Solution Set 1

Problem I

Note: The notation used here is somewhat pedantic, but with a bit of care we can keep track. For clarity let's put hats on the operators and reserve the script \mathcal{P} 's for probabilities.
(a) The observables $\hat{X}(1)$ and $\hat{Y}(2)$ are projectors onto the states $\left|x_{1}\right\rangle$ and $\left|y_{2}\right\rangle$, respectively. We can guess and confirm by inspection ($\hat{\mathrm{X}}(1)\left|0_{1}\right\rangle=\left|1_{1}\right\rangle\left\langle 1_{1} \| 0_{1}\right\rangle=0\left|0_{1}\right\rangle$ etc.) that

Observables Eigenvalues Eigenvectors Projectors

$\hat{\mathrm{X}}(1)$	0	$\left\|0_{1}\right\rangle$	$\hat{\mathrm{P}}_{x=0}(1)=\left\|0_{1}\right\rangle\left\langle 0_{1}\right\|$
	1	$\left\|1_{1}\right\rangle$	$\hat{\mathrm{P}}_{x=1}(1)=\left\|1_{1}\right\rangle\left\langle 1_{1}\right\|$
$\hat{\mathrm{Y}}(2)$	0	$\left\|0_{2}\right\rangle$	$\hat{\mathrm{P}}_{y=0}(2)=\left\|0_{2}\right\rangle\left\langle 0_{2}\right\|$
	1	$\left\|1_{2}\right\rangle$	$\hat{\mathrm{P}}_{y=1}(2)=\left\|1_{2}\right\rangle\left\langle 1_{2}\right\|$

(b) Product State

$$
|\Psi\rangle=\left(a_{0}\left|0_{1}\right\rangle+a_{1}\left|1_{1}\right\rangle\right)\left(b_{0}\left|0_{2}\right\rangle+b_{1}\left|1_{2}\right\rangle\right)
$$

Measure $\hat{X}(1)$

outcome $0: \quad \mathcal{P}(x=0)=\langle\Psi| \hat{\mathrm{P}}_{x=1}(1) \otimes \hat{\mathrm{I}}(2)|\Psi\rangle=\left|a_{0}\right|^{2}$ outcome 1: $\quad \mathcal{P}(x=1)=\langle\Psi| \hat{\mathrm{P}}_{x=1}(1) \otimes \hat{\mathrm{I}}(2)|\Psi\rangle=\left|a_{1}\right|^{2}$

Measure $\hat{Y}(2)$
outcome $0: \quad \mathcal{P}(y=0)=\langle\Psi| \hat{\mathrm{I}}(1) \otimes \hat{\mathrm{P}}_{y=0}(2)|\Psi\rangle=\left|b_{0}\right|^{2}$
outcome 1: $\quad \mathcal{P}(y=1)=\langle\Psi| \hat{\mathrm{I}}(1) \otimes \hat{\mathrm{P}}_{y=1}(2)|\Psi\rangle=\left|b_{1}\right|^{2}$

Entangled State $\quad|\chi\rangle=\alpha\left|0_{1}, 0_{2}\right\rangle+\beta\left|1_{1}, 1_{2}\right\rangle$
Measure $\hat{X}(1)$
outcome $0: \quad \mathcal{P}(x=0)=\langle\chi| \hat{\mathrm{P}}_{x=0}(1) \otimes \hat{\mathrm{I}}(2)|\chi\rangle=|\alpha|^{2}$
outcome 1: $\quad \mathcal{P}(x=1)=1-\mathcal{P}(x=0)=|\beta|^{2}$
Measure $\hat{Y}(2)$
outcome $0: \quad \mathcal{P}(y=0)=\langle\chi| \hat{\mathrm{I}}(1) \otimes \hat{\mathrm{P}}_{y=0}(2)|\chi\rangle=|\alpha|^{2}$,
outcome 1: $\quad \mathcal{P}(y=1)=1-\mathcal{P}(y=0)=|\beta|^{2}$
(c) As in part (a), we can guess and confirm the eigenvalues and eigenstates of $\hat{\mathrm{C}}$. E. g Observable Eigenvalues Eigenvectors Projectors
C
1

$$
0
$$

$$
\begin{array}{ll}
\left|0_{1} 0_{2}\right\rangle,\left|1_{1} 1_{2}\right\rangle & \hat{\mathrm{P}}_{C=1}(1)=\left|0_{1} 0_{2}\right\rangle\left\langle 0_{1} 0_{2}\right|+\left|1_{1} 1_{2}\right\rangle\left\langle 1_{1} 1_{2}\right| \\
\left|0_{1} 1_{2}\right\rangle,\left|1_{1} 0_{2}\right\rangle & \hat{\mathrm{P}}_{C=0}(1)=\left|0_{1} 1_{2}\right\rangle\left\langle 0_{1} 1_{2}\right|+\left|1_{1} 0_{2}\right\rangle\left\langle 1_{1} 0_{2}\right|
\end{array}
$$

