Superconducting Quantum Computing

Jack O'Brien

OPTI 646 Final Lecture

Popular implementation in industry

- Google Sycamore of quantum supremacy experiment
- IBM's Condor, Heron, etc.
- Amazon braket's OQC and Rigetti

Similarity to classical computer chips

- Circuit form factor is similar to existing computer chips
- Can be made using established techniques

Straightforward to couple qubits and connect to instruments for readout and

control

Arute 2019

Superconductivity

- Resistance discontinuously drops to zero at finite low temperature
- Band gap of ±∆ around Fermi energy
- Macroscopic quantum effect, allowing current and voltage to act as quantum objects
- Low temperature requirements for quantum computing are much lower than
 T_c, ~10mK

BCS theory

- Electrons have attractive interactions due to interactions with the lattice
- Bind into pairs called Cooper pairs which travel freely in material
- Weak binding explains low critical temperature

Josephson effect

- Two superconductors separated by thin layer of insulator
- Allows tunneling current up to maximum I_c at 0V, then none until 2Δ/e
- Linear I-V curve at higher voltage

https://en.wikipedia.org/wiki/Superconducting_tunnel_junction

Theory of Josephson effect

A/B for each side of the junction

$$\psi_{A} = \sqrt{n_{A}}e^{i\phi_{A}} \quad (1) \qquad \qquad \varphi \equiv \phi_{B} - \phi_{A}$$

$$\hat{H} = \begin{pmatrix} eV & K \\ K & -eV \end{pmatrix} \quad (2) \qquad \qquad \dot{n}_{A} = \dot{n}_{B} = \frac{2K\sqrt{n_{A}n_{B}}}{\hbar} \sin\varphi \quad (5)$$

$$i\hbar \frac{\partial}{\partial t} \sqrt{n_{A}}e^{i\phi_{A}} = eV\sqrt{n_{A}}e^{i\phi_{A}} + K\sqrt{n_{B}}e^{i\phi_{B}} \quad (3) \qquad \dot{\phi}_{A} = -\frac{1}{\hbar} \left(eV + K\sqrt{\frac{n_{B}}{n_{A}}}\cos\varphi \right) \quad (6)$$

$$i\hbar \frac{\partial}{\partial t} \sqrt{n_{B}}e^{i\phi_{B}} = K\sqrt{n_{A}}e^{i\phi_{A}} - eV\sqrt{n_{B}}e^{i\phi_{B}} \quad (4) \qquad \dot{\phi}_{B} = \frac{1}{\hbar} \left(eV - K\sqrt{\frac{n_{A}}{n_{B}}}\cos\varphi \right) \quad (7)$$

Theory of Josephson effect

• Current between ±lc depending on φ, which evolves based on applied voltage

$$I(t) \sim \dot{n}_A = I_c sin\varphi(t)$$
 (8)

$$\dot{\varphi} = \frac{2eV(t)}{\hbar} \ (9)$$

Theory of Josephson effect

Can act like a non-linear inductor

$$\frac{\partial I}{\partial t} = I_c cos \varphi \frac{2eV}{\hbar}$$
 (10)

$$V = \frac{\hbar}{2eI_c cos\varphi} \frac{\partial I}{\partial t}$$
 (11)

Charging energy

$$W = \int_{t_1}^{t_2} IV \ dt = \int_{\varphi_1}^{\varphi_2} I_c \sin\varphi \frac{\hbar}{2e} \ d\varphi = -\frac{I_c \hbar}{2e} \Delta(\cos\varphi) \ (12)$$

$$E(\varphi) = -E_I cos \varphi \ (13)$$

LC circuit

- Low temp LC circuit forms quantum harmonic oscillator
- However the uniform energy spacing makes qubit control impossible
- Need to stay in |0> and |1> subspace

Modified LC circuit

- Capacitor energy goes as square of the time derivative of φ which is proportional to voltage
- The Josephson junction energy is approximately quadratic at low energy levels but drops off like a pendulum
- Creates necessary anharmonicity

Kjaergaard 2020

Charge qubits

Hamiltonian can be written as

$$\widehat{H} = 4E_{C}(\widehat{N} - n_{g})^{2} - E_{J}cos\widehat{\varphi}$$
 (14)

Bouchiat 1998

- Where the N operator corresponds to the number of Cooper pairs on the capacitor and ng is an applied bias voltage
- For large Ec, N is a good quantum number
- This is the charge qubit or Cooper pair box
- First experimentally realized superconducting qubit (1999)
- Sensitive to charge/gate voltage noise

