Static Equilibrium

Static Equilibrium Definition:
When forces acting on an object which is at rest
are balanced, then the object is in a state of
static equilibrium.

- No translations

- No rotations

In a state of static equilibrium, the resultant of
the forces and moments equals zero. That is, the
vector sum of the forces and moments adds to
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Tolerances for optics are very tight. We need to
support them so they are accurately located.

If forces are applied, we want to determine:
Motion
Distortion

In order to do this, we need to evaluate the
system, including the applied forces and the
reaction forces.

In this section, we define forces and moments,
develop the free body diagram, and use the
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equations of static equilibrium to solve for
reaction forces and moments.

Forces are vectors:
They have a magnitude and direction.

What does a force do?
Can accelerate an object F=m a
Can stretch a spring scale

Forces can be applied:
Units of Pounds on Newtons
1 pound (Ibg)=4.45N : 1N=0.221b

Or they can come for gravity
W=mg (g = 9.8 m/s* = 386 in/s?)
1 kg has weigh of 9.8 N or 2.2 Ibs
1 lby 1s the mass that weighs 1 pound
1 slug weighs 32.2 Ibs
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The moment is defined as M, =r,xF,

Also called “torque” =r -F
Units are in-1b or N-m
1 N-m =8.84 In-Lb

Moments are “twisting forces”. They make
things rotate
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Defining moment from applied force

MA:‘rAB‘°FL
M,=r |F
r, =|Fg|sin
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Force couples

Two forces, equal and opposite in direction, which do not act in the
same line cause a pure moment
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Simple cases

Cable

Can only transmit tension
along direction of cable

No compression
No moment

No lateral force
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Constraints

Constraints are attachment points that will maintain their

position.

Idealization of 2D supports

Support or Cormection

Reaction

Number of

Fixed support

Force and couple

Unknowns
1
Kocker  Frictionless | Force with known
surface line of action
i i |
Short link Force with known
line of action
|
/
5 /
- - a0 ; ~
W gt
. 1
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l|€
Coll ;
Collar on — ST Forcewith knoam
frictionless rod Frictionless pin in slot lifie-6F action
I J o l J
'
| 2
: @
Frictionless pin Rough surface Force of unknewn
or hinge direction
|
i or
j i
3
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Idealization of 3D supports

Force with known

Force with kunown

S line of action Cable line of action
Frictionless surface tome unkmnown) {one unlaown)
Roller S
oller on ) e i
rough surtice Wheel on rail
- ;
/./'
Rough surface Ball and socket
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Ul!n-"ersal_ Three foree components . Three foree components
J(J‘ll}t’ and One (ﬂllpk‘ Fixed SHPPOF{' and three CUUPIE!S

A(M,)

(ML)
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Two foree components
{and two couples)

LM
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4

Pin and bracket

[linge and bearing supporting Three force components
axial throst and radial load (and two couples)
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Free Body Diagrams

Step 1. Determine which body or combination of
bodies is to be isolated. The body chosen will
usually involve one or more of the desired unknown
guantities.

Step 2. Next, isolate the body or combination of
bodies chosen with a diagram that represents its
complete external boundaries.

Step 3. Represent all forces that act on the
Isolated body as applied by the removed contacting
bodies in their proper positions in the diagram of the
iIsolated body. Do not show the forces that the object
exerts on anything else, since these forces do not
affect the object itself.

Step 4. Indicate the choice of coordinate axes
directly on the diagram. Pertinent dimensions may
also be represented for convenience. Note, however,
that the free-body diagram serves the purpose of
focusing accurate attention on the action of the
external forces; therefore, the diagram should not be
cluttered with excessive information. Force arrows
should be clearly distinguished from other arrows to
avoid confusion.

When these steps are completed a correct free-body
diagram will result. Now, the appropriate equations of
equilibrium may be utilized to find the proper solution.
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SAMPLE FREE—BODY DIAGRAMS

Mechanical System

Free—Body Diogrom of |sclated Bady

1. Plana truss
Weight of truss

ossumed negligible
compared with P

h

2. Caontilever beomn

F3 Fa F
N ¥
Mass m

5. Beam
Smooth surfoce

contoct at A, #ﬂ.

Mas M

P
LA\

4. Rigid system of interconnected
bodies CII'IEIEH"ZEd as a S|ﬂg|ﬁ unit

p-— Weight of machanical - p—
[ neglected
» : : W=rng
TP'.'-" B‘-{'
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Body ~ Incomplete FBD

1. Bell crank T"‘ mg
supporting mass '
m with pin support .
at A. A

2, Control lever

applying torque
to shaft at O.

3. Boom OA, of
negligible mass
compared with
mass m. Boom
hinged at O and
supported by
hoisting cable at B.

4. Uniform crate of
mass m leaning
against smooth
vertical wall and
supported on a
rough horizontal
surface.

5. Loaded bracket
supported by pin
connection at A and
fixed pin in smooth
slot at B.
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Wrong or Incomplete FBD

1. Lawn roller of

mass m being
pushed up

incline 6.

. Prybar lifting
body A having
smooth horizontal
surface. Bar rests
on horizontal
rough surface.

. Uniform pole of
mass m being
hoisted into posi-
tion by winch.
Horizontal sup-
porting surface
notched to prevent
slipping of pole.

4, Supporting angle
bracket for frame;
Pin joints.

