0.7483		
P´ _{s,t}	0.3076		
P' _{C',s}	0.6062		
P′ _{d,C} ′	0.2566		
P' _{c,d}	0.2370		
P′ _{g,F} ′	0.4754		
P' _{i,h}	0.7432		

Deviation of rel. partial dispersion ∆P from "Normal line"			
0.0216			
0.0087			
-0.0009			
-0.0009			
0.0035			

Other properties	
α _{-30/+70°C} [10 ⁻⁶ /K]	7.1
α _{+20/+300°C} [10 ⁻⁶ /K]	8.3
Tg [°C]	557
T10 ^{13.0} [°C]	557
T10 ^{7.6} [°C]	719
c _p [J/(g·K)]	0.858
λ [W/(m·K)]	1.114
ρ [g/(cm ³)]	2.51
E [10 ³ (N/mm ²)]	82
μ	0.206
K [10 ⁻⁶ mm ² /N]	2.77
HK _{0.1/20}	610
HG	3
В	0
CR	
FR	2
SR	1
AR	2
PR	2.3

Focal length change due to temperature change:

OPTICAL MATERIALS

OPTICAL MATERIALS

- ♦ THERM-OPTIC COEFFICIENT
- The index of refraction of optical materials changes with temperature. This change is given by:

$$n = n + \left(\frac{dn}{dT}\right) \Delta T$$

Where: n'

 n'
 Is the refractive index after temperature change

 n
 Is the refractive index before temperature change

 ΔT
 Is the temperature change

 dn/dT
 Is the temp-optic coefficient

MATERIAL	n	λ (nm)	dn/dt (10 ⁻⁶ / K)
PK51	1.53019	546.1	-8.5
FK3	1.46619	546.1	-0.1
BK7	1.51872	546.1	3.0
LaK10	1.72340	546.1	5.0
SF5	1.67764	546.1	5.8
SF6	1.81265	546.1	11.6
FUSED SILICA	1.45850	587.6	8.1
CVD ZnSe	2.473	1150	59.7
CVD ZnS	2.279	1150	49.8
SILICON	2.38	10µM	162.0
KRS-5	2.37	10µM	-235.0
GERMANIUM	4.003	10µM	396.0

THERM-OPTIC COEFFICIENTS

For lenses in air, we need to consider the effect of the changing refractive index of the air!

Change in lens focal length due to temperature

The refractive index of most materials, including air, varies with temperature. This causes the power in a lens to vary with temperature, which may cause a system focus to change.

The power
$$\phi$$
 in an optical surface is $\phi = \frac{\left(n_{glass} - n_{air}\right)}{R} = \frac{\left(n_{r} - 1\right)}{R}$

With n_r defined as effective *n* relative to air so $(n_{glass} - n_{air}) = (n_r - 1)$:

Taking derivative with temperature

	$d\phi$	$dn_r 1$	$(n_r -$	1) dR
	$\frac{dT}{dT}$	dT R	R^2	dT
	$1 d\phi$	_ 1	dn_r	1 <i>dR</i>
<i>у ф</i> ,	ϕdT	$\frac{1}{(n_r - 1)}$	dT	R dT

dividing through by ϕ ,

Change in focal length goes as

$$f = \frac{1}{\phi}$$
 so $\frac{1}{\phi} \frac{d\phi}{dT} = -\frac{1}{f} \frac{df}{dT}$

Define β so $\Delta f = \beta f \Delta T$

$$\beta = \frac{1}{R} \frac{dR}{dT} - \frac{1}{(n_r - 1)} \frac{dn_r}{dT}$$
$$= \alpha - \frac{1}{(n_r - 1)} \frac{dn_r}{dT}$$

Where α is the glass CTE

Athermalize by making change in focal length = change in spacing

System stays in focus if

$$\frac{df}{dT} = \frac{dL}{dT}$$
$$\beta \cdot f = \sum \alpha_i L_i$$

90

One material defining the spacing L

GLASS TYPE	β (x 10- ⁸)	MATERIAL TYPE	α (m/m – K × 10- ^e)
FK52	27.5	ALUMINUM	23
FK6	19.7	STAINLESS STEEL TYPE 310	16.6
FK5	10.77	STAINLESS STEEL TYPE 17-4 PH	10.8
PSK52	8.92	TITANIUM (6AL-4∨)	8.0
BK7	0.98	INVAR (TYPE 36)	0.54
F2	0.68	INVAR (TYPE 36)	0.54

libliography References: 3.4.4, 3.46 (Vukabratovich)

For the case where more materials define the spacing can be easily calculated as a sum of the expansion from the individual sections.

