

EQUIANGULAR 3-STATE QKD

OPTI 646 Final Presentation

By Guillermo Hermoso López

Ref [1]

I. INTRODUCTION

- QKD = Quantum Key Distribution Quantum Cryptography.
 - Goal: generate random secure key to encrypt messages.
 - Users: Alice (sender), Bob (receiver), Eve (eavesdropper).
 - Methods:
 - Classical Cryptography Method: Mathematical complexity f.e.
 factorization.
 - Quantum Cryptography: principles of quantum physics, f.e.
 entanglement.

II. COMPARISON WITH CLASSICAL CHANNEL:

- Conventional public-key cryptography:
 - Long-term confidentiality threatened by harvest and decrypt attacks:
 - Encrypted data easily collected and stored.
 - Decrypt later when more powerful (quantum) computers are available.

At Risk!!!

QKD:

- Detect eavesdropping (measurement must be done).
- Secret digital keys secure from future advances in cryptoanalysis and computing.

III. PROTOCOL BB84 (BENNETT – BRASSARD)

- Heisenberg's Uncertainty Principle (HUP):
 - Any 2 pair of conjugate states can be used, f.e. polarization → Horizontal Vertical basis & Diagonal basis.
 - No possible measurement distinguishes 4 different polarization states, since they are **not all orthogonal**. Measurement in one basis gives random result for bits encoded in the other basis.
- No Cloning Theorem: impossible to create identical copies of an arbitrary unknown quantum state.
- Eavesdropper can't measure photons and transmit them on to Bob without disturbing photon's state in a detectable way.
- Random Secret Key Transmission: bits encoded in the polarization of a string of photons.

III. BB84 PROTOCOL

Phase I:

- Alice → Random string of bits w/ random basis for each bit & send to Bob.
- Bob → Random measuring basis for each bit.
- Phase 2:
 - Communication through classical (insecure) channel.
 - Measurement basis (Bob's) shared.
 - ONLY correct bits form key.
- Quantum Channel is secure if no eavesdropping detected.

Alice's bit	0	1	1	0	1	0	0	1
Alice's basis	+	+	Х	+	X	Х	Х	+
Alice's polarization	1	-	K	1	ĸ	>	1	-
Bob's basis	+	Х	Х	Х	+	Х	+	+
Bob's measurement	Ť	1	×	1	-	1	-	-
Public discussion								
Shared Secret key	0		1			0		1

Ref [3]

IV. PROTOCOL E91 (ECKERT)

- Single source emits pairs of perfectly correlated entangled particles (polarized photons).
 - Alice and Bob each choose a random basis.
 - Discuss bases in classical channel.
 - Bit measured with same basis: Alice & Bob get opposite results due to entanglement (binary complements) → One party inverts key.
- Eavesdropper detection:
 - Examine photons measured w/ different basis in a 3rd basis.
 - Test Bell's Inequality → should not hold for entangled particles.

V. PROTOCOL BB92 (BENNETT – BRASSARD)

- Same principle as before but using **only 2 states**: Horizontal polarization and +45°-polarization.
- Photon Transmission: Alice randomly sends photons in either the H-polarization state (bit '0') or the +45°-polarization state (bit '1').
- Bob's Measurement:
 - 1. Bob randomly selects between rectilinear and diagonal bases to measure.
 - 2. In rectilinear basis:
 - I. If incident photon is H-polarized, the outcome is H-state with 100% certainty.
 - 2. If incident photon is +45°-polarized, the outcome is either H-state or V-state with equal probability.
 - 3. In diagonal basis: Measurement outcome of -45°-state \rightarrow incident polarization state of the photon is 'H'.
- Result Announcement:
 - 1. After measuring the photons, Bob announces instances where the outcome was either 'V' or '-45°', discarding the rest.
 - 2. These announced results form the basis for generating a random bit string between Alice and Bob.
- Verification of Eavesdropping:
 - For security verification, Bob and Alice publicly share a part of the generated random bit string.
 - If the bit error rate surpasses a tolerable limit, indicating potential eavesdropping, the protocol is aborted.