Note that the outcomes indicate whether the qubit states are correlated ($C=1$) or anti-correlated ($C=0$).
(d) Case $|\Psi\rangle$. We write the density operator $\hat{\rho}$ out explicitly:

$$
\hat{\rho}=\left(a_{0}\left|0_{1}\right\rangle+a_{1}\left|1_{1}\right\rangle\right)\left(a_{0}^{*}\left\langle 0_{1}\right|+a_{1}^{*}\left\langle 1_{1}\right|\right)\left(b_{0}\left|0_{2}\right\rangle+b_{1}\left|1_{2}\right\rangle\right)\left(b_{0}^{*}\left\langle 0_{2}\right|+b_{1}^{*}\left\langle 1_{2}\right|\right)
$$

Next we use

$$
\begin{aligned}
\hat{\rho}(1) & =\operatorname{Tr}_{1}[\hat{\rho}]=\sum_{y=0,1}\left\langle y_{2}\right| \hat{\rho}\left|y_{1}\right\rangle \\
& =\left(a_{0}\left|0_{1}\right\rangle+a_{1}\left|1_{1}\right\rangle\right)\left(a_{0}^{*}\left\langle 0_{1}\right|+a_{1}^{*}\left\langle 1_{1}\right|\right) \sum_{y=0,1}\langle y_{2} \underbrace{\left(b_{0}\left|0_{2}\right\rangle+b_{1}\left|1_{2}\right\rangle\right)\left(b_{0}^{*}\left\langle 0_{2}\right|+b_{1}^{*}\left\langle 1_{2}\right|\right) \mid}_{=\left|b_{0}\right|^{2}+\left|b_{1}\right|^{2}=1} y_{1}\rangle \\
& =\left(a_{0}\left|0_{1}\right\rangle+a_{1}\left|1_{1}\right\rangle\right)\left(a_{0}^{*}\left\langle 0_{1}\right|+a_{1}^{*}\left\langle 1_{1}\right|\right)
\end{aligned}
$$

Thus we get $\quad \hat{\rho}=\left[\begin{array}{cc}\left|a_{0}\right|^{2} & a_{0} a_{1}^{*} \\ a_{0}^{*} a_{1} & \left|a_{1}\right|^{2}\end{array}\right]$

Case $|\chi\rangle$. Again, we write $\hat{\rho}$ out explicitly: $\quad \hat{\rho}=\left(\alpha\left|0_{1} 0_{2}\right\rangle+\beta\left|1_{1} 1_{1}\right\rangle\right)\left(\alpha^{*}\left\langle 0_{1} 0_{2}\right|+\beta^{*}\left\langle 1_{1} 1_{2}\right|\right)$
Thus, $\quad \hat{\rho}(1)=\sum_{y=0,1}\left\langle y_{2}\right| \hat{\rho}\left|y_{2}\right\rangle=|\alpha|^{2}\left|0_{1} 0_{2}\right\rangle\left\langle 0_{1} 0_{2}\right|+|\beta|^{2}\left|1_{1} 1_{1}\right\rangle\left\langle 1_{1} 1_{2}\right|=\left[\begin{array}{cc}|\alpha|^{2} & 0 \\ 0 & |\beta|^{2}\end{array}\right]$
Finally, we return to the probability of measurement outcomes $\mathcal{P}(x=0,1)$ and compute these using the reduced density operators.

Case $|\Psi\rangle \quad \mathcal{P}(x=0)=\operatorname{Tr}\left[\hat{\rho}(1) \hat{\mathrm{P}}_{x=0}(1)\right]=\operatorname{Tr}\left[\left(\begin{array}{cc}\left|a_{0}\right|^{2} & a_{0} a_{1}^{*} \\ a_{0}^{*} a_{1} & \left|a_{1}\right|^{2}\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right]=\left|a_{0}\right|^{2}$

$$
\mathcal{P}(x=1)=\operatorname{Tr}\left[\hat{\rho}(1) \hat{\mathrm{P}}_{x=1}(1)\right]=\operatorname{Tr}\left[\left(\begin{array}{cc}
\left|a_{0}\right|^{2} & a_{0} a_{1}^{*} \\
a_{0}^{*} a_{1} & \left|a_{1}\right|^{2}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right]=\left|a_{1}\right|^{2}
$$

Case $|\chi\rangle \quad$ Same approach $\Rightarrow \mathcal{P}(x=0)=|\alpha|^{2}, \mathcal{P}(x=1)=|\beta|^{2}$.