Multiple lenses, multiple materials, easily calculated, optimized in CodeV, Zemax

Hardness (from Schott TIE-31)

3. Knoop Hardness

The resistance of a material to indentation is characterized by the indentation hardness. Several testing methods can be used: scratching, abrasion or penetration; however, the results are not exactly comparable.

In the Knoop hardness test the indentation depth of a rhombus-shaped diamond pressed with a defined force a time on the material is measured. The diamond surfaces have defined intersection angles of 172.5° and 130.0°. During pressing of the diamond into the glass plate an elastic and plastic deformation occurs. The size of the permanent indentation depends on the hardness of the material, which is given by the chemical composition. The Knoop hardness can be calculated from the diagonal size d of the indentation using the following formula:

$$HK = 1.4233 \cdot \frac{F}{d^2}$$

The standard ISO 9385 [1] describes the measurement procedure for glasses. In accordance with this standard, the values for Knoop hardness HK are listed in the data sheets for a test force of 0.9807 N (corresponds to 0.1 kp) and an effective test period of 20 s. The test was performed on polished glass surfaces at room temperature. The data for hardness values are rounded to 10 HK 0.1/20. The microhardness is a function of the magnitude of the test force and decreases with increasing test force.

In general glasses with a high content of network formers (silica or boron oxide) have high hardness values. Barium-lanthanum-borate glasses (LaK and LaSF glasses) have the highest hardness. An increasing alkaline and/or lead content decreases the indentation hardness.

TECHNICAL INFORMATION

OPTICS FOR DEVICES

DATE October 2004

PAGE 9/10

8. Fracture toughness of glass

So far the strength of optical glass was considered from a statistical point of view by measuring the bending strength of samples and subsequently estimating the failure probabilities. Looking at a single flaw in a material the maximum bending strength depends on the size of the flaw and geometry in the material. For example in case of a flaw with a short depth in a thick plate with tensile forces acting normal to the crack plane one can define a stress intensity factor K_1 by:

$$K_{I} \approx 2\sigma_{0}\sqrt{a}$$
 (8-1)

with σ_0 being the nominal stress perpendicular to the stress plane and a the depth of the flaw. A flaw will result in a fracture if :

$$K_I \ge K_{IC} \tag{8-2}$$

 K_{IC} is the critical stress intensity factor for crack mode I (tensile forces normal to the crack plane, crack propagation perpendicular to the forces). K_{IC} is a material constant. For glasses without additional strengthening the value is typically ≤ 1 . Table 3 gives fracture toughness values of some glasses:

Glass	K _{IC} [MPa m ^{1/2}]
N-BK7	1.1
F5	0.9
ZERODUR®	0.9
SF6	0.7

Table 3: Fracture toughness values of some glasses [7,9]

For a given nominal stress the plate will break for a critical depth a_c of

$$a_c \approx \left(\frac{K_{lc}}{2\sigma_0}\right)^2$$
 (8-3)

Numerical example: For the characteristic strength of ZERODUR[®] of samples with D64 surface condition $\sigma_0 \approx 64$ MPa (table 1) and ZERODUR[®] K_{IC} ≈ 0.9 MPa m^{1/2} the critical flaw size a_c is approx. 49 µm. This flaw size compares to the grain sizes for D64 bonded diamond grains (table 4).

Most glasses exhibit slow crack growth for a stress intensity factor well below the critical value. As mentioned above the most important sub-critical crack growth occurs in the presence of water (amounts less then 10 mg per m²). The velocity of the crack can be described by [8]:

$$\frac{da}{dt} = A^* \left(\frac{K_I(a)}{K_{IC}}\right)^n \tag{8-4}$$

a denotes the depth of the crack, A is a constant and n is the stress corrosion constant.

SCHOTT glass made of ideas

TIE-33: Design strength of optical glass and ZERODUR®

Estimation of strength of glass using statistical methods

Rule of thumb: Glass can withstand long term tensile stresses of 1,000 psi (6.9 MPa), momentary stress of 4000 psi, and compressive stresses of 50,000 psi (345 MPa) before problems or failures occur [1].

