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Entanglement is a powerful feature of quantum mechanics. Since entanglement is a 
relatively unexplored concept and it is a resource, having a framework to study its non-
local properties is essential to develop a deep understanding of them and techniques to use 
them. We present mathematical ideas used to classify entangled states using subspaces of 
Hilbert spaces and simple measures used to quantify entanglement. Our literature review 
indicates that entanglement by itself has become a subfield of quantum information theory. 
New developments allow us to glimpse the potential of entanglement as a driver of 
quantum technologies. 

I. Introduction 
 

Quantum Mechanics is known for its counterintuitive 
and unconventional set of ideas that can be used to 
describe microscopic systems. Entanglement is one of 
the quantum phenomena that challenges our physical 
intuition and stimulates our curiosity, and  it has 
become one of the main ingredients  of quantum 
technologies. It is crucial to the development of robust, 
reliable, and powerful quantum communication 
systems and quantum computers. Entanglement is 
regarded as a quantum resource that does not have a 
classical counterpart. Therefore, to boost our ability to 
develop  quantum technologies, we want to be able to 
generate and quantify entanglement. Most quantum 
states are entangled or have some entanglement. That 
fact is evident from a mathematical point of view. The 
state of a qubit can be visualized using the Bloch 
sphere, which is a two dimensional surface in a three 
dimensional space. Two Bloch spheres can be used to 
model separable states of two qubits. In such a case, 
the two Bloch spheres can be seen as 2D subspaces 
embedded in a 4D Hilbert space where the 
corresponding possible entangled states of those two 
qubits can be found. Relative to the full dimensionality 
of the 4D space, the measure of the 2D spaces ought 
to be zero–the subspaces can be seen as sets of points. 
Thus, the number of separable states is relatively 
small. Moreover, since the dimension of the Hilbert 
space associated with a collection of 𝑛 qubits is 2!, the 
number of entangled states increases exponentially.  

In this paper, entanglement is discussed and 
some of the metrics used to quantify it are presented. 
The quantification of entanglement of a two qubit state 
is not regarded as a challenge, but the problem is non-
trivial when a multipartite system is considered. 
Entanglement has multiple aspects and properties, and 
some of them are not well understood. 
 

II. More on Entanglement 
 

Entanglement can be defined as non-local correlations 
of subsystems of a quantum system. Thus, it can be 
said entanglement is a macroscopic property of a 
collection of subsystems. A quantum state is said to be 
entangled if it cannot be expressed as a product of 
irreducible vectors associated with single qubits. More 
generally, an entangled state is a non-convex element 
of a Hilbert space 𝐻. 

Mathematically speaking, entanglement is a 
feature of the structure of the tensor product of Hilbert 
spaces. Consider 

𝐻	 = 	𝐻"⊗	. . .⊗ 𝐻! 
with 𝑛 being the number of subsystems. An entangled 
state in 𝐻 cannot be found in 𝐻# for any i, and by 
definition, it cannot be decompose into vectors in a 
collection of 𝐻#’s. Thus, entanglement is a collective 
property of multiple subspaces. For any subset 𝑀 of 
𝐼 = {1, . . . , 𝑛} with more than one element we can 
consider the set of all convex combinations in the 
corresponding subspace of 𝐻. The complement of 
such a set is the set of entangled states. Moreover, the 
set of convex combinations is a subspace of 𝐻′ =
	𝐻$ ⊗	. . .⊗ 𝐻$%& with 𝑘, . . . , 𝑘 + 𝑙	 ∈ 	𝑀 and |𝑀| = 𝑙. 
Since the number of subsets of 𝐼 increases as 𝑛 
increases, the number of possible subcollections of 
𝐻#′𝑠 increases. The problem has been solved for 𝑙 <
4, [9], but classifying the possible separable subspaces 
of 𝐻 for greater values of 𝑙 is not an easy task.  

