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Solution Set 1 
 

Problem I 
 
Note:  The notation used here is somewhat pedantic, but with a bit of care we can keep track.  
For clarity let's put hats on the operators and reserve the script 's for probabilities. 
 
(a) The observables  and  are projectors onto the states  and , respectively.  
We can guess and confirm by inspection (  etc.) that 
 
Observables  Eigenvalue s  Eigenvectors   Projectors 
 
       0              
        1              
 
       0              

        1              
         
 
(b) Product State      
 
 Measure          
  outcome 0 :    
  outcome 1 :   
 
 Measure          
  outcome 0 :    

  outcome 1 :   
 
 
 Entangled State    
 
 Measure          
  outcome 0 :    
  outcome 1 :   
 
 Measure          
  outcome 0 :  , 

  outcome 1 :   

P

X̂(1) Ŷ(2) x
 1 y2

X̂(1) 0
 1  =  1

 1 1 1 0  1  =  0  0
 1

X̂(1) 0
 1 P̂x  = 0 (1) =  0

 1 0  1

1
 1 P̂x  = 1(1) =  1

 1 1 1

Ŷ(2) 02 P̂y  = 0 (2) =  02 02
1

 2 P̂y  = 1(2)  =  1
 2 1 2

Ψ  =  (a
  0 0  1 +a 1 1 1 ) (b

  0 0  2 +b
  1 1 2 )

X̂(1)
P (x=0) =  Ψ  P̂x  = 1(1) ⊗  Ι̂(2) Ψ  =  |  a

  0 | 2

P (x=1) =  Ψ  P̂x  = 1(1) ⊗  Ι̂(2) Ψ  =  |  a
  1 | 2

Ŷ(2)
P (y=0) =  Ψ  Ι̂(1) ⊗  P̂y  = 0 (2) Ψ  =  |  b

  0 | 2

P (y=1) =  Ψ  Ι̂(1) ⊗  P̂y  = 1(2) Ψ  =  |  b
  1 | 2

χ =α 0
 1,  0  2 +β 1

 1,  1 2

X̂(1)
P (x=0) =  χ  P̂x  = 0 (1) ⊗  Ι̂(2) χ  =  |  α | 2

P (x=1) =  1 −  P (x=0) =  |  β | 2

Ŷ(2)
P (y=0) =  χ  Ι̂(1) ⊗  P̂y  = 0 (2) χ  =  |  α | 2

P (y=1) =  1 −  P (y=0) =  |  β | 2
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(c) As in part (a), we can guess and confirm the eigenvalues and eigenstates of .  E. g 
 
Observable  Eigenvalue s  Eigenvectors     Projectors 
 
            1     ,    
 
           0     ,    
 
Note that the outcomes indicate whether the qubit states are correlated ( ) or anti-correlated  
( ). 
 
(d) Case  .  We write the density operator  out explicitly: 
 
  
 
 Next we use 
 

    

 

 Thus we get        

 
 Case  .  Again, we write  out explicitly:      
 

 Thus,         

 
 Finally, we return to the probability of measurement outcomes   and compute 
 these using the reduced density operators. 
 

 Case          

      

  
 Case    Same approach   ,  . 

Ĉ

Ĉ 0
 102 1

 112 P̂C  = 1(1) =  0
 10  2 0

 10  2 +  1
 11 2 1 11 2

0
 112 1

 102 P̂C  = 0 (1) =  0
 11 2 0

 11 2 +  1
 10  2 1 10  2

C=1
C=0

Ψ ρ̂

ρ̂  =  (a
 0 0  1 +a 1 1 1 ) (a

 0
* 0

 1 +a 1
* 1

 1 ) (b
 0 0  2 +b

 1  
1

 2 ) (b
 0
* 0

 2 +b 1
* 1

 2 )

ρ̂(1) =Tr
 1[ρ̂] =Σy=0,1 y 2 ρ̂ y 1

=  (a
 0 0

 1 +a
 1 1

 1 ) (a
 0
* 0

 1 +a 1
* 1

 1 ) Σy=0,1 y 2 (b
 0 0

 2 +b
 1 

1
 2 ) (b

 0
* 0

 2 +b 1
* 1

 2 )
=  |b 0| 2 + |b 1| 2 = 1

! "##### $##### y
 1

=  (a
 0 0

 1 +a
 1 1

 1 ) (a
 0
* 0

 1 +a 1
* 1

 1 )

ρ̂  =  

|a0 | 2 a0a1
*

a0
*a1 |a1 | 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

χ ρ̂ ρ̂  =  (α 0
 10  2 +β 1

 11 1 ) (α * 0
 10  2 +β* 1 112 ) 

ρ̂(1) = y
 2 ρ̂y=0,1∑ y

 2  =  |α | 2 0
 1 
0

 2 0
 1 
0

 2 + |β | 2 1
 1 
1

 1 1
 1 
1

 2  =  

|α | 2 0
0 |β | 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

P (x=0,  1)

Ψ P (x=0) =  Tr [ρ̂(1) P̂x=0 (1)] =  Tr
|a0 | 2 a0a1

*

a0
*a1 |a1 | 2

⎛

⎝
⎜

⎞

⎠
⎟  

1 0
0 0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  =  |a0 | 2

P (x=1) =  Tr [ρ̂(1) P̂x=1(1)] =  Tr
|a0 | 2 a0a1

*

a0
*a1 |a1 | 2

⎛

⎝
⎜

⎞

⎠
⎟  

0 0
0 1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  =  |a1 | 2

χ ⇒    P (x=0) =  |α | 2 P (x=1) =  |β | 2



  3 

Problem II 
 
(a) The preamble to part II(a) is mainly an excuse to introduce the basis states  for the 

two-spin system, where  is the quantum number for the total angular momentum, and  is 
quantum number for its projection onto the quantization axis.  Note in particular the 
existence of the so-called singlet state, , which has zero total 
angular momentum and zero projection onto the quantization axis. This particular entangled 
2-spin state is invariant with respect to all spatial rotations and therefore essential for the Bell 
paradox. 

