Quantum Error Correction

Michele Pacenti

The [3,1,3] repetition code

$$
t=\left\lfloor\frac{d-1}{2}\right\rfloor
$$

Maximum likelihood decoding on the repetition code

Decoding failure

Codes as matrices

- Let \mathbf{u} be a binary vector of length k
- Let G be the generator matrix of the code \mathcal{C}

$$
\left\{\begin{array}{l}
x \in \operatorname{Im}\{\mathbf{G}\} \\
\mathbf{x} \in \operatorname{ker}\{\mathbf{H}\}
\end{array}\right.
$$

- A codeword can be defined as $\mathbf{x}=\mathbf{u} \cdot \mathbf{G}$
- Let \mathbf{H} be the parity check matrix of the code \mathcal{C}
$\mathbf{G} \cdot \mathbf{H}^{T}=\mathbf{0}$
- If and only if $\mathbf{x} \cdot \mathbf{H}^{T}=\mathbf{0}$ then \mathbf{x} is a codeword

Matrices of the [3,1,3] rep. code

$$
\mathbf{u} \in\{0,1\}
$$

$$
\{\begin{array}{l}
0 \cdot \mathbf{G}=000 \\
1 \cdot \mathbf{G}=111
\end{array} \longrightarrow \mathbf{G}=\underbrace{\left.\begin{array}{lll}
1 & 1 & 1
\end{array}\right)}_{n}\} k
$$

$$
\mathbf{H}=\underbrace{\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)}_{n}\} n-k
$$

$\sqrt{\mathbb{A}} \quad 111 \cdot \mathbf{H}^{T}=\binom{1+1+0}{0+1+1}=\binom{0}{0}$

Error syndrome

- Assume we transmit a codeword \mathbf{X} over a BSC
- The effect of the channel can be modeled as adding an error vector \mathbf{e} to the codeword
- Received sequence $\mathbf{y}=\mathbf{x}+\mathbf{e}$
- Syndrome $\mathrm{s}=\mathbf{y} \cdot \mathbf{H}^{T}$

$$
\begin{aligned}
& \mathbf{s}=(\mathbf{x}+\mathbf{e}) \cdot \mathbf{H}^{T} \\
& \mathbf{s}=\mathbf{x} \cdot \boldsymbol{H}^{\hat{T}}+\mathbf{e} \cdot \mathbf{H}^{T} \\
& \mathbf{s}=\mathbf{e} \cdot \mathbf{H}^{T}
\end{aligned}
$$

[3,2,2] Single Parity Check code

[3,1,3] Repetition code
[3,2,2] Single Parity Check code

$$
\mathbf{G}_{R}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)
$$

$\mathbf{H}_{R} \cdot \mathbf{H}_{S}^{T}=\mathbf{0} \quad$ Dual codes $\quad \mathcal{C}, \mathcal{C}^{\perp}$

Example

$$
\begin{aligned}
& \mathbf{x}=000 \\
& \mathbf{e}=100
\end{aligned} \mathbf{y}=100 \longrightarrow \mathbf{s}=100 \cdot \mathbf{H}^{T}=\binom{1}{0}
$$

QEC: differences with classical

- No cloning
- Continuous errors
- State collapses after measurement

Three qubit bit flip repetition code

$\left\{\begin{array}{l}X|0\rangle=|1\rangle \\ X|1\rangle=|0\rangle\end{array}\right.$

$$
|\psi\rangle=a|0\rangle+b|1\rangle
$$

Error detection

- 4 projection operators:

