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Tomography is a technique that reconstructs ensembles of information from an object being mea-

sured. Unlike its classical counterpart, quantum tomography is sensitive to state interactions which

poses the risk of collapsing a qubit’s wave function. That alone, significantly increases the complexity

of a quantum analog to tomography techniques, that are ubiquitous in fields ranging from medicine

to geophysics. This paper begins with a review of classical tomography in it’s most recognized form.

The radon transform and the central slice theorem are introduced as mathematical techniques that

assist in understanding how one aspect of classical tomography: image reconstruction, is done. A

transition is made to the quantum description where the approach to tomography is mainly focused

on applications to quantum information science. The field of quantum tomography is examined

through the review of: a tested experimental technique known as continuous measurements and a

proposed theory based technique known as shadow tomography.

Classical Tomography

Tomography is typically associated with CT(computed

tomography) scans in the medical field. The technique

allows for the imaging of internal structures without in-

terference from the underlying structures that would typ-

ically distort the reconstructed image. Tomography can

be done using different sources ranging from RF to mi-

crowave radiation. The technique can be summarized by

the following: take several measurements of an object

and estimate the desired physical quantity through piec-

ing together of the projected image. The radon transform

is one mathematical technique for performing this task.

Radon Transform

The Radon transform can be performed in multiple

dimensions. For simplicity, the 2-D version will be pre-

sented. Suppose there is an object that is represented by

the function f(x,y). It’s radon transform would then be

denoted:

g(ρ, ϕ) =

∫∫
f(x, y)δ(p− (xcos(ϕ) + ysin(ϕ))dxdy

where δ is the Dirac Delta Function and g(ρ, ϕ) is the

projected data onto the ρ, ϕ basis. g(ρ, ϕ) is also known

as a sinogram because a radon transform performed on

an object that is off the origin, produces a sinusoidal

pattern.

An example of the radon transform is shown in the

next column.

FIG. 1. The left image/object is a sum of three ellipses. The
right image is the radon transform of the object. As noted, the
radon transform of an off center object does in fact produce
sinusoidal behavior.

Central Slice Theorem

The central slice theorem/projection slice theorem is

a fundamental relationship in tomography that should

at least be mentioned for a complete description of how

image reconstruction works. The theorem states that the

below two relationships are equivalent:

1. Taking the Radon transform of a two dimensional

object and following that with the Fourier trans-

form of the sinogram.

2. Taking a two dimensional Fourier transform and

then taking the Radon transform.

The 2-D Fourier transform of the sinogram is:

G(ξ, ϕ) =

∫
dpe−2πipξ

∫
drf((r))δ(p− n̂ · r)

which shows that:

G(ξ, ϕ) = F (ρ)|ρ=ξn̂

Thus, the central slice theorem gives insight into the

fact that by taking the 1-D Fourier transform of a sino-

gram at all angles, the 2-D Fourier Transform of the ob-

ject will be complete, which means that the image can be

recovered by taking a simple 2-D inverse Fourier trans-

form.
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Quantum Tomography(QT)

Due to the destructive nature of quantum measurements,

any physical interaction with a qubit has the potential of

altering the state in an undesirable way. This caveat of

nature makes quantum tomographic methods very desir-

able in the field of quantum information science. Unlike

its classical counterpart, quantum tomography deals with

matrix representations of states, denoted ρ. ρ is a density

matrix of DxD dimensional, mixed states. The goal of

quantum tomographic methods is to find a way to give

a classical approximation of the quantum state. Thus,

it differs from the imaging methods in the sense that a

quantum state is not being reproduced, but rather evalu-

ated in such a way that the probability amplitude is max-

imized. The following sections will look at two proposed

estimation schemes in quantum tomography through the

lens of: an experimental set-up and a theoretically pro-

posed methodology.

Experimental Quantum Tomography

A proposed method of ensuring state preservation is

the use of multiple copies of an identical qubit. This how-

ever, drastically increases the size of the measurement

system being observed. As the system size increases, the

efficiency of the tomography method will decrease due to

the cost of time being expended and the robustness of

the states itself. One way to counteract this issue is the

use of weak continuous measurements as proposed by An-

drew Silberfard[1], for state estimation. The rest of this

section will solely be focused on reviewing experimental

results of this technique on pure states of cesium atoms.

The below is an example of one such experimental set-up

that utilizes continuous weak measurements.

FIG. 2. Cesium atoms in plexiglass are being probed with
radio frequency(RF) B-fields to measure the spin at the f=3
hyperfine state.[6]

Measurement Strategies

Innate to tomography is the potential for data cor-

ruption due to measurement errors. To minimize the

presence of errors, the method of taking a measure-

ment must be considered. For tomography with weak

continuous measurements, positive operator valued mea-

sures(POVMs) are considered. As covered in a study

by Sosa-Martinez et al.[Source], a comparison of eight

POVMs ranging from SIC(symmetric informationally

complete) to 4PB(4 polynomial bases). Utilizing max-

imum likelihood estimations as the data processing tech-

nique, it was identified that there are several trade-offs

between accuracy and efficiency when it came to the var-

ious measurement methods within POVMs. Where one

informationally complete class might perform better than

the other in a specific area like a fully IC having more ac-

curate results than the R1S-IC POVM, another IC-class

might outperform the more accurate measure in terms of

efficiency. The most important thing to note is that this

study was performed on known, nearly pure states of ce-

sium atoms which makes the likelihood of a high fidelity,

much stronger. This shows that quantum tomography

methods do face an in-built challenge of needing to ac-

count for trade-offs, especially since noise and error are

ubiquitous in nature.

