Nanomechanical systems in quantum information science
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The generic cavity optomechanical system (input-output theory)
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with a stochastic quantum input field @;, (t) normalized such that
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and a total cavity loss rate given by
K = Kex T Ko

According to the input-output theory of open quantum systems, the
field coupled out of an OM system can be written

Aout = Ain — VKexa

Cavity Optomechanics, Aspelmeyer et. al., Rev. Mod. Phys. 86



Quantum motion of a nanomechanical resonator
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Cavity Optomechanics, Aspelmeyer et. al., Rev. Mod. Phys. 86



Quantum motion of a nanomechanical resonator
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Mechanical dissipation and decoherence

Qo

L, =~
" Qn

d
—o(n) = ~T((n) = in)

kgTpatn
hQm

d
Em(t =0)) =74, - I =

Cavity Optomechanics, Aspelmeyer et. al., Rev. Mod. Phys. 86



Mechanical dissipation and decoherence

Some well-known loss mechanisms: 1 z 1
Viscous damping (interaction with gas atoms) Qtotal Qi

Clamping losses (elastic coupling to the

oscillator’s supports)

Number of coherent oscillations in the presence
of thermal decoherence:

Anharmonic effects (thermoelastic damping,
phonon-phonon interactions

Q,, o h
Material loss (relaxation of intrinsic/extrinsic S =[ . ,,JX (—)
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material defect states) B

Cavity Optomechanics, Aspelmeyer et. al., Rev. Mod. Phys. 86



Optomechanical coupling
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Optomechanical coupling

mechanical oscillator  driven optical cavity
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Note: This interaction is fundamentally nonlinear - it contains three operators (three wave mixing)

Cavity Optomechanics, Aspelmeyer et. al., Rev. Mod. Phys. 86



Optomechanical coupling

mechanical oscillator  driven optical cavity If we split the cavity field into a coherent amplitude
(@) = a and a fluctuating term,
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assume the coherent amplitude is real-valued

a = vV Neaw

and move to a frame rotating with the laser field w;, the Hamiltonian can be linearized and is given by

A~ —hAsatsa + hQy, b b+ B 4 ...

Cavity Optomechanics, Aspelmeyer et. al., Rev. Mod. Phys. 86



Optomechanical coupling

mechanical oscillator  driven optical cavity With an optomechanical coupling given by
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The (now linearized) quadratic interaction part of H becomes can be expressed

Ay = —hg(6at+06a)(b +17)

Cavity Optomechanics, Aspelmeyer et. al., Rev. Mod. Phys. 86



Optomechanical “beam splitter” interaction

mechanical oscillator  driven optical cavity For a sideband-resolved (x < £,,) system within the
rotating wave approximation and a detuning

A=wp— Weay =~y

we can write the “beam splitter” interaction between the two coupled harmonic oscillators as

—hg(sath + sab")

Cavity Optomechanics, Aspelmeyer et. al., Rev. Mod. Phys. 86
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Superconducting qubits in microwave circuits
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The Josephson Junction has a supercurrent that varies as
the phase difference between its superconductors

I =1,sin(5(t))

And a nonlinear inductance given by

Li| = ®o/(27ly cos §) = CI)O/Zﬂ\/Ig — 2

Which is responsible for the anharmonicity of its
“washboard” potential well

Superconducting quantum bits, J. Clarke and F.K. Wilhelm, Nature 453
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Superconducting qubits in microwave circuits
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Microwave-optical conversion
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Microwave-optical quantum frequency conversion, X. Han et. al., Optica 8-8



Microwave-optical conversion

Nonlinear processes play a crucial role in M-O conversion ~ ~ ~ ~ ~
o . . . L H=H,+H,+H;+H, +
and can be classified by their order in the interaction H, with 1 2 3 4

ar ; A

External Drive Hy = hZ(ijj +h. C')
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x@ process, quadratic in mode creation/annihilation operators, Hz = hZ(Cj,km]ka + C] km mk + h.c. )
linear in Heisenberg equation — e.g. piezoelectric effect \ T j
(2) . ; . . . | . | / T T

X</ processes, nonlinear in Heisenberg equation, but includes H3 =h (C] k1M MMy + ¢ k1M mymy + h. C.)
effects of interest for coherent M-O conversion ikl