$$
\begin{aligned}
& P_{0}=|000\rangle\langle 000|+|111\rangle\langle 111| \longrightarrow \text { No flip } \\
& P_{1}=|100\rangle\langle 100|+|011\rangle\langle 011| \longrightarrow \text { 1 }^{\text {st }} \text { qubit flip } \\
& P_{2}=|010\rangle\langle 010|+|101\rangle\langle 101| \longrightarrow \text { 2 }^{\text {nd }} \text { qubit flip } \\
& P_{3}=|001\rangle\langle 001|+|110\rangle\langle 110| \longrightarrow 3^{\text {rd }} \text { qubit flip } \\
& |\Psi\rangle=a|100\rangle+b|011\rangle \longrightarrow \begin{array}{l}
\langle\Psi| P_{1}|\Psi\rangle=1
\end{array} \quad \mathbf{s}=\left\{\begin{array}{l}
\langle\Psi| P_{0}|\Psi\rangle \\
\langle\Psi| P_{1}|\Psi\rangle \\
\langle\Psi| P_{2}|\Psi\rangle \\
\langle\Psi| P_{3}|\Psi\rangle
\end{array}\right. \\
& \langle\Psi| P_{0}|\Psi\rangle=0 \quad \text { Syndrome }
\end{aligned}
$$

Three qubit phase flip repetition code

$$
\left\{\begin{array}{l}
Z|0\rangle=|0\rangle \\
Z|1\rangle=-|1\rangle
\end{array}\right.
$$

$$
|\psi\rangle=a|0\rangle+b|1\rangle
$$

Error detection

- 4 projection operators:

$$
\begin{aligned}
& P_{0}=|+++\rangle\langle+++|+|---\rangle\langle---| \longrightarrow \text { No flip } \\
& P_{1}=|-++\rangle\langle-++|+|+--\rangle\langle+--| \longrightarrow 1^{\text {st }} \text { qubit flip } \\
& P_{2}=|+-+\rangle\langle+-+|+|-+-\rangle\langle-+-| \longrightarrow 2^{\text {nd }} \text { qubit flip } \\
& P_{3}=|++-\rangle\langle++-|+|--+\rangle\langle--+| \longrightarrow 3^{\text {rd }} \text { qubit flip } \\
& |\Psi\rangle=a|-++\rangle+b|+--\rangle \longrightarrow \begin{array}{r}
\langle\Psi| P_{1}|\Psi\rangle=1 \\
\langle\Psi| P_{0}|\Psi\rangle=0
\end{array}
\end{aligned}
$$

Concatenating two repetition codes: the [[9,1,3]] Shor code

Depolarizing channel

$|\Psi\rangle$

$$
E_{i}=e_{i 0} I+e_{i 1} X+e_{i 2} Z+e_{i 3} Y \quad \mathcal{E}(|\Psi\rangle\langle\Psi|)=\sum_{i} E_{i}|\Psi\rangle\langle\Psi| E_{i}^{\dagger}
$$

\mathcal{E}

$$
E_{i}|\Psi\rangle=e_{i 0}|\Psi\rangle+e_{i 1} X_{i}|\Psi\rangle+e_{i 2} Z_{i}|\Psi\rangle+e_{i 3} Y_{i}|\Psi\rangle
$$

Measuring the syndrome makes the state collapse

 into one of the states
Depolarizing channel

$$
\mathcal{E}(\rho)=(1-p) \rho+\frac{p}{3}(X \rho X+Y \rho Y+Z \rho Z)
$$

Stabilizer formalism

$S|\psi\rangle=|\psi\rangle$
\uparrow
Stabilizer

$$
\begin{array}{ll}
\text { E.g. } & |\psi\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}} \\
& X_{1} X_{2}|\psi\rangle=|\psi\rangle \\
& Z_{1} Z_{2}|\psi\rangle=|\psi\rangle \\
& S=\left\langle X_{1} X_{2}, Z_{1} Z_{2}\right\rangle
\end{array}
$$

- The elements of S must commute
- $-I$ is not in $S \quad=\left(\begin{array}{ll}X & X \\ Z & Z\end{array}\right)$

图

Stabilizers of the Shor code

$$
S=\left(\begin{array}{ccccccccc}
Z_{1} & Z_{2} & I & I & I & I & I & I & I \\
I & Z_{2} & Z_{3} & I & I & I & I & I & I \\
I & I & I & Z_{4} & Z_{5} & I & I & I & I \\
I & I & I & I & Z_{5} & Z_{6} & I & I & I \\
I & I & I & I & I & I & Z_{7} & Z_{8} & I \\
I & I & I & I & I & I & I & Z_{8} & Z_{9} \\
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & I & I & I \\
I & I & I & X_{4} & X_{5} & X_{6} & X_{7} & X_{8} & X_{9}
\end{array}\right)
$$