Explanation and Usefulness: When designing a mount for a given optical system, it is critical to consider the stresses that will occur at any glass interface. Knowing the force that will be exerted on a metal-glass interface can drive the type of edge contact, the thermal operating range, and the overall tolerances of the system. Considering that failure in glass is typically catastrophic, a conservative approach should be taken to ensure a given glass can withstand the expected load in a system. This rule of thumb is considered very conservative. Looking at the examples given below, using this estimation for most glasses gives a very small or zero probability of failure.

Limitations: Unfortunately, there is no characteristic strength value for a given glass, so this estimation should be used with caution. The actual tensile and compressive strength of any given optic depends on a large variety of factors. The area of the surface under stress, surface finish, size of internal flaws, glass composition, surrounding environment, and the amount and duration of the load all are important factors in determining the strength of glass. In general, glass is weaker with increasing moisture in the air and is able to withstand rapid, short loads better than slow lengthy loads [2].

Complete Analysis: Weibull statistics are commonly used to predict the probability of failure and strength of a glass. This approach allows for the characterization of the inert strength of glass but does not take time factors into account [3]. It assumes that flaws and loads remain constant over time. The mathematical distribution is given by:

$$P_f = 1 - \exp\left[-\left(\frac{\sigma}{\sigma_0}\right)^m\right]$$

 P_f = Probability of failure

- σ = Applied stress
- σ_0 = Characteristic strength (stress at which 63.2% of samples fail)
- m = Weibull modulus (indicator of the scatter of the distribution of the data)

A list of Weibull parameters are shown below for some common glasses. The probability of failure is also displayed for an applied stress of 6.9MPa (1,000psi).

Note that the parameters depend on the type of finish as well as the material. Optically polished or flame polished surfaces are much stronger than cut or ground surfaces.

Material	Weibull	Characteristic	Probability of	
	Modulus (m)	Strength (MPa)	failure	
N-BK7	30.4	70.6	0	
F2	25.0	57.1	0	
SF6	21.9	57.3	0	
Silicon	4.5	346.5	2.2 x 10 ⁻⁸	
Germanium	3.4	119.8	6.1 x 10 ⁻⁵	
ZnSe	6.0	54.9	3.9 x 10 ⁻⁶	
Sapphire	4.0	485	4.1 x 10 ⁻⁸	
Calcium Fluoride	3.0	5.0	0.93	
Zerodur	5.3	293.8	2.5 x 10 ⁻⁹	
Corning ULE	4.5	40.4	3.75 x 10 ⁻⁴	

Probability of Failure at 6.9MPa (1,000 psi) for common glasses

Another approach is to determine the fracture toughness of a glass based on the critical flaw size [4]. Fracture toughness, the resistance of a material to crack propagation, is one of the many ways to characterize a material. Once an applied stress exceeds the material's fracture toughness, a failure would most likely occur. Schott's technical paper TIE-33 [4] presents a simple approximation for determining if a material will fail. For a given stress, a material will fail if a flaw exceeds the critical length, α_{c} :

 $a_{c} = \left(\frac{K_{c}}{2\sigma_{0}}\right)^{2}$

 a_{c} = critical depth of flaw K_{c} = fracture toughness of glass σ_{0} = applied stress

The maximum flaw depth can be estimated from the size of the grinding particle used to finish the optic. Doyle and Kahan [3] state that the maximum flaw depth can be estimated to be three times the diameter of the average grinding particle used. The fracture toughness of glass can typically be found in the material's data sheet, and values for some common glasses can be found in Yoder [1]. The units of fracture toughness are $Pa\sqrt{m} \ge 10^5$.

References:

[1] Yoder, Paul R. Opto-mechanical Systems Design. Bellingham, Wash.: SPIE, 2006, Pgs. 738, 745-746.

[2] Schott –Technical Note. *TIE-31: Mechanical and Thermal Properties of Optical Glass*. 2004.
[3] K.B. Doyle, M.A. Kahan, "Design strength of optical glass," Optomechanics 2003, Proc. SPIE 5176 (2003).

[4] Schott – Technical Note. TIE-33: Design strength of optical glass and Zerodur. 2004.

