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Auxiliary-Field Quantum Monte Carlo (AFQMC) is a powerful method for solving electronic
structure problems, particularly in strongly correlated systems. It uses auxiliary fields to simplify
two-body interactions but is limited by the fermionic sign problem as well as its expensive com-
putations of wavefunction overlap. Quantum-Classical AFQMC (QC-AFQMC) integrates quantum
computing to accelerate overlap measurements and mitigate the sign problem. This paper explores
the theoretical basis of QC-AFQMC and its potential for accurately modeling strongly-correlated
systems. Techniques such as shadow tomography are also discussed for improving efficiency.

I. INTRODUCTION

In 1982, Richard Feynman proposed the use of quan-
tum computers to simulate physical systems, highlight-
ing their potential to model complex quantum phenom-
ena beyond the capabilities of classical computation [1].
The quantum phase estimation (QPE) algorithm, intro-
duced in 1995, was recognized for its ability to calculate
ground and excited state energies of molecular systems
[2]. However, implementing QPE for meaningful chemi-
cal problems requires quantum hardware that is signifi-
cantly larger and less noisy than current technology, lim-
iting its current applications to small systems [3].

In 2018, John Preskill introduced the concept of the
”Noisy Intermediate-Scale Quantum” (NISQ) era - a pe-
riod in which quantum algorithms must balance resilience
to noise with the ability to produce meaningful results on
imperfect quantum hardware [4]. Among the early candi-
dates for NISQ algorithms was the variational quantum
eigensolver (VQE), proposed in 2014 [5]. VQE employs a
hybrid quantum-classical approach to determine molec-
ular ground state energies and is well-suited to existing
noisy hardware. However, it faces significant challenges:
selecting an appropriate ansatz that enables the classical
optimizer to find a global (or near-global) minimum is dif-
ficult, and the ansatz must be implementable within the
constraints of noisy devices. While small levels of noise
can be partially absorbed by the classical optimization
step, excessive noise degrades optimization performance
as it leads to essentially random outputs when evaluating
the Hamiltonian [6].

Recently, the quantum-classical auxiliary-field quan-
tum Monte Carlo (QC-AFQMC) algorithm has emerged
as a promising alternative for the NISQ era. This method
is particularly effective for strongly correlated systems,
such as those encountered in battery chemistry, high-
temperature superconductors, and metal-organic frame-
works for carbon capture [7]. Unlike VQE, QC-AFQMC
does not explicitly represent the ground-state wavefunc-
tion on the quantum processor. Instead, it uses auxiliary
fields to decouple interactions, allowing for the calcula-
tion of ground-state properties without the need for an
explicit wavefunction representation [8, 9].

II. THEORETICAL BACKGROUND

A. Quantum Monte Carlo

Quantum Monte Carlo (QMC) methods are widely
used to simulate many-body quantum systems by
stochastically sampling quantum mechanical observables.
These methods are especially powerful for strongly cor-
related systems where mean-field approaches fail [7].
In QMC, the ground-state wavefunction |Ψ0⟩ of a

many-body Hamiltonian Ĥ can be projected from a trial
state |ΨT ⟩ via imaginary time propagation, following

|Ψ0⟩ ∝ lim
τ→∞

e−τĤ |ΨT ⟩ (1)

where τ = it and ⟨Ψ0|ΨT ⟩ = 0. Numerically, this limit
can be obtained by iterating over the timestep ∆τ :

|Ψ(n+1)⟩ = e−∆τĤ |Ψ(n)⟩ (2)

in which |Ψ(0)⟩ = |ΨT ⟩, that is, the trial wavefunction
is the wavefunction of our first step. QMC methods carry
out this iterative process via Monte Carlo sampling.
The ground state energy can then be obtained via the

expectation value of the Hamiltonian:

E0 = lim
n→∞

⟨ΨT |Ĥ|Ψ(n)⟩
⟨ΨT |Ψ(n)⟩

(3)

In this situation, we have a mixed estimator that is
exact [8]. As the imaginary time τ increases, the wave-
function |ΨT ⟩ approaches the ground state |Ψ0⟩, and the
energy estimate of E0 converges to the ground state en-
ergy.