Transmon qubits

- Based on charge qubits but with greater capacitive shunting, E_J > E_C
- Leads to reduced sensitivity to charge noise
- φ becomes the quantum number
- Anharmonicity is also reduced, needs to be balanced with reduction in noise

Flux qubits

- Operate in large E_J regime, larger than transmons
- Apply magnetic flux to superconducting loop with Josephson junction
- Flux quantization condition generates persistent current cw or ccw
- Can replace junction with SQUID for further tunability of potential landscape
- Introduces sensitivity to flux noise

Friedman 2000

Phase qubits

- Apply a bias current to a Josephson junction shunted by a capacitor
- Results in a "washboard" potential
- Bound states of phase possible for small enough bias current

Clarke 1988

Fluxonium qubits

- Series of large area junctions shunts a smaller junction
- Islands between large junctions are grounded
- Very low charge and flux noise sensitivity but low energy transitions necessitate very low operating temperatures
- Also more complicated to fabricate

Other noise sources

- Photon number fluctuations and quasiparticles
- Photon number fluctuations are primarily driven by retained radiation in the resonator from before cooling
- Quasiparticles are unpaired electrons

Coherence lifetime

 ~100-1000 us for the best Josephson junction based qubit designs

Kjaergaard 2020

Gates

Acronym ^b	Layout ^c	First demonstration [Year]	Highest fidelity [Year]	Gate time
CZ (ad.)	Т-Т	DiCarlo et al. (72) [2009]	99.4% ^e Barends et al. (3) [2014]	40 ns
			99.7% ^e Kjaergaard et al. (73) [2020]	60 ns
√iSWAP	T-T	Neeley et al. (81) ^d [2010]	90%g Dewes et al. (74) [2014]	31 ns
CR	F-F	Chow et al. (75) ^h [2011]	99.1% ^e Sheldon et al. (5) [2016]	160 ns
√bSWAP	F-F	Poletto et al. (76) [2012]	86%g Poletto et al. (76) [2012]	800 ns
MAP	F-F	Chow et al. (77) [2013]	87.2%g Chow et al. (75) [2011]	510 ns
CZ (ad.)	T-(T)-T	Chen et al. (55) [2014]	99.0% ^e Chen et al. (55) [2014]	30 ns
RIP	3D F	Paik et al. (78) [2016]	98.5% ^e Paik et al. (78) [2016]	413 ns
√iSWAP	F-(T)-F	McKay et al. (79) [2016]	98.2% ^e McKay et al. (79) [2016]	183 ns
CZ (ad.)	T-F	Caldwell et al. (80) [2018]	99.2% ^e Hong et al. (6) [2019]	176 ns
$CNOT_{L}$	BEQ-BEQ	Rosenblum et al. (13) [2018]	~99% ^f Rosenblum et al. (13) [2018]	190 ns
$CNOT_{T-L}$	BEQ-BEQ	Chou et al. (82) [2018]	79%g Chou et al. (82) [2018]	4.6 μs

Kjaergaard 2020

- Gates implemented on flux-tunable qubits.
- Gates implemented using only microwave symbols.
- Combination of tunable and fixed-frequency components.
- Gates on bosonic-encoded qubits.

Gates

- CZ puts phase on |11>
- CR rotates between |00> and |01> and between |10> and |11>
- MAP and RIP both implement σz⊗σz type interactions

Krantz 2019

References

F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, et al, Nature 574:505-510 (2019).

https://en.wikipedia.org/wiki/Superconducting tunnel junction

https://en.wikipedia.org/wiki/Josephson effect

- M. Kjaergaard, M.E. Schwartz, J. Braumüller, P. Krantz, J.I.-J. Wang, S. Gustavsson, W.D. Oliver, Annual Review of Condensed Matter Physics 11:1, 369-395 (2020).
- V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M.H. Devoret, Phys. Scr., T T76, 165 (1998).
- J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, and R.J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).
- J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, and J.E. Lukens, Nature (London) 406, 43 (2000).
- J. Clarke, A.N. Cleland, M.H. Devoret, D. Esteve, and J.M. Martinis, Science 239, 992 (1988).
- V.E. Manucharyan, J. Koch, L.I. Glazman, M.H. Devoret, Science 326:113–16 (2009).
- P. Krantz, M. Kjaergaard, F. Yan, T.P. Orlando, S. Gustavsson, W.D. Oliver, Appl. Phys. Rev. 6, 021318 (2019).