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Review of Classical Circuit Theory

Think of a Computation as
a function that maps n bits 8 : fo'qln’> 50.1}"“
to m bits T

Maps n bits to m bits

A function with an m bit output is equivalent to m
functions with a one bit output, so the basic task can
be broken into m functions mapping n bits to one bit

There are 2" possible inputs
w/2 possible outputs, so a
total of 22" functions that
map n bits to one bit

43 fo]"forl

on of these simple
functions

Function evaluation «—» sequence of logic operations

Given a binary input X =X| Xy -ve X,y
Py = ¢
®» separate in sets
Pt =0
Consider the input

1 for X=x"
x*e QOCX“‘B =1 ® define Je)(x)=
T Tk o for X X(A‘

one of them n of these
simple functions

Given, for example,

we implement ;]""‘ w/logic operations

= L) =X AAR, L AX,

111...
X =
0110... => D) = (1%) AX, AXgA (K)o

Finally, given the () ‘s we can implement the (x) ‘s as

Jixy = QO v IR ) Vel VIR (x)
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Circuit Complexity

( Pick a universal gate set )

Central Question: How hard is it to solve PROBLEM ?

%k One measure is the size of the smallest circuit
that solves it

Size = Width x Depth

X
X

/ —— » Width
R

Depth

Consider a circuit family §¢.,)
that solves a decision problem

d

Examples

e

FACTORING

Pifo4]" = fp,4]

1 ifinteger X hasdivisor < Y-
Fixy) = :
0 otherwise

HAMILTONIAN ’\?[’('0\3 1 if graph x has Hamiltonian Path
PATH ' otherwise

Easy Problems: $he (C,)\ ¢ poly(n)

We define:

Hard Problems:  Size(c,) > polv(n)

This distinction allows us to define Complexity Classes,
for example

Problem Class P = { Decision Problems solved by }

a polynomial-sized circuit
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Consider a circuit family §¢.,]
that solves a decision problem

/

Examples

e

FACTORING

$i§04]" = §p,4]

1 ifinteger X has divisor < “
Lixy) = .
I») otherwise

HAMILTONIAN ’f[’( '3\ : 1 if graph x has Hamiltonian Path
PATH ' 0 otherwise

Easy Problems: e (C,\ ¢ poly(n
We define: y i oty )

Hard Problems:  $ize(C,) > polv(n)

% Whether PROBLEM & P is independent of circuit
design, universal gate set & other specifics

% Problems in P are special — they have structure
that allows efficient computation

Note: The majority of functions ¢ P

For example, if the output Pi<) ~ random
we must compute «}’cz) by lookup table with
2" entries

——-—

Circuit that does lookup has exponential size

Special Class: One-Way Function

This distinction allows us to define Complexity Classes,
for example

f

PROBLEM is easy or hard, but }

Problem Class NP = { the answer is easy to check

Problem Class P = { Decision Problems solved by }

polynomial-sized circuit

Stands for “Non-deterministic Polynomial Time

FACTORING £ NP
HAMILTONIAN PATH £ NP

Examples:

Note: Clearly PCc NP, Conjecture that P+ AP

3
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% Whether PROBLEM & P is independent of circuit
design, universal gate set & other specifics

% Problems in P are special — they have structure
that allows efficient computation

Note: The majority of functions ¢ P

For example, if the output «PCK) ~ random
we must compute 7"(:] by lookup table with
2" entries

— -

Circuit that does lookup has exponential size

Special Class:

One-Way Function

Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits
Problem = is there an m-bit input w/output = 1

1 if 3 xm Se clx™) =1
/‘YCQ ) {o Olherwice

Easy to check solution because if we have the input
circuit C we can run it with the input x™) and determine
if it evaluates to 1.

Cooks Theorem: Every PROBLEM € NP is

/

PROBLEM is easy or hard, but }

Problem Class NP = .
the answer is easy to check

Stands for “Non-deterministic Polynomial Time

FACTORING £ NP
HAMILTONIAN PATH £ NP

Examples:

Note: Clearly Pc NP, Conjecture that P+ AP

polynomially reducible to CIRCUIT-SAT

NP- Complete NPC # NP

HAMILTONIAN

CIRCUIT-SAT
€
PATH
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Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits

Problem = is there an m-bit input w/output = 1

1 i (m) () =
(> &therwice

Easy to check solution because if we have the input

circuit C we can run it with the input x(™) and determine
if it evaluates to 1.