B. Auxiliary-Field Quantum Monte Carlo

AFQMC is a Quantum Monte Carlo technique that
utilizes random walks alongside an auxiliary field to sim-
ulate the imaginary-time evolution of a quantum sys-
tem, ultimately converging to its ground state. AFQMC
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methods work in the second quantized representation of
the Hamiltonian and the auxiliary field space to represent
the wavefunction and carry out the integration [8, 10]. In
the second quantization, the electronic Hamiltonian is

Ĥ = Ĥ1 + Ĥ2 =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

vpqrsa
†
pa

†
qasar (4)

where a†p and aq are the creation and annihilation op-
erators of orbitals p and q, respectively. The term hpq
represents the matrix elements of the one-body Hamilto-
nian interactions, Ĥ1, and the term vpqrs is the matrix

elements of the two-body (Ĥ2) interactions of Ĥ.
For a small but non-zero ∆τ , the Trotter approxima-

tion may be used for the iterative time propagation in
Eq. (2)

e−∆τĤ ≈ e−∆τĤ1e−∆τĤ2 (5)

This approximation introduces Trotter error; to min-
imize this error, generally higher-order Trotterization is
used in a real implementation of this algorithm.

The Ĥ1 term in Eq. (5) is a one-body operator, while

the Ĥ2 term is not and must be rewritten in this form
using a Hubbard-Stratonovich (HS) transformation. Dif-
ferent HS transformations exist and can impact the ac-
curacy of the QMC algorithm. By introducing the col-
lection of auxiliary fields x, the following outcome of one
form of the HS transformation is

e−∆τĤ =

∫
dx p(x) B̂(x) (6)

where p(x) is a probability distribution function, and

B̂(x) is a one-body propagator obtained from the one-

body operators coupled to x. Specifically, B̂ is defined
by the following equation

B̂ = e
∑

ij c†iUijcj (7)

Where U is a square matrix whose elements are given
by Uij and B ≡ eU .
The Hubbard–Stratonovich (HS) transformation refor-

mulates two-body interactions as one-body interactions
influenced by stochastic auxiliary fields. Effectively, this
approach maps an interacting quantum system onto a
collection of non-interacting systems, each subject to dy-
namic, fluctuating auxiliary fields. By summing over all
possible auxiliary field configurations, the original two-
body interactions are reconstructed.

C. The Sign Problem

The sign problem arises from the antisymmetric na-
ture of the fermionic wavefunction. In QMC, sampling

weights can become negative or complex due to interfer-
ence effects, leading to poor statistical convergence.

A common solution to this problem is to create a modi-
fied update rule which constrains the path of the walkers.
This introduces a bias which affects the accuracy of the
results, the magnitude of which depends largely on the
quality of the initial trial state.

D. Monte Carlo Sampling via a Random Walk

|ΨT ⟩ can be initialized to the Hartree-Fock solution
|ΨHF ⟩. The initial wavefunction can be thought of as
a sum of Slater determinants, called ”walkers” for this
algorithm:

|ΨT ⟩ =
∑
k

w
(0)
k |ψ(0)

k ⟩ (8)

where k is the number of walkers, and w
(0)
k = 1 and

|Ψ(0)
k ⟩ = |ΨHF ⟩. When the projection is applied to this

initial state as in Eq. (3), the wavefunction after n steps
is represented as

|Ψ(n)⟩ =
∑
k

w
(n)
k |ψ(n)

k ⟩ (9)

The projection to each new step goes like Eq. (1). Us-
ing Eq. (6), we can sample our probability distribution
function p(x) to obtain the auxiliary field xk.

|Ψ(n+1)⟩ = B̂(xk) |ψ(n)
k ⟩ (10)

Throughout the random walk, the Gram-Schmidt pro-
cedure is applied to each walker, and a renormaliza-

tion factor is included in each w
(n+1)
k . As some walkers

will gradually contribute more than others, a population
control measure must be implemented to replicate the
walkers with larger weights and eliminate the ones with
smaller weights [7].

III. QUANTUM-CLASSICAL
AUXILIARY-FIELD QUANTUM MONTE CARLO

QC-AFQMC integrates quantum computing into the
AFQMC framework to enhance its accuracy and scalabil-
ity. Quantum computers could address key bottlenecks
in the classical algorithm, particularly in preparing trial
wavefunctions and evaluating overlaps [9]. Quantum-
prepared trial states, such as those generated using meth-
ods like the Unitary Coupled Cluster (UCC) ansatz, can
achieve higher overlap with the ground state, thereby
mitigating errors introduced by solutions to the sign
problem. The unitary coupled cluster (UCC) ansatz,
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widely used in variational quantum algorithms, is par-
ticularly advantageous because it intrinsically captures
electron correlations, improving the accuracy of AFQMC
simulations and reducing the impact of pathological con-
figurations [11].