Perhaps a simpler approach is one that 
involves invariants and symmetries of spaces or 
vectors [3][4]. Vectors can be grouped using groups, 
which are algebraic objects used to study symmetries. 
Let 𝐺# be a subgroup of the group of linear 
transformations of 𝐻#, 𝐺𝐿(𝐻#). Any 𝑔 ∈ 𝐺# must 
preserve the local structure of 𝐻#. 𝐺 = 𝛱#𝐺# can 
partition 𝐻 because equivalence classes can be defined 
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using elements of 𝐺. Two vectors in 𝐻 are said to be 
equivalent if 𝑔 ∈ 𝐺 can transform one into the other 
(ℎ = 𝑔ℎ′	ℎ, ℎ′ ∈ 𝐻). This approach reduces the 
number of states that must be studied because 
representatives of classes form a smaller vector space 
𝐻>. An additional layer of abstraction is used to 
simplify the problem further. 𝐻> can be partitioned 
using invariants to define another set of equivalence 
classes. ℎ?, ℎ?′ ∈ 𝐻> are equivalent if they have the same 
set of invariants.  𝐻′@ is the set of class representatives, 
and its cardinality is equal to the number of invariants 
of interest. The purpose of this classification is to 
study entanglement properties of groups of entangled 
states. Local unitary transformations do not 
disentangle or entangle states. Thus, 𝐺 groups states 
without changing its entanglement properties. It 
follows that  𝐻> is the set of states that share those 
properties. 𝐻′@ is the set of groups of states in 𝐻> that 
have the same invariants. This algebraic approach also 
requires the use of maps defined on subspaces whose 
tensor product is equal to 𝐻.  For example, one of those 
maps is defined on 𝐻" ⊂ 𝐻 such that 𝐻 = 𝐻"⊗𝐻' 
with 𝐻' ⊂ 𝐻. The number of possible pairs of 
subspaces adds complexity to this approach. Thus, a 
complete classification of entangled states in an 
arbitrary finite Hilbert space is still challenging.  

The density matrix 𝜌 of a quantum state is a 
Hermitian operator, and it maps quantum states to 
other quantum states. Therefore, it is used to study 
entangled states [1]. Consider the vector space 𝑉 of 
Hermitian operators, which can be spanned by 
products of the Pauli matrices and the identity operator 
that act on the subsystems of the system of interest. It 
is possible to use invariants, defined using subspaces 
of 𝑉, to capture the strength of non-local correlations. 
The main idea is to decompose 𝜌 into projections on 
subspaces of 𝑉, which are spanned by subsets of the 
basis 𝐵 of 𝑉. For example, 𝑉( is the span of elements 
in 𝑆 ⊂ 	𝐵, which act non-trivially on a subset of 
parities. It can be shown that the trace of the squared 
projection, 𝜉', of 𝜌 onto 𝑉( scaled by the dimension, 𝑑, 
of 𝑉 does not change if local unitary transformations 
act on 𝜌. In other words, 𝐿(𝜌) = 𝑑	𝑇𝑟(𝜉'(𝜌)) is 
invariant under local unitary operators. Recall that 
such operators do not change the entanglement of a 
system. 𝐿(𝜌) is called the strength length of the 
projection of 𝜌, and in some cases can be used to 
identify entangled states.  

Other approaches that involve symmetries and 
invariants have been developed. Permutations of 
components of a quantum state that leave the state 

unchanged can be used to study entangled states [7]. A 
different approach is to use equivalent local unitary 
operations on different components of a state to define 
symmetries of it and identify entangled states [6]. 
 

III. Entanglement Measures 
 

In the previous section, tools for the identification and 
classification of entangled states are presented. We 
would also like to be able to quantify the amount of 
entanglement in a quantum state. A system is either 
entangled or separable. For high dimensional quantum 
states, there is not a universal separability condition. 
Also, entanglement is a continuous quantity, systems 
can have different degrees of entanglement, and there 
are states that are maximally entangled, [11], which 
means their correlations are as strong as they can be. 
There are many entanglement measure, but none of 
them is general enough to measure non-local 
correlations in all systems. Let 𝜌 be a density matrix of 
a quantum state. An entanglement measure 𝐸 should 
have the following properties [8]. 
 

● 𝐸(𝜌) = 0 iff 𝜌 describes a separable state 
● 𝐸(𝜌) must be invariant under local unitary 

transformations 
● 𝐸(𝜌) must not increase under local operations 

and classical communications  
 
Some entanglement measures are limited to 

simple systems. For example, the Schmidt rank can be 
used to identify entangled states that are pure bipartite 
systems. It is defined by the Schmidt decomposition of 
a state 

|𝜓 >)*=	N
#

𝜆#|𝑖 >) |𝑗 >*		 

with |𝑖 >), |𝑗 >* being basis elements of the 
subsystems and 𝜆# a function of the eigenvalues of 
both components [5]. If the sum has more than one 
term, then |𝜓 >)* is entangled. Concurrence is the 
name of a measure that is more general than the 
Schmidt rank as the bipartite system of interest does 
not have to be pure [2]. The following is its definition. 