Cooks Theorem: Every PROBLEM € NP is
polynomially reducible to CIRCUIT-SAT

HAMILTONIAN NP- Complete NPC # NP

CIRCUIT-SAT
€
PATH

Complexity Hierarchy

% Conjecture: P € NP

% 3 Problems in NP that are neither P or NPC
* NPI: Problems of intermediate difficulty
% Conjecture: Factoring € NPI

NP-Hard NP-Hard
NP-C
NP P = NP = NP-C
P
P #NP P=NP

Takeaway Message

% Complexity theory is a rich field with many
known complexity classes

% Many foundational conjectures remain unproven

% As we will see, switching to Quantum Circuits
changes things
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Complexity Hierarchy

Aside: Classical Reversible Computation

% Conjecture: P € NP

% 3 Problems in NP that are neither P or NPC Motivation:
* NPI: Problems of intermediate difficulty
% Conjecture: Factoring € NPI

Quantum Computation = Unitary Transformation

-
Reversible!

NP-Hard NP-Hard

Classical Reversible Comp: & {0,4]" = Jo, 1}“
NP-C
R v m .
o s = Repackage f: {o,1] ~— [0,4{"* asreversible
)
. n+m ntm we separate n + m qubit
P £ NP P = NP §: 0] —> fou register into input and
output so no information
gc"-"(m)) = LXT’XC"\S is lost
Takeaway Message

% Complexity theory is a rich field with many Note: Not all 1 & 2-bit gates are reversible, e. g.,
known complexity classes - AND. OR. ERASE
% Many foundational conjectures remain unproven

% As we will see, switching to Quantum Circuits
changes things
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Universal Quantum Gates

% What constitutes a universal gate set ?

Answer: Almost any generic 2—qubit quantum gate
will do!

% What is a generic gate?

Definition:
Let U= Q_:Hj olé be generic ( H‘-‘ is the generator of | )

Jn e N, so 0" comes arbitrarily close to U(«)= e' A ot

(U () is reachable by powers V")

A k=qubit gate [J= 2«2 matrix w/evals feié‘_‘ ce e; l“}
is generic if

e; is an irrational multiple of

©;,8; areincommensurate (6.'/6_ irrational multiple of )
Jd

(1) Powers of a generic gate:

D" ==p evals je""°', e ei"ei“} N S

t

points on 2 dim torus

() generic

» points densely covers the whole torus
ne N,

Seems extraordinarily cumbersome! Why do it that way?

Answer: This is necessary to

% Limit the gate set and and keep scaling arguments
related to circuit size.

% Establish coarse graining —» required for fault tolerance

{ Uw: neuo] is a set of measure zero —» any “noise
takes us to an invalid state that can be detected
and corrected.

% Note: Itis not how current quantum circuits work!

This is not enough! What else can we do?

(2) Switching leads
k qubits =p (2¥)! permutations U’ =PU P!
U P v p-t

w2 E o B

This is not enough! What else can we do?
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Definition:
Let U- e: H;0% pe generic ( H‘-) is the generator of | )

n & N, so 0" comes arbitrarily close to U(A)= e"* Hjokt
(7]

( U (&) is reachable by powers V")

Seems extraordinarily cumbersome! Why do it that way?

Answer: This is necessary to

% Limit the gate set and and keep scaling arguments
related to circuit size.

% Establish coarse graining —» required for fault tolerance

{ " neN, is a set of measure zero —» any “noise
takes us to an invalid state that can be detected
and corrected.

% Note: Itis not how current quantum circuits work!

Aside: Consider acl - dimensional Hilbert space X .

» { Operators (dxdl matrices) are vectors € A% dim.
vector space &' w/a scalar product defined as

(WI;IWIJ‘) =‘Tr[vvll-+m;_j
——_—
f1a,,.. 1ap)]

3 orthonormal basis in
(A', ‘ Ad\ = C),a

|

This is not enough! What else can we do?

(2) Switching leads
k qubits =p (2¥)! permutations U’ =PU P!
U P U p-1

= <H  Hx

This is not enough! What else can we do?