. : do . =~ = : : :
Linear processes, since o ih[H,0]; H3, H,, ... commutators with O generate quadratic or higher order terms

Interaction can be linearized to employ the input-output formalism of cavity optomechanics and harness the
nonlinear processes for coherent linear conversion

Microwave-optical quantum frequency conversion, X. Han et. al., Optica 8-8



Microwave-optical conversion
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For example, a red-detuned optical pump in the sideband resolved limit (w, > k,) reduces
Heo = hgeooata(b + bT)
To a familiar “beam splitter” formulation

Heo = hgeo(a™ + bTa)

Microwave-optical quantum frequency conversion, X. Han et. al., Optica 8-8



Microwave-optical conversion
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Microwave-optical conversion with optomechanics platforms
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Microwave-to-optics conversion using a mechanical oscillator
in its ground state
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Fig. 1| Device layout and room-temperature characterization. a, A micrograph of the transducer devices. Our structures are comprised of an IDT (in gold,
see upper inset), which spans several optomechanical devices for ease of fabrication. The bottom side of the chip is directly accessible with a lensed fibre,
allowing for optical access to the devices. The lower inset shows a scanning electron micrograph of an optomechanical resonator. The waveguide (right) is
used for evanescently coupling light in and out of the device using the lensed fibre (accessed from the bottom, not shown). b, Finite-element simulations
of the optomechanical device. The E, component of the fundamental optical mode is shown (top) alongside the displacement field of the co-localized
mechanical mode oscillating around 2.7 GHz (bottom). ¢, A schematic of the room-temperature characterization set-up. A laser is used to address the
device optically. The reflected light is then measured on a high-speed photodiode to resolve the noise spectrum around the mechanical frequency while
an RF source is used to drive the IDT. d, Upper panel: S, reflection measurement of the IDT device with a resonance at 2.76 GHz. Lower panels: optical
measurements of the gigahertz-frequency noise of the reflected light with (bottom) and without (centre) the RF drive tone applied to the IDT, which
results in a narrow, coherent peak in the spectrum on top of the thermal peak. The laser in these measurements is blue-detuned from cavity resonance

by the mechanical frequency, @,

M. Forsch et. al., Nature Physics 16 (2020)



Microwave-to-optics conversion using a mechanical oscillator
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Fig. 3 | Correlation measurements of the microwave-to-optical transducer
in the pulsed regime. a, The transducer is operated such that RF drive
pulses are upconverted to the optical domain using optical readout

pulses. Shown are the correlations between coinciding detection events

on the two single-photon detectors for photons emerging from the same
(Ai=0) or different (Ai# 0) pulse sequences. The panels correspond

to various coherent phonon populations. b, The full set of g”’(0) values

is shown as a function of RF power applied to the IDT. The dashed curve
displays the expected value of g*”(0) for a displaced thermal state with the
corresponding extracted coherent phonon number n_, (see Supplementary
Information). The inset shows the relative increase in the count rate as

a function of RF power with a linear fit. We use this to extract the ratio

of n_./n,, which allows us to demonstrate the conversion at the single-
coherent-phonon level for the lowest powers. We can see a clear transition
from a bunched (low RF power) towards a not-bunched (high RF power)
second-order correlation. All error bars are one standard deviation.

M. Forsch et. al., Nature Physics 16 (2020)



Resolving the energy levels of a nanomechanical oscillator

Fig.1 | Phonon-number-splitting scheme. The state of a mechanical
oscillator is described in quantum mechanics by a linear superposition of
equally spaced energy eigenstates |n), each representing a state of n
phonons in the system. This quantized structure is normally not resolvable
because all of the transitions between the energy levels occur at the same
frequency wy,. By coupling the resonator to a qubit of transition frequency
wge With arate of g, we cause splitting in the qubit spectrum that is
parameterized by the dispersive coupling rate y. This allows us to
distinguish between the different phonon-number states that are present in
the oscillator.

