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I. INTRODUCTION

Estimating phase shifts is a fundamental task in
quantum information processing because phase plays
a critical role in the evolution and manipulation of
quantum states. Precise phase estimation enables key
applications such as quantum metrology, where it is
used to achieve measurements with accuracy beyond
classical limits, and quantum computing, where phase
shifts are essential for gate operations and algorithms
like Shor’s and Grover’s. In quantum communica-
tion, phase information encodes data in protocols
like quantum key distribution (QKD). Furthermore,
estimating phase shifts underpins foundational stud-
ies of quantum coherence and interference, making
it indispensable for both theoretical and practical
advancements in quantum technologies.
Over the past decade, extensive research has fo-

cused on probing the ultimate quantum limits for
estimating the phase shift and identifying the states
that reach these limits.
For the simplest single-mode input, [1] analyzed

the optimal measurement and the optimal prob state
under the Bayesian framework. [1] provides an ana-
lytical expression for the average cost of an estima-
tion strategy with general density operator of pure
states and arbitrary prior distribution of the phase
parameter to be estimated. A specified cost function

C(ϕ, ϕ̃) = 4 sin2
ϕ− ϕ̃

2
(1)

and the corresponding optimal measurement are used
to evaluate the performance of this strategy. How-
ever, the result of [1] involves calculating the singular
value decomposition (SVD), which becomes particu-
larly challenging for matrices with unknown variables,
and even performing numerical analysis becomes ex-
tremely difficult as the matrix dimension increases.

For the two-mode case and without any prior infor-
mation, [2] considered a situation where laser light,
described by a coherent state |α⟩, and an arbitrary

pure state
∑k

n=0 cn|n⟩ act as the initial 2-mode input
state, which is then fed into the primary input port
of a balanced beam splitter (50:50). The two optical
paths after the beam splitter experience phase shifts
and estimated under the criteria of the quantum

Fisher information. [2] analytically demonstrated
that, for a fixed mean photon number, squeezed
states are optimal when analyzed through quadra-
tures (which ends up in an uncertainty relation),
without delving into the detailed form of the output
state.

In this report, we adopt the setup of [2] as in FIG.
1, but consider the estimation within a Bayesian
framework in which we are more interested. Using
the same cost function Eq. (1) and considering only
covariant measurement, we try to numerically find
out the optimal input pure state in the second mode.
This report is organized as follows: in Section II, we
introduce the basic estimation strategy of Bayesian
framework; in Section III, we define the covariant
measurement and explain why we only consider it;
in Section IV, we state the experimental results; in
Section V we state our results and how we might
improve it in the future.

II. ESTIMATION WITHIN BAYESIAN
FRAMEWORK

The estimation strategy involves the output state
ρ̂ϕ, a POVM measurement Π(ϕ̃), a cost function

C(ϕ, ϕ̃), and a prior distribution p(ϕ), where ϕ is the

phase to be estimated and ϕ̃ is the estimator. The
average cost of the estimation strategy has the form

C̄ = Tr

[∫ 2π

0

dϕ̃Π(ϕ̃)

∫ 2π

0

dϕp(ϕ)C(ϕ, ϕ̃)ρ̂ϕ

]
. (2)

Here we consider p(ϕ) to be the uniform distribution
on [0, 2π). For the output state, we write ρ̂ϕ =
|ψ⟩ϕ⟨ψ|ϕ, where |ψ⟩ϕ takes the form

|ψ⟩ϕ1,ϕ2 = e−
|α|2
2

∞∑
n=0

∞∑
m=0

cm
αn

√
n!( n∑

k=0

m∑
l=0

fn,m(k, l)e−i(k+l)ϕ1−i(m+n−k−l)ϕ2

|k + l⟩1 ⊗ |n+m− k − l⟩2
)

(3)
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FIG. 1. The set up for measurement of phase shift.

where

fn,m(k, l) =
(−1)m−l

√
(k + l)!(m+ n− k − l)!

(
n
k

)(
m
l

)
2

n+m
2

√
(n!)(m!)

.(4)

The detailed derivation is shown in Appendix A.
We can observe that |ψ⟩ϕ is infinite-dimensional

and so is ρ̂ϕ, which is hard to use in order to calculate
C̄. To overcome this case, we truncate our input
states in both modes, i.e. truncate the coherent state
in the first mode up to fock state |nup⟩ and the pure
state in second mode to fock state |mup⟩. The final
dimension of ρ̂ϕ is (nup+mup+1)2×(nup+mup+1)2.

III. COVARIANT MEASUREMENT

As previously mentioned, determining the optimal
measurement using the method proposed by [1] re-
quires calculating the SVD of a matrix constructed
from the density matrix and the prior distribution.
This approach is challenging in our case because the
density matrix contains unknown parameters, and its
high dimensionality makes numerical computation
impractical in general.

To simplify the calculation, we decide to consider
optimal measurement within the range of covariant
measurement.