(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

fHy, Hoy .. H, Y, né (dim &)

q’ ~tw

Trotter Formulae: fordt->0

oK Ab o BHE ca': (o e 2HNAE (Lin. Comb. of K, 1y, )

o~ 1o Hs it ripHdt nalt SipHde - ool BH] A2
(NL. Comb. of H;, Hy,)
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Aside: Consider acl - dimensional Hilbert space &f .

{ Operators (dxcl matrices) are vectors € A% dim.
vector space ¥' w/a scalar product defined as

(m. [Wla) =q7‘[ml'+m;]

.
lAq\,o..‘A 1-‘
3 orthonormal basis ; ! ] in &'
(A:1A) = 0ij

(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

fHy, Hay oo H, Y, n& (dim &N

1) ~tw

Trotter Formulae: fordt->0

oAk Ab o BH,dt =C&—: (o, e@2HAE (Lin. Comb. of H;, 4y, )

oM it ke etk - gmlot R AL
(NL. Comb. of H;, Hy,)

% From the Set fH,) Ha, <. H,,,Z we can “simulate”
new Hamiltonians using the Trotter formulae

% If a new Hamiltonian is linearly independent
we add it to the set.

% Continue until the Set has dZ: (plim%® )L linearly
independent members (Lie Algebra complete)*)

Set is a basis in d <ol matrix space

Allows to simulate any H(t) & implement any U

Examples:

d=2 =» glpﬂ] T.6,f, '} set of 22=4

2 X 2 matrices

A=Y =p 5[(.\,-.51 <= set of d? =16 4 x4 matrices

Example: (single qubit control)
Let Ol= 2., initial set 50(()‘,‘) FG-‘O] ( generic)

{W;l(rﬂ] =Ty =P wecansimulate | T,

*) This is not always possible. The Lie Algebra may “close”
before generating a basis. If so, add more Hamiltonians
to the original set.
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Aside: Consider acl - dimensional Hilbert space &f .

{ Operators (dxcl matrices) are vectors € A% dim.
vector space ¥' w/a scalar product defined as

(m. [Wla) =q7‘[ml'+m;]

.
lAq\,o..‘A 1-‘
3 orthonormal basis ; ! ] in &'
(A:1A) = 0ij

(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

fHy, Hay oo H, Y, n& (dim &N

1) ~tw

Trotter Formulae: fordt->0

oAk Ab o BH,dt =C&—: (o, e@2HAE (Lin. Comb. of H;, 4y, )

2—.o(H d-\‘:e a(ll-lkd-l: iocH ol l{lde-L =¢ [“H FHJ A2
(NL. Comb. of H;, Hy,)

% From the Set fH,) Ha, <. H,,,Z we can “simulate”
new Hamiltonians using the Trotter formulae

% If a new Hamiltonian is linearly independent
we add it to the set.

% Continue until the Set has dZ: (plim%® )L linearly
independent members (Lie Algebra complete)*)

Set is a basis in d <ol matrix space

Allows to simulate any H(t) & implement any U

Examples:

d=2 =» glpﬂ] T.6,f, '} set of 22=4

2 X 2 matrices

A=Y =p 5[(.\,-.51 <= set of d? =16 4 x4 matrices

Example: (single qubit control)
Let Ol= 2., initial set 50(()‘,‘) FG-‘O] ( generic)

{W;l(rﬂ] =Ty =P wecansimulate | T,

Set [T, "‘“'*)/56‘8] sufficient for control

10
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’ First generic gate,
Deutsch’s Gate
( Reaches any v €& SU(8) )
X @ X
3 * 2
z R 2

. 19 : o
Rotation Q=-;R (0)=-ie AW:-»((.os%was,m?-_) iff X =1

1— incommensurate w/rt
Special case O = = this is a Toffoli gate: -iR_(T) =-i T

to within a phase

Note: R""- R (ung) (bfci®=1) =p

(un+1\6 (un+1\&
2L PR

R(qm-\ - (-;)[cos ]zG; for some

+iGy Sin

Action on the basis states: R transposes (6) & (7)
(0 (1) 20 B) @ (5 (6) (7) *)

{looo), loo1, loto) 1013 11003 1101, ]11$>/ H11>}

[111%, 1110

T on 2D subspace

Note: A Deutsch gate on a 3-qubit state can be cast as an
8 x 8 matrix acting in an 8-dimensional vector space.