[5] Ashby, M. F. Materials Selection in Mechanical Design. Oxford: Pergamon, 1992. Pg 273.

[6] Vukobratovich, D. and S. Introduction to Opto-mechanical Design. Short course notes.

Material	Index of Refraction - n _d	Transmissi on Range (μm)	Young's Modulu s –E (GPa)	CTE – α (x10 ⁻ ⁶ /°C)	Density -ρ (g/cm ³)	dn/dT (absolute) (x10 ⁻⁶ /°C)	Poisson Ratio – v	Thermal Conductivity – λ (W/mK)	Stress Optic Coefficient - K _s (10 ⁻¹² /Pa)
N-BK7	1.5168	0.35 – 2.5	82	7.1	2.51	1.1	0.206	1.11	2.77
Borofloat 33 Borosilicate	1.4714	0.35 – 2.7	64	3.25	2.2		0.20	1.2	4
Calcium Fluoride	1.4338	0.35 – 7	75.8	18.85	3.18	-10.6	0.26	9.71	2.15
Fused Silica	1.4584	0.18 – 2.5	72	0.5	2.2	8.1	0.17	1.31	3.4
Germanium	4.0026 (at 11µm)	2 - 14	102.7	6.1	5.33	396	0.28	58.61	-1.56
Magnesium Fluoride	1.413 N _{ord} (at 0.22	0.12 – 7	138	13.7 8.9	3.18	2.3 (//) 1.7 (_ _)	0.276	11.6?	
Sapphire	1.7545 N _{ord} (at 1.06	0.17 – 5.5	335	5.3	3.97	13.1	0.25	27.21	
SF57	1.8467	0.4 – 2.3	54	8.3	5.51	6.0	0.248	0.620	0.02
N-SF57	1.8467	0.4 – 2.3	96	8.5	3.53	-2.1	0.26	0.990	2.78
Silicon	3.4223 (at 5 μm)	1.2 – 15	131	2.6	2.33	160	0.266	163.3	
ULE (Corning	1.4828	0.3 – 2.3	67.6	0.03	2.21	10.68	0.17	1.31	4.15
Zerodur	1.5424	0.5 – 2.5	90.3	0.05	2.53	14.3	0.243	1.46	3.0
Zinc Selenide	2.403 (at 10.6	0.6 – 16	67.2	7.1	5.27	61	0.28	18	-1.60
Zinc Sulfide	2.2008 (at 10µm)	0.4 – 12	74.5	6.5	4.09	38.7	0.28	27.2	0.804

Material	Advantages/Outstanding Properties	Disadvantages/Difficult Properties	Common Application Areas
N-BK7	Easy to make high quality Readily available, inexpensive	Tranmission limited to visible/near IR	Versatile for everyday optical applications
Fused Silica	Wide transmission range Low CTE	Higher dn/dT than BK7	Standard optics, high power laser applications
Silicon	Wide IR transmission range Lower CTE	High dn/dT	Filter substrates, IR windows
SF57	Low stress-optic coefficient	Softer material	Special polarization optics
Sapphire	Very hard, very scratch resistant Wide transmission range	Difficult to machine Expensive	Windows/domes for UV, IR, and visible
Calcium Fluoride	Wide transmission range Very low dispersion	Soft material High CTE	IR and UV applications – windows, filters, and prisms
Magnesium Fluoride	Wide transmission range Birefringent	Birefringent, larger anisotropic CTE	Common anti-reflection coating, UV optics
Borofloat Borosilicate	Low CTE, CTE matches Silicon, can be made very flat	Poor optical properties	Applications needed thermal stability
Zinc Selenide	Transmits in IR and Visible	Soft, High dn/dT	IR windows and lenses, CO ₂ laser optics for 10.6µm
Zinc Sulfide	Transmits in IR and Visible		IR windows and lenses, combined visible/IR systems
Germanium	Low dispersion	High density (heavy), high dn/dT	IR applications
ULE (Corning 7972)	Very low CTE	Poor optical properties Expensive	Telescope mirror substrates, space applications
Zerodur	Very low CTE	Poor optical properties Expensive	Telescope mirror substrates, space applications

(K. Schwertz, Useful Estimations and Rules of Thumb in Optomechanics, MS Report, University of Arizona, 2010)