P. Arrangoiz-Arriola et. al., Nature 571



Resolving the energy levels of a nanomechanical oscillator

Fig. 2 | Fabricated device. a, False-colour optical micrograph of the
device, showing the readout resonator (purple), transmon qubit (green)
and nanomechanical resonators (white box). The qubit flux control (Z)
and excitation (XY) lines are shown in white. b, False-colour scanning
electron micrograph of the suspended resonators. Each resonator consists
of a defect site embedded in a phononic crystal that supports a complete
phononic bandgap in the frequency range ~2—2.4 GHz. The structures are
fabricated from a 250-nm-thick film of lithium niobate (dark blue) that is
suspended above a silicon substrate, and are coupled to the qubit via thin
aluminium electrodes (light blue) that address the defect modes. We form
a connection between the electrodes and the qubit using superconducting
bandages, which are visible as small squares at the edges of the LN-
supporting slabs. ¢, Scanning electron micrograph of a phononic crystal
defect. d, Finite-element method simulation of a mechanical defect mode,
showing the localized deformation of the structure and the electrostatic
potential &(r) (colour scale) generated through the piezoelectricity of LN.

P. Arrangoiz-Arriola et. al., Nature 571



Resolving the energy levels of a nanomechanical oscillator

Fig. 4 | Phonon-number splitting. The qubit excitation spectrum is
measured following a phonon excitation pulse of duration 7., = 175 ns
and of varying amplitude (see inset for the pulse sequence). The

detuning on the horizontal axis is relative to the qubit frequency

wye/27 = 2.317 GHz in the absence of a phonon excitation pulse. The
initial phonon populations prepared by the pulse decay over the course of
the measurement but are nevertheless visible as individual peaks separated
by twice the dispersive coupling rate, 2. At the highest drive amplitudes
we are able to resolve states with phonon numbers up to n = 3. We fit the
data (blue points) using numerical master-equation simulations of the full
pulse sequence (solid grey lines), with the mechanical drive strength as the
only free fit parameter in the Hamiltonian. From these simulations we
extract the mean phonon number i = (fi(7,.4 + 7/2)) midway through
the qubit spectroscopy pulse, which we indicate next to each spectrum.
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P. Arrangoiz-Arriola et. al., Nature 571



Superconducting circuit quantum computing with nanomechanical
resonators as storage
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Figure 1.(a) Schematic representation of one step of a quantum circuit acting on N qubits. All two-qubit gates between distinct pairs
of qubits are performed simultaneously. (b) Sequential version of the circuit from (a), with the single qubit mediating interactions
between N resonators. Each effective two-resonator gate consists of two-qubit-resonator swap gates surrounding one arbitrary qubit-
resonator gate. (c) The errors acting on a specific pair of resonators i and j in the sequential protocol. Decoherence errors are shown by
solid circles (for the resonators) and squares (for the qubit). Cross-talk errors which occur because the gates actingon iand j also
weakly address other resonators are shown by filled red circles. The other class of cross-talk errors, caused by gates performed on other
resonators affecting i and j, is indicated by empty red circles.

M. Pechal et. al., Quantum Sci. Technol. 4 015006



Superconducting circuit quantum computing with nanomechanical
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Figure 2. (a) Dependence of the optimal coupling which minimizes the effective gate error on the number of resonators N. (b) The
effective error probability per gate achieved at the optimal coupling from (a) as a function of N. (c) Hlustration of the quantum volume
in the electromechanical and purely microwave implementation in a plot of the achievable circuit depth d(N) as a function of N. Since
d(N) decreases with increasing N, the quantity min(N, d(N)) is maximized when N = d(N), as shown by the points indicating the
intersection of the curves with the dashed diagonal line. The quantum volume is then the area of the filled squares.

M. Pechal et. al., Quantum Sci. Technol. 4 015006



Proposal for a nanomechanical qubit

(a)

(b)

FIG. 1. Schematic of the proposed setup. A suspended carbon
nanotube hosting a double quantum dot. whose one-electron
charged state is coupled to the second flexural mode. (a) Sketch
of the electronic confinement potential and of the two main
parameters, the hopping amplitude r and the energy difference ¢
between the two single-charge states. (b) Physical realization.
One of the gate electrodes is connected to a microwave cavity for
dispersive qubit readout.

F. Pistolesi et. al., Phys. Rev. X 11, 031027 (2021)