A key consideration to implementing QC-AFQMC is
to determine how to evaluate the overlap amplitude

⟨Ψt|ψ(0)
k ⟩ for each walker. As there is currently signif-

icant overhead and latency in resetting and initialization
of quantum circuits, as well as communication between
quantum and classical processors, the large number of
walkers in a typical AFQMC implementation can be a
problem in some implementations of this overlap mea-
surement. However, shadow tomography has proven to
be a useful technique to measure these overlaps while
avoiding these bottlenecks.

A. Implementation with Classical Shadows

The protocol for measuring wavefunction overlap with
classical shadows is as follows. Let ρ be the density ma-
trix of an n-qubit quantum state, and {Oi} be a collection
of observables for which we will estimate the expectation
values, tr(Oiρ). With classical shadow tomography, this
estimate has only a logarithmic computational cost using
the following procedure:

1. Choose a set of unitary transformations, D

2. Sample random unitaries U ∈ D

3. Measure the state UρU† in the basis |b⟩ to obtain
|b⟩ ⟨b|

Our quantum channel M is then defined by:

M(ρ) := E[U† |b̂⟩ ⟨b̂|U ] (11)

where E denotes averaging, and the hat a statistical
estimator.

As long as measuring in the basis is tomographically
complete, we may apply M−1 to Eq. (11) to obtain

ρ = E[M−1(U† |b̂⟩ ⟨b̂|U)] (12)

The collection {M−1(U† |b̂⟩ ⟨b̂|U)} is called the classi-
cal shadows of ρ.

We can use these shadows to estimate the expectation
values tr(Oiρ) via

⟨Oi⟩ = E tr[OiM−1(U† |b̂⟩ ⟨b̂|U)] (13)

to within an error ϵ [11, 12].
In this implementation, it is desirable that there exist

an efficient method to sample U from D, and to compute

the expectation values with respect to the shadows on a
classical computer.
Several groups have explored using Matchgate shad-

ows and found it advantageous over Clifford shadows by
eliminating the need for an exponentially scaling post-
processing step [11, 13]. Furthermore, implementation
with Matchgate shadows has been proven to be robust
to noise [11]. Despite this, the overall post-processing
costs for QC-AFQMC are still high, and implementation
of this algorithm for chemically relevant systems (e.g.,
FeMoCo) would require significant classical paralleliza-
tion and/or further optimizations to the algorithm.

IV. QUANTUM ADVANTAGE DISCUSSION

One argument in favor of quantum advantage is that
with matchgate shadows, the variance scales with sys-
tem size like O(

√
NlogN), requiring the measurement of

only a polynomial number of samples - better than the
computational complexity of the classical algorithm for
calculating overlap, which scales as O(N4) [13].
However, for the whole algorithm including all post-

processing steps, a computational advantage in speed is
yet to be seen. Thus, the stronger argument for potential
quantum advantage in the QC-AFQMC algorithm is the
improved accuracy of the solution due to the fact that
beginning with a trial wavefunction closer to the ground
state (such as UCC) aids in unbiasing the walker paths
in the phaseless, constrained version of the problem.
A major remaining issue with the algorithm is that

as system size increases, the overlap integrals ⟨ΨT |ψ(0)
k ⟩

decay at an exponential rate. This necessitates an expo-
nentially increasing number of shots in order to reduce
the relative errors of the overlap to within an acceptable
level. This issue exists for both the classical and quantum
QMC methods. Ref. [11] suggests that if this issue can
be mitigated, then practical quantum advantage could be
achieved for system sizes comprising roughly 100 orbitals.

V. CONCLUSION

Quantum-Classical Auxiliary-Field Quantum Monte
Carlo (QC-AFQMC) combines quantum computing with
classical AFQMC to tackle the ground state problem
for strongly correlated electronic systems. By improving
trial wavefunctions and overlap measurements, it has the
potential to provide more accurate energies than its clas-
sical counterpart. Moreover, its high resilience to noise
makes it especially attractive in the NISQ era. While
challenges remain, such as mitigating the exponential
decay of overlaps as well as optimizing classical post-
processing, QC-AFQMC represents a promising step to-
ward practical quantum applications in electronic struc-
ture problems. As quantum technologies mature, QC-
AFQMC could redefine how we approach complex quan-
tum systems in the NISQ era and beyond.
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