Binary representation

$$
\begin{array}{cc}
I \rightarrow(0 \mid 0) & Z Z I I I I I I \rightarrow(000000000 \mid 110000000) \\
X \rightarrow(1 \mid 0) \\
Z \rightarrow(0 \mid 1) & X X X X X X I I I \rightarrow(111111000 \mid 000000000) \\
Y \rightarrow(1 \mid 1) \\
\mathbf{s} \in\{-1,+1\} \rightarrow\{0,1\} \\
\mathbb{S} \\
\mathbb{A} \\
\mathbb{S}
\end{array} \quad\left[\begin{array}{lllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Binary representation

$$
\begin{array}{cc}
I \rightarrow(0 \mid 0) & Z Z I I I I I I \rightarrow(000000000 \mid 110000000) \\
X \rightarrow(1 \mid 0) \\
Z \rightarrow(0 \mid 1) & X X X X X X I I I \rightarrow(111111000 \mid 000000000) \\
Y \rightarrow(1 \mid 1) \\
\mathbf{s} \in\{-1,+1\} \rightarrow\{0,1\} \\
\mathbb{S} \\
\mathbb{A} \\
\mathbb{S}
\end{array} \quad\left[\begin{array}{lllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Calderbank-Shor-Steane codes

$\mathcal{C}_{1} \rightarrow\left[n, k_{1}\right]$ classical code
$\mathcal{C}_{2} \rightarrow\left[n, k_{2}\right]$ classical code

$$
C S S\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right) \rightarrow\left[\left[n, k_{1}-k_{2}\right]\right]
$$

$$
x \in \mathcal{C}_{1}
$$

$$
\left|x \oplus \mathcal{C}_{2}\right\rangle:=\frac{1}{\sqrt{\mid \mathcal{C}_{2}}} \sum_{y \in \mathcal{C}_{2}}|x \oplus y\rangle
$$

$$
d_{1}, d_{2}^{\perp} \geq 2 t+1
$$

Z stabilizers

$$
\text { Minimum distance of } \mathcal{C}_{2}^{\perp}
$$

$$
\overrightarrow{\mathbf{S}=}\left(\begin{array}{cc}
\mathbf{0}_{\left(n-k_{1}\right) \times n} & \mathbf{H}_{1} \\
\mathbf{H}_{2} & \mathbf{0}_{\left(n-k_{2}\right) \times n}
\end{array}\right)
$$

The $[[7,1,3]]$ Steane code

$\mathcal{C}_{1} \rightarrow[7,4,3]$ Hamming code $\quad \mathbf{H}_{1}=\left(\begin{array}{ccccccc}0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right)$
$\mathcal{C}_{2} \rightarrow[7,3,4]$ Simplex code

$$
\mathbf{H}_{2}=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

$\mathbf{H}_{1} \cdot \mathbf{H}_{2}^{T}=\mathbf{0} \bmod 2$

$$
\mathbf{S}=\left(\begin{array}{cc}
\mathbf{0}_{\left(n-k_{1}\right) \times n} & \mathbf{H}_{1} \\
\mathbf{H}_{2} & \mathbf{0}_{\left(n-k_{2}\right) \times n}
\end{array}\right)
$$

Quantum LDPC codes

- LDPC - Low Density Parity Check - codes, are codes with a sparse parity check matrix
- These codes are state of art for classical communications and storage
- Sparse stabilizer matrices would allow constant depth of syndrome measurement circuits
- Surface codes are a class of CSS QLDPC codes (stabilizer weight of 4)
- In 2022 asymptotically good QLDPC codes were discovered

Open problems

- Design of practical QLDPC codes
- Design of efficient decoding algorithms
- Hardware implementation of non-topological codes
- Need of more refined error models
- And more...