VI. 3-STATE PROTOCOLS

- BB92's secure key rate strongly affected by losses: Eve can extract information by increasing the losses and performing USD attack.
 - Unambiguous State Discrimination (USD) attack: uses optimal quantum measurement, type of measurement that aims to obtaining the full information about the state sent from an ensemble of possible states without introducing errors.
- BB92 three-state protocol: addition of 3rd state enough for noise-independent unconditional security of the protocol → Drawback: key rates not close to 4-state BB84 protocol.
- **PBC00: Optimal 3-state protocol** by Phoenix-Barnett-Chefles.
 - States form equilateral triangle in X-Z plane of Bloch sphere.
 - Symmetry can be exploited to achieve similar rates to BB84.

VII. PBC00 PROTOCOL

- 1. State Preparation (Alice): Randomly prepares qubits with equal a priori probabilities in states $|A\rangle$, |B, and $|C\rangle$ with equal probabilities.
- 2. Measurement (Bob):
 - 1. Randomly measures qubits using operators P_A , P_B , and P_C with equal probabilities.
 - 2. Discards timeslots with measurement result zero, tell Alice to discard them too.

3. Key Establishment:

- 1. Alice announces a **state not sent** for each remaining timeslot.
- 2. Bob discards timeslots if Alice's announcement doesn't match his measurement and tells Alice what to discard.

• For example:

- Suppose Alice sent (A) for particular timeslot
 → she would announce either (B) or (C)
 each with probability 1/2.
- 2. Suppose Bob measured P_B (timeslot has not been discarded by him) \rightarrow Bob would know that either (A) or (C) had been sent by Alice.
 - If Alice announced that she did not send (C), Bob would immediately know that Alice had, in fact sent the state (A).
 - If , however, Alice announced that she did not send the state (B) → Bob would obtain no further useful information

VII. PBC00 PROTOCOL

- Key Generation: Binary string created based on the clockwise cyclic arrangement of states. Begin with state transmitted by Alice. If state announced as "Not Sent" is:
 - I. One-hop away clockwise \rightarrow Bit value is '0'.
 - 2. Two hops away clockwise \rightarrow Bit value is 'I'.

5. Eavesdropping Detection:

- 1. Impossible for Eve to guess which state was sent by Alice.
- 2. Eve's intercept-resend strategy results in key bit errors, detectable by Alice and Bob.

								Ref [4]		
Timeslot	1	2	3	4	5	6	7	8	9	10
Alice prepares Bob measures Result Alice says not Bob says Sequence Inferred bit	$ A angle \hat{P}_{ar{A}} \ 0$	$egin{array}{c} B angle \ \hat{P}_{ar{A}} \ 1 \ C angle \ \ BC \ 0 \end{array}$	C angle $\hat{P}_{ar{B}}$ 1 B angle imes	$\ket{C}{\hat{P}_{ar{A}}}{0}$	$egin{array}{c} C angle \ \hat{P}_{ ilde{C}} \ 0 \end{array}$	$egin{array}{c} B angle \ \hat{P}_{ar{C}} \ 1 \ A angle \ \ extbf{BA} \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ $	$egin{array}{c} A angle \ \hat{P}_{ ilde{C}} \ 1 \ B angle \ \ AB \ 0 \end{array}$	$egin{array}{c} A angle \ \hat{P}_{ar{B}} \ 0 \end{array}$	$egin{array}{c} B angle \ \hat{P}_{ar{C}} \ 1 \ C angle \ imes \end{array}$	$ A angle \hat{P}_{ar{B}} \ 1 \ C angle \ \sqrt{AC} \ 1$

VII. PBC00 PROTOCOL

- Key Generation: Binary string created based on the clockwise cyclic arrangement of states. Begin with state transmitted by Alice. If state announced as "Not Sent" is:
 - I. One-hop away clockwise \rightarrow Bit value is '0'.
 - 2. Two hops away clockwise \rightarrow Bit value is 'I'.

