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Static Equilibrium 
 
 
Static Equilibrium Definition: 
When forces acting on an object which is at rest 
are balanced, then the object is in a state of 
static equilibrium.  

- No translations 
- No rotations 

  
In a state of static equilibrium, the resultant of 
the forces and moments equals zero. That is, the 
vector sum of the forces and moments adds to 
zero.  
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Tolerances for optics are very tight.  We need to 
support them so they are accurately located. 
 
If forces are applied, we want to determine: 
 Motion 
 Distortion 
 
In order to do this, we need to evaluate the 
system, including the applied forces and the 
reaction forces.  
 
In this section, we define forces and moments, 
develop the free body diagram, and use the 
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equations of static equilibrium to solve for 
reaction forces and moments. 
 
Forces are vectors:  

They have a magnitude and direction. 
 
What does a force do? 
 Can accelerate an object F = m a 
 Can stretch a spring scale 
 

 
Forces can be applied: 
 Units of Pounds on Newtons 
 1 pound (lbF)= 4.45 N   :    1 N = 0.22 lb 
 
Or they can come for gravity 

W = m g           (g = 9.8 m/s2 = 386 in/s2) 
 1 kg has weigh of 9.8 N or 2.2 lbs  
 1 lbM is the mass that weighs 1 pound 
 1 slug weighs 32.2 lbs 
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The moment is defined as  
 

 
 
 
Also called “torque” 
 
Units are in-lb or N-m 
 

1 N-m = 8.84 in-Lb 
 
Moments are “twisting forces”. They make 
things rotate 
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Defining moment from applied force 
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Force couples 
 

Two forces, equal and opposite in direction, which do not act in the 
same line cause a pure moment 
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 Simple cases 
 

Cable  

Can only transmit  tension  
along direction of cable 

No compression 

No moment 

No lateral force 
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Constraints 
Constraints are attachment points that will maintain their 
position.  

Idealization of 2D supports 

 



University of Arizona 
J. H. Burge 

 9 

 

Idealization of 3D supports 



University of Arizona 
J. H. Burge 

 10 

 

Free Body Diagrams 

Step 1. Determine which body or combination of 
bodies is to be isolated.  The body chosen will 
usually involve one or more of the desired unknown 
quantities. 

Step 2. Next, isolate the body or combination of 
bodies chosen with a diagram that represents its 
complete external boundaries. 

Step 3. Represent all forces that act on the 
isolated body as applied by the removed contacting 
bodies in their proper positions in the diagram of the 
isolated body.  Do not show the forces that the object 
exerts on anything else, since these forces do not 
affect the object itself. 

Step 4. Indicate the choice of coordinate axes 
directly on the diagram.   Pertinent dimensions may 
also be represented for convenience.  Note, however, 
that the free-body diagram serves the purpose of 
focusing accurate attention on the action of the 
external forces; therefore, the diagram should not be 
cluttered with excessive information.  Force arrows 
should be clearly distinguished from other arrows to 
avoid confusion. 

When these steps are completed a correct free-body 
diagram will result.  Now, the appropriate equations of 
equilibrium may be utilized to find the proper solution. 
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For a rigid body to be static, the net sum of forces 
and moments acting on it must be zero.  
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In general six equations, in the plane this 
reduces to 3 
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Solving Statics problems 
 
Determine reaction forces for static 
equilibrium. 

1.Draw Free Body Diagram 
Decide if the problem is solvable 

a. How many unknowns? 
b.How many equations can you write? 

2.Write equations to sum forces and 
moments to be 0 

a. Use reaction forces as unknowns 
b.Be smart about coordinates and 

choice of points for summing 
moments 

3.Solve equations for reaction forces 
4.Check your answer and the direction 
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2D Particle Example 

 
 

• Determine magnitude of F2 and F3 
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Link Pin joint at both ends 

Equilibrium requires that the forces be equal, opposite 
and collinear. 