𝐶(𝜌) 	= 	𝑚𝑎𝑥{0, 2𝑚𝑎𝑥
#
𝜆# −N

#

𝜆#} 

with 𝜆#’s being the square roots of the eigenvalues of 
𝜌(𝜎1𝑦⊗𝜎2𝑦)𝜌 ∗ (𝜎1𝑦⊗𝜎2𝑦). The range of 𝐶(𝜌) is 
[0, 1]. The closer its value is to 1 the more entangled 
the corresponding state is.  
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The amount of entanglement that can be 
distilled into pure entanglement using local operations 
and classical communication can be measured. It is 
called distillable entanglement, [5], and its definition 
is given by  

 
𝐸!(𝜌) 	= 	𝑠𝑢𝑝{𝑟: 𝑙𝑖𝑚

"→$
(𝑖𝑛𝑓||	𝛬(𝜌⊗") −	𝜙&'!" 	||() 	= 	0} 

 
with 𝑟 being the rate of distillation, 𝑛 the number of 
copies of the state associated with 𝜌,  𝜙+2𝑟𝑛  the desired 
state, and 𝛬 the symbolic representation of local 
operations and classical communication. The 
objective is to obtain an approximation of the desired 
state using 𝑛 copies of a less entangled state. 
Therefore, 𝐸/ captures how much entanglement is 
stored in the final state. The upper bound of 𝐸/ is 
called logarithmic negativity, and it is a function of 
another entanglement measure. Such a  measure is 
called negativity, [2][5], and it captures how entangled 
one of the subsystems and the rest of the system are. 
Thus, it can also localize entanglement. Its definition 
is given by 

𝑁	 = 	N
012

𝜆 

with 𝜆 being the eigenvalue of the partial transpose of 
one of the subsystems. 

There exist families of measures. For 
example, the Renyi entropies form a family of 
entanglement measures [15]. The Von Neumann 
entropy is a well known member of the Renyi family 
[8][15]. It captures the amount of entanglement 
between components of a bipartite system. Its 
definition is given by 
 

𝑆(𝜌) 	= 	𝑇𝑟(𝜌 𝑙𝑜𝑔' 𝜌) 
 

Significantly more entanglement measures 
exist, so the list of functions given above can be easily 
extended. Entanglement of formation provides the 
amount of entanglement needed to construct a state 
[2]. Entanglement witnesses which are operators can 
be used to identify and classify entangled states 
without full descriptions of those states [14]. Another 
more modern technique involves using machine 
learning [10]. More specifically algorithms such as the 
maximum likelihood  and deep learning have been 
used to quantify entanglement without full 
descriptions of states. Results indicate that machine 
learning techniques are more effective when 
knowledge about the measurement projectors is used 

to train neural networks. The number of tools used to 
study entanglement reflect its arcane and complex 
nature. 
 

IV. Conclusion 
 

Although different types of entanglement are not 
discussed in this paper, it can be said that there is more 
than one type [12]. Some states have non-local 
correlations that are more stable than non-local 
correlations of other systems. There are entangled 
states that have long range distributions of their 
correlations. Therefore, it can be said that the process 
of studying entangled states has three components.  
 

● Identification: It has to be determined 
whether or not a quantum system is entangled 
or if some of its components are. 

● Characterization: Properties of non-local 
correlations such as their distributions must be 
described.   

● Quantification: Effective ways to measure 
entanglement are needed to quantify it and use 
it as a resource effectively. 
  
Quantum technologies have great potential 

that will be exploited as researchers and engineers 
explore the richness of quantum mechanics. Though it 
is impossible to predict how the quantum revolution 
will progress, we can assume that it will cause a wave 
of innovation and discoveries that at the moment seem 
to be exotic or impossible. Entanglement is already 
being used to build a quantum engine [13]. Thus, it 
might be fair to say that entanglement is going to be 
the superpower of quantum technologies. 
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