Problem II

(a) The preamble to part $\mathrm{II}(\mathrm{a})$ is mainly an excuse to introduce the basis states $\left|j, m_{j}\right\rangle$ for the two-spin system, where j is the quantum number for the total angular momentum, and m_{j} is quantum number for its projection onto the quantization axis. Note in particular the existence of the so-called singlet state, $|0,0\rangle=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\left|-\frac{1}{2}, \frac{1}{2}\right\rangle\right)$, which has zero total angular momentum and zero projection onto the quantization axis. This particular entangled 2 -spin state is invariant with respect to all spatial rotations and therefore essential for the Bell paradox.

The Problem that is actually asked is straightforward: We are given four states and their probability of occurrence in the ensemble. By definition,

$$
\begin{aligned}
\hat{\rho} & =0.4 \times\left|j=1, m_{j}=1\right\rangle\left\langle j=1, m_{j}=1\right|+0.3 \times\left|j=1, m_{j}=0\right\rangle\left\langle j=1, m_{j}=0\right| \\
& +0.2 \times\left|j=1, m_{j}=-1\right\rangle\left\langle j=1, m_{j}=1\right|+0.1 \times\left|j=0, m_{j}=0\right\rangle\left\langle j=0, m_{j}=0\right|
\end{aligned}
$$

in the $\left|j, m_{j}\right\rangle$ representation. This is clearly of the form $\hat{\rho}=\Sigma_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$, where more than one of the probabilities p_{k} are non-zero. That means we have a mixed state.

Problem III

(a) $\hat{\rho}$ is Hermitian and therefore has real-valued eigenvalues π_{i} and associated eigenvectors $\left|\chi_{i}\right\rangle$ that form an orthonormal basis in state space. That means we can write $\hat{\rho}$ on the form

$$
\hat{\rho}=\sum_{i} \pi_{i}\left|\chi_{i}\right\rangle\left\langle\chi_{i}\right|
$$

Also, $\quad \hat{\rho}^{2}=\sum_{i, j} \pi_{i}\left|\chi_{i}\right\rangle\left\langle\chi_{i}\right| \pi_{j}\left|\chi_{j}\right\rangle\left\langle\chi_{j}\right|=\sum_{i} \pi_{i}^{2}\left|\chi_{i}\right\rangle\left\langle\chi_{i}\right|$
(b)

$$
(b-1)
$$

$$
\hat{\rho}=\left[\begin{array}{llllll}
\pi_{1} & & & & & 0 \\
& \pi_{2} & & & & \\
& & \ddots & & & \\
& & & \ddots & & \\
0 & & & & & \\
& & & & & \pi_{n}
\end{array}\right], \quad \hat{\rho}^{2}=\left[\begin{array}{cccccc}
\pi_{1}^{2} & & & & & 0 \\
& \pi_{2}^{2} & & & & \\
& & \ddots & & & \\
& & & \ddots & & \\
0 & & & & & \\
& & & & &
\end{array}\right]
$$

In the pure case $\hat{\rho}=|\psi\rangle\langle\psi|$, so $|\psi\rangle$ is an eigenvector of $\hat{\rho}$ with eigenvalue 1 .
Choose $\left|\chi_{1}\right\rangle=|\psi\rangle$. The remaining $\left|\chi_{i}\right\rangle \perp\left|\chi_{1}\right\rangle$ span the subspace associated with the $n-1$ fold degenerate eigenvalue 0 . Then $\hat{\rho}$ has the form

$$
\hat{\rho}=\left[\begin{array}{ccc}
& (b-3) & \\
& & \\
& 0 & \\
\\
& & \ddots
\end{array}\right]
$$