Definition 1. Let G be a parametric group of trans-
formations of a set Θ and g → Vg be a (continuous)
projective unitary representation of G in a Hilbert
space. Let M(dθ) be a measurement with values in Θ.
The measurement M(dθ) is covariant with respect to

representation g → Vg if

V †
gM(B)Vg =M(Bg−1), (5)

for any B belongs to the σ-field of Borel subsets of
Θ, where

Bg = {θ : θ = gθ′, θ′ ∈ B}. (6)

The following theorem proved by [3] shows that
how covariant measurement can simplify calculation
in our case.

Theorem. The covariant measurement M(ϕ)

⟨n|M(ϕ)|m⟩ = 1

2π
ei(n−m)ϕ (7)

is the optimal measurement of angle of rotation ϕ for
states that can be written as

e−iϕJ |ψ⟩⟨ψ|eiϕJ , (8)

where J is the operator of spin angular momentum,
and for any even 2π-periodic cost function.

It’s clear that our cost function is an even 2π-
periodic cost function, which induces the optimal
measurement is the M(ϕ) in the above theorem.
Thus, we can plug in M(ϕ) into the Π(ϕ) in Eq.
(2) to have an analytic form of C̄.

Finally, the goal is to find out the optimal co-
efficients of the truncated input pure state, i.e.
ci = |ci|eiθi .
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IV. EXPERIMENTS

In this section we describe our experiment set-up
and explain the results.

First, in this report we only estimate ϕ1 show
in Fig. 1, so we set ϕ2 = −ϕ1. Second, for the
truncation mentioned in the previous section, we set
nup = 5 and mup = 2. We also assume that for
the coherent input state, α = 0.1, for which our
truncation length nup is suitable. What left is all
the coefficients. Using normalization condition, we
have one constraint on modules of the coefficients, i.e.
|ci|’s. Additionally, we introduce the mean photon

number N of the input pure state to have the second
constraint. So, we end up with 2(mup + 1)− 2 = 4
parameters to be optimized.

We numerically find out the minimum of C̄ in the
feasible set using grid search.

V. CONCLUSIONS

In this report, we try to find the optimal probe
states for quantum-enhanced interferometry using a
laser power source under the Bayesian framework.
We consider only covariant measurement to make
numerical experiment doable.

Appendix A: Analytical form of the output state to be estimated

In this Appendix, derived the analytical form of the output state in our set up shown in Fig. 1.
For a balanced beam splitter followed by 2 phase shift operator on each mode, the transformation of the

annihilation operators for two input modes â1 and â2 is given by:

b̂1 =
eiϕ1

√
2
(â1 + â2) , b̂2 =

eiϕ2

√
2
(â1 − â2) ,

where â1, â2 and ϕ1, ϕ2 are the annihilation operators and phase shift for modes 1, 2 respectively, and b̂1 and

b̂2 are the output modes.
Also, the beam splitter applies the transformation to the creation operators:

b̂†1 =
eiϕ1

√
2

(
â†1 + â†2

)
, b̂†2 =

eiϕ2

√
2

(
â†1 − â†2

)
.

Then, we need to understand how the beam splitter acts on the Fock state |n⟩A ⊗ |m⟩B, which can be
written as

|n⟩A ⊗ |m⟩B =
(â†1)

n

√
n!

(â†2)
m

√
m!

|0⟩A ⊗ |0⟩B .

Using the representation of â†1, â
†
2 with b̂†1, b̂

†
2, we get the state after the beam splitter and phase shift is

ÛBS |n⟩A ⊗ |m⟩B =

(
e−iϕ1 b̂†1+e−iϕ2 b̂†2√

2

)n (
e−iϕ1 b̂†1−e−iϕ2 b̂†2√

2

)m
√
n!m!

|0⟩A ⊗ |0⟩B .

Expanding the exponentials, we obtain the final output state as

ÛBSPS |n⟩1 ⊗ |m⟩2 =

n∑
k=0

m∑
l=0

fn,m(k, l)e−i(k+l)ϕ1−i(m+n−k−l)ϕ2 |k + l⟩1 ⊗ |n+m− k − l⟩2,

where

fn,m(k, l) =
(−1)m−l

√
(k + l)!(m+ n− k − l)!

(
n
k

)(
m
l

)
2

n+m
2

√
(n!)(m!)
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are coefficients that depend on the binomial expansions.
For our input states, we have

|ψout⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!

∞∑
m=0

cmÛBSPS |n⟩1 ⊗ |m⟩2.

Thus, the output state becomes

|ψout⟩ = e−
|α|2
2

∞∑
n=0

∞∑
m=0

cm
αn

√
n!

(
n∑

k=0

m∑
l=0

fn,m(k, l)e−i(k+l)ϕ1−i(m+n−k−l)ϕ2 |k + l⟩1 ⊗ |n+m− k − l⟩2

)
.
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