7. Eavesdropping Detection:

- 1. Impossible for Eve to guess which state was sent by Alice.
- 2. Eve's intercept-resend strategy results in key bit errors, detectable by Alice and Bob.
- Optimum Measurements (POM)→ Two strategies for eavesdropping:
 - I. Minimize probability that state is assigned incorrectly.
 - 2. Maximize mutual information between Alice & Eve.

- Optimum Measurements (Probability Operator Measurements) → Two strategies for eavesdropping:
 - I. Minimize probability that state is assigned incorrectly.
 - 2. Maximize mutual information between Alice & Eve.

10. Eavesdropper Detection

- I. Eve's strategy revealed in public discussion.
- 2. Intercept-resend strategy induces errors with a probability of 2/7 (QBER=28.6%).
- 3. Sending a random state to Bob increases error probability.

II. Conclusion:

- 1. The protocol allows secure key exchange while detecting eavesdropping attempts.
- 2. Still requires public exchange of sifted key on order to estimate the Quantum Bit Error Rate.

- Improvement of PBC00 protocol, estimates QBER from number of inconclusive events \rightarrow all conclusive events used for key extraction.
- 3 quantum states:
 - { $|\psi_i\rangle$, i = 1,2,3} placed in equilateral triangle in X-Z plane of Bloch sphere.
 - Grouped in set: $S_1 = \{|\psi_1\rangle, |\psi_2\rangle\}, S_2 = \{|\psi_2\rangle, |\psi_3\rangle\}$ and $S_3 = \{|\psi_3\rangle, |\psi_1\rangle\}.$
 - Ist state \rightarrow bit 0, 2nd state \rightarrow bit I.
 - No information in each state about associated bit before the information about the used set is disclosed.
- Entanglement version: using polarization-entangle photon pairs in singlet state.

$$|\Psi^{-}\rangle = \frac{|H\rangle_{A}|V\rangle_{B} - |H\rangle_{A}|V\rangle_{B}}{\sqrt{2}}$$

- Subscripts indicate photon gong to Alice or Bob, and $|H\rangle$ or $|V\rangle$ are horizontal or vertical polarizations states.
- Photons A & B are anti-correlated in any basis for measurement.

1. The states relate:

$$\begin{cases} |\psi_1^{\perp}\rangle = |V\rangle, |\psi_2^{\perp}\rangle = \frac{\sqrt{3}}{2}|H\rangle - \frac{1}{2}|V\rangle, \psi_3^{\perp} = \frac{\sqrt{3}}{2}|H + \frac{1}{2}|V\rangle \\ |\psi_1\rangle = |H\rangle, |\psi_2\rangle = \frac{1}{2}|H\rangle + \frac{\sqrt{3}}{2}|V\rangle, \text{ and } |\psi_3\rangle = \frac{1}{2}|H\rangle - \frac{3}{2}|V\rangle \end{cases}$$

12

2. Alice measures photon *A* using the POVM:

$$\left\{\Pi_i \equiv \frac{2}{3} |\psi_i^{\perp}\rangle \langle \psi_i^{\perp}|\right\}$$

- 3. Anticorrelation: when Alice detects $|\psi_i^{\perp}\rangle$ she has sent Bob the state $|\psi_i\rangle$
- Bob performs his measurements in the same POVM as Alice $\{\prod_i\}$. 4.
- 5. After all measurements, Bob and Alice compare the instants of their events, keeping only those where both have a detection within a fixed coincidence window.
 - Don't share any bit string yet since each state can mean 0 or 1.