With the basis states numbered as in *) above, R(*"*1)
has the matrix representation

(S)gp = (

| % flips the spin of the

2-level system (6),(7)

0 ] Oy

By switching leads and applying Toffoli gates, we can do
any permutation of basis states. Thus we can reach

P [G_x)67P‘1 b [T’Amm

On matrix form: 1— Identity
| o \[z]|e 1| ©
q),.]= 0 oo ||= ot |.;
(el o [ 30 0 1282 | 2 [253 |- s
000 olo 100

. (s H( A
In turn, this allows us to reach ¢ <%t and e "e*

=) We can reach e';m’-")“’w"\”]

-
=
f=
]

Compositions of (T..),,'s =p (W) qg's

I I

these generators these generators

11
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Note: A Deutsch gate on a 3-qubit state can be cast as an
8 x 8 matrix acting in an 8-dimensional vector space.

With the basis states numbered as in *) above, R(*"1)
has the matrix representation

(S)gp » (

| % flips the spin of the

2-level system (6),(7)

0 ] Oy

By switching leads and applying Toffoli gates, we can do
any permutation of basis states. Thus we can reach

P (G_x)epp'i = (T:Jmm

On matrix form: 1_ Identity
T | o) T | o) T | o
(e, (T),.|= 010 ooo |l= 001
(5se, (5] oltoo|| 2loot 0985 |* (%
000 olo 100
. (s :(Tn\
In turn, this allows us to reach ¢ ~<%¢ and ¢ =~ ¢*
- ;{(G&)ﬁ b UT,:\‘:)]

=) wecanreach e

-
=
c
)

Compositions of (§.),,/¢ =p i(w.o\m'g

I I

these generators these generators

Similarly, [(TA“M,(\T‘O§“”] = (e B

Compositions of (§.),m's & (G;),,‘s =P (53),,,‘

Conclusion: We can reach all transformations generated by

linear combinations of the (T}, , ),,.. ‘s, which
together span the SU(8) Lie Algebra

12
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Similarly,  [(%.),, (%), ] = 1 (T B

Compositions of (T.),m's & (§;),,,'s =P (53),,,°

Conclusion: We can reach all transformations generated by
linear combinations of the CT,‘,‘,,.QM'S, which
together span the SU(8) Lie Algebra

Extending to n bit Deutsch gate:

Y1 )(1

" X 4-bit Deutsch Gate
2 = Generates SU(24)

16> \U U 10

Xq Ixg)

) R Y ® XqXgXg

Repeat =p n bit Deutsch gate generates SU(2")

» The Deutsch Gate is Universal

Universal 2-qubit gate sets
Proof: can build a Deutsch gate from 2-qubit gates

Assume we have Then we can do

@] vt r— U u* U —0¥9()
controlled U
We can build a 1
» Deutsch gate from controlled U

controlled NOT

13
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Extending to n bit Deutsch gate:

¥y X4
" % 4-bit Deutsch Gate
2 2 Generates SU(24)
16> \U U ()4
Xq I1xg)
Y R Y ® Xq9X9Xg

Repeat = n bit Deutsch gate generates SU(2")

» The Deutsch Gate is Universal

Universal 2-qubit gate sets

Proof: can build a Deutsch gate from 2-qubit gates

Assume we have Then we can do

X X
QPSS SR S 8
U vl r— U ot U

—0¥9(2)

controlled U

» We can build a controlled U-

Deutsch gate from

controlled NOT

where D=~k (8) = canchoose U= ef'%R,‘(?_)

can build a Deutsch gate
from U alone if &3
is irrational

Powersof U =» Tk, ol

Generic 2-qubit gates:

Can show that any 2-qubit gate of the type

pair of states

():@;A_‘ A= (Dkl‘f-ﬁcj;"-r@a \w‘m in 2-qubit 8P

is universal L incommensurate &3

Other adequate sets:

Classical multi-bit gates + generic single qubit gate

e.g.: CNOT +
Toffoli +

Rotations & S0()
‘T/z_ Rotations

Comment on Circuit Complexity:

We still need to show that we can build a circuit that
implements W to within £ of U with #of gates = poly (& 1)

Distance measure &= H(U—ua)[*q:)ﬂsop (> (3 other measures)

A Quantum Computer built w/universal

gates can simulate any Quantum Computer
with polynomial slowdown

This can be proved:

14
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