 

Therefore, for this member Ay = By = 0 

Pin joint will not transmit a moment 
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Simple Examples 
Determine reaction forces and moments: 
 
 
Simple support 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cantilever 
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X and Y components 
 
 
 
 
Cantilever 
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Reaction from moments 
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Example: Hanging a mass, using a pulley 

 

 

1 kg 

θ 
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2D Pulley Example 

 
Specifications: 

• Mass of block A = 22 kg  
• Mass of block B = 34 kg  

Assumptions: 
• Pulleys are frictionless 
• Block A is free to roll 
• Cable system is continuous 

Determine: 
• Displacement “y” for equilibrium 
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3D Cable System Example 

 
 

Specifications: 
• Weight of plate = 250 lb 

Assumptions: 
• Plate is homogeneous 

Determine: 
• Force in each supporting cable 

 
Use direction cosines 
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Overconstraint 
 
 
Each body has a total of 6 degrees of freedom 
that define its position 
 
Such as x, y, z, θx, θy , θz 
 
These lead to 6 Equations that can be used to 
solve for reaction forces: 

  ∑Fx = 0   ∑Fy = 0   ∑Fz = 0 

∑Mx = 0   ∑My = 0   ∑Mz = 0 

 
If the mechanical constraints provide an 
attachment so that one or more degrees of 
freedom are free, the body is underconstrained 
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If the mechanical constraints provide an 
attachment so that there is no unique solution 
for the reaction forces, the body is 
overconstrained 
 
 
 
 
 
 
 
 
 
 
A body that is neither overconstrained nor 
underconstrained is called static determinant  
 
 
 
 
 
 
 
 
Static equations must have 6 unknowns for 3-
space, or 3 unknowns for in-plane 
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If you are not sure, then try solving for the 
reaction forces and moments. 
 
If you have a unique solution 

static determinant 
 
If you have multiple solutions (more unknowns 
than equations) 
 Overconstrained 
 reaction forces can be pushing against each 
other 
 
If you have more equations than unknowns 
 Underconstrained 

Some degree of freedom is not constrained 
and could move 

 
Try to figure out what degree of freedom has not 
been constrained. 

 
You can be overconstrained and 

underconstrained at the same time! 
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 Frames 

• Designed to support loads. 
• Typically rigid, stationary and fully constrained. 
• Contains at least one multi-force member. 

 

Machines 

• Designed to transmit or modify forces. 
• Contain moving parts. 
• Contains at least one multi-force member. 
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Analysis of Structures – Method of joints 

 

Figure (a) – Crane example 

Figure (b) – Free body diagram of crane showing 
external forces. 

Figure (c) – Dismembered crane showing member 
forces.  From the point of view of the structure as a 
whole, these forces are considered to be internal 
forces. 

The internal forces conform to Newton’s third law – 
the forces of action and reaction between bodies in 
contact have the same magnitude, same line of action 
and opposite sense. 

When structures, like the one shown above, contain 
members other than two force members, they are 
considered to be frames or machines.  Typically, 
frames are rigid structures and machines are not.   
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Analysis of structures – Method of sections 
 
Divide structure along sections, rather than joints.  
Solve for equilibrium. 

 

 

 

 

The equation summing forces in the Y direction only has one unknown because all cut 
members except A-B are horizontal. 

 

 

Because T2 is positive, member A-B is in 1133N of tension 

http://upload.wikimedia.org/wikipedia/commons/1/17/StaticsMethodSectionQ.svg
http://upload.wikimedia.org/wikipedia/commons/1/17/StaticsMethodSectionQ.svg
http://upload.wikimedia.org/wikipedia/commons/d/d2/StaticsMethodSection2.svg
http://upload.wikimedia.org/wikipedia/commons/d/d2/StaticsMethodSection2.svg
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Assuming the beam does not fall, what is the direction 
of the force applied to the beam at C? 



University of Arizona 
J. H. Burge 

 33 

 

Example 

 

Determine the forces acting on member ABCD. 
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