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Popular implementation in industry

e Google Sycamore of quantum supremacy experiment
e |BM'’s Condor, Heron, etc.
e Amazon braket’s OQC and Rigetti



Similarity to classical computer chips

e Circuit form factor is similar to existing computer chips

e Can be made using established techniques

e Straightforward to couple qubits and connect to instruments for readout and
control

Arute 2019



Superconductivity

e Resistance discontinuously drops to zero at finite low temperature

e Band gap of £A around Fermi energy

e Macroscopic quantum effect, allowing current and voltage to act as quantum
objects

e Low temperature requirements for quantum computing are much lower than
Tc, ~10mK



BCS theory

e Electrons have attractive interactions due to interactions with the lattice
e Bind into pairs called Cooper pairs which travel freely in material
e \Weak binding explains low critical temperature



Josephson effect

e Two superconductors separated by thin layer of insulator
e Allows tunneling current up to maximum lc at OV, then none until 2A/e
e Linear I-V curve at higher voltage
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https://en.wikipedia.org/wiki/Superconducting_tunnel_junction



Theory of Josephson effect

e A/B for each side of the junction
Pa =\Nae’®4 (1)

H = (elg é{v) (2)

ih% nye'?a = eVn,e'?a + K\nge'®s (3)

ih% npge'®e = K\n,e'®a — eV\nge'®s (4)
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Theory of Josephson effect

e Current between zlc depending on ¢, which evolves based on applied voltage

I(t) ~ 1y = I.sinp(t) (8)
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Theory of Josephson effect

e Can act like a non-linear inductor

? =] cosqoﬂ (10)
V= T (11)

Zelccoscp at
e Charging energy

W = f IV dt = f(’ozl sm(p— do = ——A(coscp) (12)

E(p) = —E;cosp (13)



LC circuit

e Low temp LC circuit forms quantum harmonic oscillator
e However the uniform energy spacing makes qubit control impossible
e Need tostayin|0) and |[1) subspace



Modified LC circuit

e Capacitor energy goes as square of the time
derivative of ¢ which is proportional to voltage

e The Josephson junction energy is
approximately quadratic at low energy levels
but drops off like a pendulum

e Creates necessary anharmonicity

Kjaergaard 2020
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H=4E:(N—n,)" — Ejcosp (14)
e \Where the N operator corresponds to the number of Cooper Bouchiat 1998

pairs on the capacitor and ng is an applied bias voltage
For large Ec, N is a good quantum number

This is the charge qubit or Cooper pair box

First experimentally realized superconducting qubit (1999)
Sensitive to charge/gate voltage noise



Transmon qubits

e Based on charge qubits but with greater
capacitive shunting, Es > Ec

e Leads to reduced sensitivity to charge
noise

e (¢ becomes the quantum number

e Anharmonicity is also reduced, needs
to be balanced with reduction in noise
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(b) E;/Ec =5.0




Flux qubits

e Operate in large Eu regime, larger than
transmons

e Apply magnetic flux to superconducting loop with
Josephson junction

e Flux quantization condition generates persistent
current cw or ccw

e Can replace junction with SQUID for further
tunability of potential landscape

e Introduces sensitivity to flux noise

Friedman 2000



Phase qubits

e Apply a bias current to a Josephson junction 4
shunted by a capacitor d

e Results in a “washboard” potential

e Bound states of phase possible for small
enough bias current Vo(8)

Clarke 1988



Fluxonium qubits

e Series of large area junctions shunts a
smaller junction

e Islands between large junctions are grounded

e \Very low charge and flux noise sensitivity but
low energy transitions necessitate very low
operating temperatures

e Also more complicated to fabricate

Manucharyan 2009



Other noise sources

e Photon number fluctuations and quasiparticles

e Photon number fluctuations are primarily driven by retained radiation in the
resonator from before cooling

e Quasiparticles are unpaired electrons



Coherence lifetime
e ~100-1000 us for the best

Josephson junction based
qubit designs

Kjaergaard 2020
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Gates

e CZ puts phase on [11) i) —  —lUs)—
e CRrotates between [00) and |01) and ;
between [10) and [11) c
e MAP and RIP both implement 0zQ 0z type
interactions
|
—|UU)—

computational subspace

Krantz 2019
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