 
 The Problem that is actually asked is straightforward: We are given four states and their 

probability of occurrence in the ensemble.  By definition,   
 

 

 
  in the  representation.  This is clearly of the form , where more 

than one of the probabilities  are non-zero.  That means we have a mixed state.  
   

j,mj

j mj

€ 

0,0 = 1
2

1
2 ,− 1

2 − − 1
2 , 12( )

ρ̂  =  0.4 ×  j  =  1, mj  =  1  j  =  1, mj  =  1 +  0.3 ×  j  =  1, mj  =  0  j  =  1, mj =0 

   +  0.2 ×  j  =  1, mj  =  −1  j  =  1, mj  =  1 +  0.1 ×  j  =  0, mj  =  0  j  =  0, mj  =0 

j, mj ρ̂  =  Σk  pk   ψ k   ψ k  

pk
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Problem III 
 
(a)  is Hermitian and therefore has real-valued eigenvalues  and associated eigenvectors 

 that form an orthonormal basis in state space.  That means we can write  on the form 
 
     
 
 Also,    

 
(b)                           (b-1)                   (b-2) 

     ,   

 
  
 In the pure case , so  is an eigenvector of  with eigenvalue 1. 
 Choose . The remaining  span the subspace associated with the  

fold degenerate eigenvalue 0. Then  has the form  
 
          (b-3) 

         

 
 We see immediately that a density matrix of the form (b-3) has .  

 However, a mixed density matrix of the form (b-1) has   

 where we have used the Cauchi-Schwartz inequality and the "=" holds when one of the  is 
non-zero and the remaining . 

 
(c) We have   

     

 
  

ρ̂ π i
χi ρ̂

ρ̂  =   π i
i
∑    χi  χi  

ρ̂  2 =   π i  

i, j
∑  χi   χi  π j    χ j χ j  =   π  i

 2

i
∑  χi χi  

ρ̂  =  

π1 0
π2

!
!
!

0 πn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

ρ̂  2  =  

π1
 2 0

π2
 2

!
!
!

0 πn 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

ρ̂   =   ψ ψ  ψ ρ̂
 χ  1  =   ψ   χi  ⊥   χ1 n−1

ρ̂

ρ̂  =  
1 0

0
!

0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Tr [ρ̂] =  Tr [ρ̂2] =  1

Tr [ρ̂2] =  π i
2

i
∑  ≤    π i

i
∑( )2

=  1

π i
π j =  0

d
dt

Tr [ρ̂2] =  Tr [ d
dt
ρ̂2] =  Tr [( d

dt
ρ̂)ρ̂+ ρ̂( d

dt
ρ̂)]  =   Tr [ 1

i!
[Ĥ ,ρ̂]ρ̂+ 1

i!
ρ̂[Ĥ ,ρ̂]] 

      =  Tr [ 1
i!

[Ĥ ,ρ̂]ρ̂+ 1
i!
ρ̂[Ĥ ,ρ̂]]  =  

1
i!

Tr [Ĥ ρ̂ρ̂− ρ̂ρ̂Ĥ ]  = 1
i!

 Tr [ Hijρ jkρki−ρijρ jkHki
ijk
∑ ] 
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 Now, since the trace is basis independent, we can at all times calculate it in the basis where 
 is diagonal.  In that case the only non-zero parts are those for which , and   

 

  

 
 Thus  is constant in time, and a pure state cannot evolve into a mixed state and vice 

versa. 
 
(d) Von-Neumann entropy    
 
 In basis  we have      

 
 Pure state: 

 In an  dimensional space, a pure state can be written as    

 

 and thus     

 
 where in the last step we used  .  Thus pure states always have zero entropy. 

 
 Mixed state:  We have 
 

    

  
 It follows that for mixed states  
 
 
  

ρ̂ i= j=k

d
dt

Tr [ρ̂2] = 1
i!

 Tr [ Ĥiiρ̂iiρ̂ii− ρ̂iiρ̂ii Ĥii
i
∑ ] =  0

Tr [ρ̂2]

S  =  −kBTr (ρ̂lnρ̂)

χi S  =  −kBTr (ρ̂lnρ̂) =  −  kB π i ln
i
∑  π i

n ρ̂  =  lim
ε→0

 
1−(n−1)ε 0

ε
!

0 ε

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−Tr (ρ̂lnρ̂) =  −lim
ε→0

 (1−(n−1)ε ) ln(1−(n−1)ε ) + ε lnε
i=2

n

∑⎡
⎣⎢

⎤
⎦⎥

 =  0 

lim
ε→0

 [ε  ln ε] =  0

−Tr (ρ̂lnρ̂) =  −lim
ε→0

(π i−ε )ln(π i−ε
i=1

j

∑ ) + ε ln ε
j+1

n

∑⎡
⎣⎢

⎤
⎦⎥

 =  −  π i ln π i
i=1

j

∑ ≥  0

S  =  −kBTr (ρ̂lnρ̂) >  0
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