Cases of Incomplete Data

Bearing in mind that noise infiltration or cases of in-

complete data are possible, it is crucial that the data

reconstruction algorithms are able to be robust in cases

where information needs to be estimated. Two such al-

gorithms being considered are: the least squares method,

and compressed sensing.

The least squares approach will give a state estimation

of:

ρ̂ = argminp

∑
i

[Mi −KTr(ρOi)]
2

subject to: Tr(ρ) = 1, ρ† = ρ, ρ ≥ 0.

The compressed sensing algorithm gives a state esti-

mation of:

ρ̂ = argminpTr(ρ)

subject to:
∑

i[Mi − KTr(ρOi)]
2 ≤ ϵ, ρ† = ρ, ρ ≥

0, T r(ρ̂) = 1.

The two algorithms showed similar performances in

state fidelity with compressed sensing being more robust
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to added error. More work is being done in this area as

algorithm development and experimental set-up refine-

ment are still continuously being improved.

Theoretical Quantum Tomography

Inasmuch as the preceding subsection is rooted in

tried and tested/testable methods, theoretical quantum

tomography deals with mathematical and algorithmic

schemes that are still being explored and attempted to

be implemented. This subsection deals not only with the

reconstruction of a quantum state, but more importantly,

the estimation of a state’s behavior given certain expec-

tation values. To preface the scheme of shadow tomog-

raphy and its natural outcome of classical shadows, the

concept of a gentle measurement must first be explored.

Gentle Measurement

In papers by Winter and Wilde[9,11], a proposition of

the following scheme is proposed: if a measurement of

a density matrix of mixed states(ρ) has a probability of

P ≥ 1− ϵ, then another measured state ρ′ will be within

a trace distance of
√
ϵ. To simplify, if a mixed state is

measured to be in a certain eigenstate with a relatively

large probability, then a measurement of the same state

following the first, will yield something essentially the

same if the second measured state is within a certain dis-

tance of that basis vector. The concept is even extended

to the bound that taking M measurements will still al-

low for a probability of falling within the first eigenstate

of P ≥ 1 − 2M
√
ϵ. This bound is often coupled with

the idea of amplification where measuring x copies of the

original state ρ will only result in an error that falls off

exponentially(e−x) since the probability bound gives a

high likelihood of obtaining the eigenstate measurement.

As optimistic as the gentle measurement scheme seems,

the caveat is that the algorithm is a very specific ver-

sion of shadow tomography where the expectation value

of the density state must fall outside of a value a ≥ c and

a ≤ c − ϵ. Thus, some work must be done to meet the

requirements for a proper shadow tomography scheme.

Shadow Tomography

Shadow tomography is a scheme slightly different

from what was presented in the experimental subsection.

Where tomographic measurements are usually thought

to have the goal of reconstructing a specific piece of in-

formation, shadow tomography instead focuses on the

expectation value of a state. To be precise, given an un-

known D dimensional state(ρ), if at least two dynamic

measurement outcomes are provided, then shadow to-

mography will attempt to estimate the overall behavior

of the mixed state within a certain error(ϵ) that has a

P ≥ 2
3 . Not every state of the density matrix needs to

be known, the scheme is more focused on the overall be-

havior of the state like whether a certain qubit will pass

through a successive number of gate operations. It was

originally proposed by S. Aaronson[10] that the number

of copies of ρ would need to scale as O( log(M)4log(D)
ϵ2 )

in order to achieve this goal. It must be stated that at

this time, the shadow tomography method has not in-

corporated a gentle measurement advantage yet. But,

the scaling would later be improved on to approximately

O(log(M)). The computational complexity(k) of shadow

tomography after incorporating the quantum analogue

of a differential privacy technique known as private mul-

tiplicative weight, led k to scale as O( log(M)2log(D)2

ϵ8 ).

The addition of QPWM(Quantum Private Multiplicative

Weights) also proved to be synonymous with an incorpo-

ration of gentle measurements. It should be noted that

though the scheme looks hopeful in reaching the end goal

of shadow tomography, there are existing concerns for

how this can be implemented experimentally and what

the exact computational cost of performing such a tech-

nique is.

Summary

Tomography is technique in which information is recon-

structed given certain measurements on an object of in-

terest. Classical tomography schemes like CT scans in

the medical field deal with image reconstruction. These

types of tomography techniques take for granted the fact

that the objects they are measuring do not suffer from

the same level of sensitivity that a quantum state does.

Due to the destructive effect of a measurement, the quan-

tum analogue of tomography as focused on in this paper

ends up being a tool tailored for quantum information

science. The techniques of quantum tomography are still

being researched, but two ideas are looked at here: an

experimental method of using weak continuous measure-

ments and a theoretical scheme of shadow tomography.

The experimental tests of the weak continuous measure-

ment scheme show that quantum tomography has its

challenges and trade-offs. The way in which a measure-

ment is taken and the types of algorithms implemented

to reconstruct a quantum state must be carefully consid-

ered in order to maximize results. More work with this
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tomographic method is being expanded on. In shadow

tomography, a promising outlook for the number of mea-

surements needed to implement the algorithm is shown,

but the computational complexity has not yet been fully

accounted for. Shadow tomography looks to be hopeful

method of reconstructing quantum states, but more re-

search needs to be done into making the scheme practical.

A better sample complexity, efficient computational time,

and convenient measurement scheme at an experimental

level must be worked towards in order to utilize such a

proposition. In all, quantum tomography like other quan-

tum technology fields is still a work in progress. There

are many wins along the way and equally many challenges

yet to be overcome.
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