We see immediately that a density matrix of the form $(\mathrm{b}-3)$ has $\operatorname{Tr}[\hat{\rho}]=\operatorname{Tr}\left[\hat{\rho}^{2}\right]=1$.
However, a mixed density matrix of the form (b-1) has $\operatorname{Tr}\left[\hat{\rho}^{2}\right]=\sum_{i} \pi_{i}^{2} \leq\left(\sum_{i} \pi_{i}\right)^{2}=1$
where we have used the Cauchi-Schwartz inequality and the " $=$ " holds when one of the π_{i} is non-zero and the remaining $\pi_{j}=0$.
(c) We have

$$
\begin{aligned}
& \frac{d}{d t} \operatorname{Tr}\left[\hat{\rho}^{2}\right]=\operatorname{Tr}\left[\frac{d}{d t} \hat{\rho}^{2}\right]=\operatorname{Tr}\left[\left(\frac{d}{d t} \hat{\rho}\right) \hat{\rho}+\hat{\rho}\left(\frac{d}{d t} \hat{\rho}\right)\right]=\operatorname{Tr}\left[\frac{1}{i \hbar}[\hat{H}, \hat{\rho}] \hat{\rho}+\frac{1}{i \hbar} \hat{\rho}[\hat{H}, \hat{\rho}]\right] \\
& \quad=\operatorname{Tr}\left[\frac{1}{i \hbar}[\hat{H}, \hat{\rho}] \hat{\rho}+\frac{1}{i \hbar} \hat{\rho}[\hat{H}, \hat{\rho}]\right]=\frac{1}{i \hbar} \operatorname{Tr}[\hat{H} \hat{\rho} \hat{\rho}-\hat{\rho} \hat{\rho} \hat{H}]=\frac{1}{i \hbar} \operatorname{Tr}\left[\sum_{i j k} H_{i j} \rho_{j k} \rho_{k i}-\rho_{i j} \rho_{j k} H_{k i}\right]
\end{aligned}
$$

Now, since the trace is basis independent, we can at all times calculate it in the basis where $\hat{\rho}$ is diagonal. In that case the only non-zero parts are those for which $i=j=k$, and

$$
\frac{d}{d t} \operatorname{Tr}\left[\hat{\rho}^{2}\right]=\frac{1}{i \hbar} \operatorname{Tr}\left[\sum_{i} \hat{H}_{i i} \hat{\rho}_{i i} \hat{\rho}_{i i}-\hat{\rho}_{i i} \hat{\rho}_{i i} \hat{H}_{i i}\right]=0
$$

Thus $\operatorname{Tr}\left[\hat{\rho}^{2}\right]$ is constant in time, and a pure state cannot evolve into a mixed state and vice versa.
(d) Von-Neumann entropy $S=-k_{B} \operatorname{Tr}(\hat{\rho} \ln \hat{\rho})$

In basis $\left|\chi_{i}\right\rangle$ we have $\quad S=-k_{B} \operatorname{Tr}(\hat{\rho} \ln \hat{\rho})=-k_{B} \sum_{i} \pi_{i} \ln \pi_{i}$

Pure state:

In an n dimensional space, a pure state can be written as $\hat{\rho}=\lim _{\varepsilon \rightarrow 0}\left[\begin{array}{cccc}1-(n-1) \varepsilon & & & 0 \\ & & \varepsilon & \\ \\ 0 & & \ddots & \\ & & & \varepsilon\end{array}\right]$
and thus

$$
-\operatorname{Tr}(\hat{\rho} \ln \hat{\rho})=-\lim _{\varepsilon \rightarrow 0}\left[(1-(n-1) \varepsilon) \ln (1-(n-1) \varepsilon)+\sum_{i=2}^{n} \varepsilon \ln \varepsilon\right]=0
$$

where in the last step we used $\lim _{\varepsilon \rightarrow 0}[\varepsilon \ln \varepsilon]=0$. Thus pure states always have zero entropy.
Mixed state: We have

$$
-\operatorname{Tr}(\hat{\rho} \ln \hat{\rho})=-\lim _{\varepsilon \rightarrow 0}\left[\sum_{i=1}^{j}\left(\pi_{i}-\varepsilon\right) \ln \left(\pi_{i}-\varepsilon\right)+\sum_{j+1}^{n} \varepsilon \ln \varepsilon\right]=-\sum_{i=1}^{j} \pi_{i} \ln \pi_{i} \geq 0
$$

It follows that for mixed states $S=-k_{B} \operatorname{Tr}(\hat{\rho} \ln \hat{\rho})>0$

Received as of $11 / 02 / 2023$

Zhou	Yes
Condos	Yes
Tooley	Yes
Lopez	Yes
McCauley	Yes
O'Brien	Yes
Pacenti	Yes
Vats	No