5. Bent rod welded to

support at A and
subjected to two
forces and couple.
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1. Uniform horizontal bar of mass m
suspended by vertical cable at A and
supported by rough inclined surface
at B.

5. Uniform grooved wheel of mass m
supported by a rough surface and by
action of horizontal cable.

2. Wheel of mass m on verge of being
rolled over curb by pull P.

6. Bar, initially horizontal but deflected
under load L. Pinned fo rigid support
at each end.

3. Loaded truss supported by pin joint at
A and by cable at B.

7. Uniform heavy plate of mass m
supported in vertical plane by cable
‘C and hinge A.

4. Uniform bar of mass m and roller of
mass mg taken together. Subjected to
couple M and supported as shown.
Roller is free to turn.

8. Entire frame, pulleys, and contacting
cable to be isolated as a single unit.
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For a rigid body to be static, the net sum of forces
and moments acting on it must be zero.

In general six equations, in the plane this
reduces to 3

Y F, =0
Y F,=0
> M=0
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Solving Statics problems

Determine reaction forces for static
equilibrium.
1.Draw Free Body Diagram
Decide if the problem is solvable
a.How many unknowns?
b.How many equations can you write?
2.Write equations to sum forces and
moments to be 0
a.Use reaction forces as unknowns
b.Be smart about coordinates and
choice of points for summing
moments
3.Solve equations for reaction forces
4.Check your answer and the direction
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2D Particle Example
y

F, =300 1b

e Determine magnitude of F, and F3
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Link Pin joint at both ends

Equilibrium requires that the forces be equal, opposite
and collinear.

/5

.\‘ -F

Therefore, for this member A, = By,=0

Pin joint will not transmit a moment
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Simple Examples
Determine reaction forces and moments:

Simple support

Cantilever
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X and Y components

Cantilever

49\‘
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Reaction from moments
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16 in.

University of Arizona
J. H. Burge

22



Example: Hanging a mass, using a pulley
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2D Pulley Example

3m

Specifications:
e Mass of block A = 22 kg
e Mass of block B = 34 kg

Assumptions:
e Pulleys are frictionless
e Block A is free to roll
e Cable system is continuous

Determine:
e Displacement “y” for equilibrium
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3D Cable System Example

St

Specifications:
e Weight of plate = 250 Ib

Assumptions:
e Plate is homogeneous

Determine:
e Force in each supporting cable

Use direction cosines
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Overconstraint

Each body has a total of 6 degrees of freedom
that define its position

Suchasx,y,z 6y 0,, 0,

These lead to 6 Equations that can be used to
solve for reaction forces:

>F.=0 >Fy,=0 >F, =0
>M, =0 >M, =0 >M, =0
If the mechanical constraints provide an

attachment so that one or more degrees of
freedom are free, the body is underconstrained
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If the mechanical constraints provide an
attachment so that there is no unique solution
for the reaction forces, the body is

overconstrained

A body that is neither overconstrained nor
underconstrained is called static determinant

Static equations must have 6 unknowns for 3-
space, or 3 unknowns for in-plane
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If you are not sure, then try solving for the
reaction forces and moments.

If you have a unique solution
static determinant

If you have multiple solutions (more unknowns
than equations)

Overconstrained

reaction forces can be pushing against each
other

If you have more equations than unknowns
Underconstrained
Some degree of freedom is not constrained

and could move

Try to figure out what degree of freedom has not
been constrained.

You can be overconstrained and
underconstrained at the same time!
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Frames

e Designed to support loads.

e Typically rigid, stationary and fully constrained.

e Contains at least one multi-force member.

K |<—3.6m

-t —

Machines

e Designed to transmit or modify forces.
e Contain moving parts.
e Contains at least one multi-force member.

100 Ib

e

6 in.

o

15~
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Analysis of Structures — Method of joints

(a) (b) ()

Figure (a) — Crane example

Figure (b) — Free body diagram of crane showing
external forces.

Figure (c) — Dismembered crane showing member
forces. From the point of view of the structure as a
whole, these forces are considered to be internal
forces.

The internal forces conform to Newton’s third law —
the forces of action and reaction between bodies in
contact have the same magnitude, same line of action
and opposite sense.

When structures, like the one shown above, contain
members other than two force members, they are
considered to be frames or machines. Typically,
frames are rigid structures and machines are not.
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Analysis of structures — Method of sections

Divide structure along sections, rather than joints.
Solve for equilibrium,

A
J
cof © |
(00 kg
T
) W\
T l
Gg) N

Z-F:r: = 0= T, — Theos(60) — T;
S F, =0 = Tysin(60) — 981N

The equation summing forces in the Y direction only has one unknown because all cut
members except A-B are horizontal.

981N = Tysin(60)
Ty = 1132.761N

Because T is positive, member A-B is in 1133N of tension
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http://upload.wikimedia.org/wikipedia/commons/1/17/StaticsMethodSectionQ.svg
http://upload.wikimedia.org/wikipedia/commons/1/17/StaticsMethodSectionQ.svg
http://upload.wikimedia.org/wikipedia/commons/d/d2/StaticsMethodSection2.svg
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Assuming the beam does not fall, what is the direction
of the force applied to the beam at C?
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Example

12 in.

100 1b Geeiemmms) D
l%6iﬂ- — 6 1n.

Determine the forces acting on member ABCD.
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