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and a total cavity loss rate given by

The generic cavity optomechanical system (input-output theory)
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According to the input-output theory of open quantum systems, the
field coupled out of an OM system can be written
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Quantum motion of a nanomechanical resonator

𝜒00 𝜔 =
1

𝑚/11 Ω32 − 𝜔2 − 𝑖𝑚/11Γ3𝜔



Cavity Optomechanics, Aspelmeyer et. al., Rev. Mod. Phys. 86

Quantum motion of a nanomechanical resonator
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Mechanical dissipation and decoherence
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Mechanical dissipation and decoherence
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Some well-known loss mechanisms:

• Viscous damping (interaction with gas atoms)

• Clamping losses (elastic coupling to the 
oscillator’s supports)

• Anharmonic effects (thermoelastic damping, 
phonon-phonon interactions

• Material loss (relaxation of intrinsic/extrinsic 
material defect states) 
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ℎ
𝑘9𝑇

Number of coherent oscillations in the presence 
of thermal decoherence: 
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Optomechanical coupling
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Optomechanical coupling
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Note: This interaction is fundamentally nonlinear - it contains three operators (three wave mixing)
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Optomechanical coupling

If we split the cavity field into a coherent amplitude 
!𝑎 = '𝛼 and a fluctuating term,

"𝑎 = =𝛼 + 𝛿 "𝑎 ,

and move to a frame rotating with the laser field 𝜔# , the Hamiltonian can be linearized and is given by
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assume the coherent amplitude is real-valued
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Optomechanical coupling

The (now linearized) quadratic interaction part of +𝐻 becomes can be expressed
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With an optomechanical coupling given by 
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Optomechanical “beam splitter” interaction

we can write the “beam splitter” interaction between the two coupled harmonic oscillators as 

−ℏ𝑔 𝛿 "𝑎) ;𝑏 + 𝛿 "𝑎;𝑏)

For a sideband-resolved 𝜅 ≪ Ω$ system within the
rotating wave approximation and a detuning

Δ = 𝜔? − 𝜔<;= ≈ −Ω3



Superconducting qubits in microwave circuits

Superconducting quantum bits, J. Clarke and F.K. Wilhelm, Nature 453

𝐼 = 𝐼% sin 𝛿(𝑡)

𝐿@ = Φ%/ 2𝜋𝐼% cos 𝛿 = Φ%/2𝜋 𝐼%2 − 𝐼2

The Josephson Junction has a supercurrent that varies as 
the phase difference between its superconductors

And a nonlinear inductance given by 

Which is responsible for the anharmonicity of its
“washboard” potential well



Superconducting qubits in microwave circuits

Superconducting quantum bits, J. Clarke and F.K. Wilhelm, Nature 453

Despite configuration (flux, phase, etc.), superconducting qubits are
operated in the microwave regime

Microwave photons containing quantum information are 
localized in mK circuits

25 mK
300 K

What if SC qubits were optically addressable?



Microwave-optical conversion

Microwave-optical quantum frequency conversion, X. Han et. al., Optica 8-8



Microwave-optical conversion
Nonlinear processes play a crucial role in M-O conversion,
and can be classified by their order in the interaction +𝐻, with

External Drive

𝜒(&) process, quadratic in mode creation/annihilation operators,
linear in Heisenberg equation – e.g. piezoelectric effect

𝜒(() processes, nonlinear in Heisenberg equation, but includes
effects of interest for coherent M-O conversion
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Linear processes, since )*

)+
= 𝑖ℏ 𝐻, 𝑂 ; +𝐻, , +𝐻- , … commutators with 𝑂 generate quadratic or higher order terms 

Interaction can be linearized to employ the input-output formalism of cavity optomechanics and harness the 
nonlinear processes for coherent linear conversion

Microwave-optical quantum frequency conversion, X. Han et. al., Optica 8-8



Microwave-optical conversion

For example, a red-detuned optical pump in the sideband resolved limit 𝜔. ≫ 𝜅/ reduces

𝐻78 = ℏ𝑔78,9𝑎:𝑎 𝑏 + 𝑏:

To a familiar “beam splitter” formulation

𝐻78 = ℏ𝑔78 𝑎:𝑏 + 𝑏:𝑎

Microwave-optical quantum frequency conversion, X. Han et. al., Optica 8-8



Microwave-optical conversion

Microwave-optical quantum frequency conversion, X. Han et. al., Optica 8-8



Microwave-optical conversion with optomechanics platforms

Microwave-optical quantum frequency conversion, X. Han et. al., Optica 8-8



Microwave-to-optics conversion using a mechanical oscillator 
in its ground state

M. Forsch et. al., Nature Physics 16 (2020)
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Resolving the energy levels of a nanomechanical oscillator

P. Arrangoiz-Arriola et. al., Nature 571
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Superconducting circuit quantum computing with nanomechanical
resonators as storage

M. Pechal et. al., Quantum Sci. Technol. 4 015006
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Proposal for a nanomechanical qubit

F. Pistolesi et. al., Phys. Rev. X 11, 031027 (2021)


