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Principles of Kinematic Constraint
For holding a body (rigid thing) with the highest precision, we require:
• Full 6 DoF constraint

– If 6 DoFs not fully constrained, then one is loose.

• No overconstraint
– Any overconstraint can cause problems:

• constraints can push against each other, resulting in stress and deformation.
• constraints pushing against each other will “lurch” when forces exceed 

threshold

Kinematic constraint : All DoFs are constrained, and very 
strictly, none are overconstrained

Semi-Kinematic : Slight overconstraint is allowed 
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2(Vukobratovich p. 68)

What if you use 4 points 
in the plane?

What about 2 points?

What about 3 points in a 
line?

Balls provide position 
constraint.

Springs, gravity provide 
preload. NO CONSTRAINT!
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3(Vukobratovich p. 69)

One DoF left

Small motion : Rotation 
about  point A

A
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Instantaneous center of rotation
Same concept as four-bar linkage.
Instantaneous degree of freedom is rotation about a well defined point 

– for small motions
For large motions, the geometry changes and the position of this 

instantaneous center of rotation moves.

http://kmoddl.library.cornell.edu/resources.php?id=125

http://pergatory.mit.edu/2.007/lectures/2002/Lectures/Topic_04_Linkages.pdf
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Use of balls
• Use symmetry of balls
• Material: Stainless steel, tungsten carbide, silicon nitride, diamond

• Constrain position in 1, 2, or 3 DoF

• Always leaves rotation about 3 axes about 
center of curvature, If the ball is smooth
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Kinematic interface

(Hale and Slocum 2001)
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Kinematic hardware

(Baltek)
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Kinematic location
• Since the point contacts are well defined, the location is 

repeatable to sub-micron.
• Depends on friction, surface finish, loads.
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Application of kinematic constraint for 
precision motion

• For three balls fixed, kinematic 
constraint

• Move one ball at a time (with 
micrometer) to rotate the stage about 
the axis defined by the other two balls

• Very stable
• Smooth motion

(Not shown, springs that hold this together)
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Application of kinematic concepts for motion control

5 DoFs constrained using kinematic principles

Remaining DoF is used for the motion
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Problems with point and line contact
Nominally, the contact area is zero for a point or line
Really, the contact area comes from deformations and depends on the 

geometry and material properties.
More force causes more deformation which increases the contact area.
Non-point contact = not purely kinematic

Stiffness = Force required for displacement is very low for the unloaded case.  
and very nonlinear.  Preload is required.

Increased preloading makes stiffer, more stable interface in normal direction
But:

Stress = Force/Area is very high and can damage the materials
Tangential effects due to friction can be large
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Effect of contact stress
• Contact stress can cause fretting 

of the surface
• Lubrication helps.
• Bare aluminum is very bad.
• Different materials works best
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Hertz Contact Stress. Ball on Flat
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• Elastic deformation defined by Hertz contact
• Both the ball and the plane deform, increasing the contact area to diameter 2a

Force F

• Stiffness is zero if  there is no preload force
• Decrease stress, maintain stiffness, increase R
• For two convex spheres, radii R1 and R2,  use
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Hertzian stresses for line contact (cylinder on flat)
• Cylinder radius R, applying force F 

over length L
• Similar to point contact. width of 

contact area is 2b
• Determine maximum compressive 

stress and maximum shear stress 
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Just light the point loading case:
• Stiffness is zero if  there is no preload force
• Decrease stress, maintain stiffness, increase R
• For two convex cylinders,  radii R1 and R2,  use 21
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Use geometry to reduce contact stress

“Canoe ball”
1 meter ROC
(Baltek)

“Spherolinder”
G2 Engineering
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Cylinders in V’s
• Easy to make to high accuracy
• Leaves axial motion, clocking rotation 

unconstrained

V’s

cylinders
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Long radius surfaces to decrease point loading

L. Hale US Patent #6,065,898
or
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Semi-kinematic constraint
Use kinematic concepts, but allow small amount of overconstraint

1. Replace point contacts with “small” contacts
2. Replace idealized constraints with flexures, that use compliance to 

minimize forces and moments in directions other than the intended 
constraint.

Fig. 2.18 

Fig. 2.17 

Fig. 9.32 

Fig. 9.40 

Yoder, Mounting Optics In 
Optical Instruments 2nd Ed. 
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Semi-kinematic example : Loads vs. constraints

Rigid constraints (6)

These are stiff, so they do not 
move.  The force applied is a 
reaction force necessary to 
maintain the position

Preload force (2)

A force is applied, in this case with 
springs.  Ideally, this force is 
constant.  It insures the contacts 
are in compression, but itself  does 
not constrain position

Yoder, Mounting Optics In 
Optical Instruments 2nd Ed. 



J. H. Burge 
University of Arizona

21(Vukobratovich p. 76)



Semi-kinematic using whiffle tree assemblies

(Vukobratovich)