- 6. Alice uses **QRNG to determine bit value** for each symbol \rightarrow Combination of **state & bit value** unambiguously determines set S_i .
 - For example: Alice sends $|\psi_2\rangle$ and the QRNG gives 1, the set used for that event is S1).
- 7. For each event, Alice tells Bob the corresponding set by sending him the **value of the index** *i*. Bob uses *i* to associate 2 (for i = 1), 3 (for i = 2), and 1 (for i = 3) with bit 0, and 1 (for i = 1), 2 (for i = 2), and 3 (for i = 3) with bit 1.
- 8. All other combinations are marked as **inconclusive**, since Bob is not able to determine the state sent by Alice.
- 9. Bob tells Alice which events are inconclusive and both discard them. Then estimate QBER from the **fraction of inconclusive events** and use this information to distill the key using error correction and privacy amplification.

Sifting procedure:

- 1. According to the random bit choice at Alice's side (on the left for 0, on the right for 1).
- 2. The cell (Ai,Bj) stands for a coincidence between Alice's detector i and Bob's detector j. Inconclusive events are marked as "Inc".
- 3. The events in the diagonal (Ai,Bi) give an error independently from the bit choice.
- 4. The other combinations (Ai,Bj), with i ≠ j, are either a "good" conclusive or an inconclusive event, according to Alice's choice.

		Bit = 0		Bit=1			
	A1	A2	A3	A1	A2	A3	
B1	1	Inc	0	0	1	Inc	
B2	0	1	Inc	Inc	0	1	
B3	Inc	0	1	1	Inc	0	

Ref [5]

6. Secret key rate

- Post-processing Objective: Transformation of a partially correlated, partially secret key to reduce Eve's information.
- Quantification of Key Transformation: Secret fraction "r" represents the ratio of secure to conclusive bit. In asymptotic limit of infinitely long key:

$$r = 1 - f_{EC} h(Q) - h\left(\frac{5}{4}Q\right), \quad \text{where} \quad h(x) = -x \log_2(x) - (1-x) \log_2(1-x)$$

is the binary entropy, Q is the QBER and $f_{EC} = 1.1$ is the efficiency of the error correction protocol.

- The **QBER** is estimated: $Q = \frac{1-2I}{1-I}$, where *I* is the fraction of inconclusive results.
- # of secure bits is $N_{CONC} * r$, and the **Secret Key Rate is:** $\frac{N_{CONC} * r}{Exposure time}$

IX. EXPERIMENTAL REALIZATION

- Measured **Heralding efficiency** = $5\% \rightarrow$ corresponds to a total loss level of 13 dB.
- Loss contribution of 1.5 dB due to the POVM.
- QBER remains almost constant below 2%.
- Asymptotic Secure Key Rate > 10 kbit/s.

	A1	A2	A3	
B1	0.6	35.8	33.6	
B2	35.1	0.6	32.8	
B3	33.4	33.2	0.4	Ref [5]

Total number of coincidences at the different detectors (million events). The cell (Ai,Bj) corresponds to a coincidence of Alice's detector *i* and Bob's detector *j*.

Total number of coincidences at the different detectors. Full (red) bars correspond to detected events and (blue) contours represent the expected number of detection events.

REFERENCES

- 1. https://governmenttechnologyinsider.com/quantum-key-distribution-podcast-on-securing-future-network-communications/
- https://www.cse.wustl.edu/~jain/cse571-07/ftp/quantum/#fundamentalsLecture slides, course OPTI 541C, prof.
 R. J. Jones, Lecture 6 Nonlinear Propagation.
- https://qt.eu/quantum-principles/communication/quantum-key-distribution-qkd Kuriakose,V C & Porsezian, Kuppuswamy. (2010). Elements of optical solitons: An overview. Resonance. 15. 643-666. 10.1007/s12045-010-0048-y.
- 4. Simon J. D. Phoenix, Stephen M. Barnett & Anthony Chefles (2000) "Three-state quantum cryptography", Journal of Modern Optics, 47:2-3, 507-516, DOI: 10.1080/09500340008244056
- 5. Matteo Schiavon, Giuseppe Vallone & Paolo Villoresi (28 July 2016) Experimental realization of equiangular three-state quantum key distribution", www.nature.com/scientificreports