Quantum Computation

Classical Circuits

Quantum Circuits

- * Universal Gates
- * Quantum Complexity
- * Circuit Complexity
- * Universal Quantum Gates

Review of Classical Circuit Theory

Think of a <u>Computation</u> as a function that maps *n* bits to *m* bits

$$\begin{cases} 0.1 \end{cases}^n \Rightarrow \{0.1\}^m$$

Maps *n* bits to *m* bits

A function with an *m* bit output is equivalent to *m* functions with a *one* bit output, so the basic task can be broken into *m* functions mapping *n* bits to *one* bit

There are 2^n possible inputs w/2 possible outputs, so a total of 2^{2^n} functions that map n bits to *one* bit

$$\begin{cases} \langle 0,1 \rangle^{N} \rightarrow \{0,1 \} \\ - \uparrow \\ 2^{2n} \text{ of these simple functions} \end{cases}$$

Function evaluation -> sequence of logic operations

Given a binary input $X = X_1 X_2 ... X_N$ \Rightarrow separate in sets $\begin{cases} f(x) = 1 \\ f(x) = 0 \end{cases}$

Consider the input

$$\chi^{(a)}: \int (\chi^{(a)}) = 1$$
 define $\int_{a}^{(a)} (\chi) = \begin{cases} 1 & \text{for } \chi = \chi^{(a)} \\ 0 & \text{for } \chi \neq \chi^{(a)} \end{cases}$
one of the m
simple functions

Given, for example, we implement ₰₪ w/logic operations

$$X = \begin{cases} 111... & \Rightarrow & f(x) = X_1 \land X_2 \land X_3 ... \land X_n \\ 0110... & \Rightarrow & f(x) = (7x_1) \land x_1 \land x_3 \land (7x_4)... \end{cases}$$

Finally, given the $\int_{-\infty}^{\infty} (x) dx$ is we can implement the $\int_{-\infty}^{\infty} (x) dx$

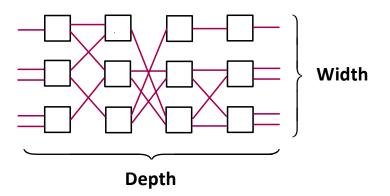
$$\mathcal{J}(x) = \mathcal{J}^{(1)}(x) \vee \mathcal{J}^{(2)}(x) \vee \cdots \vee \mathcal{J}^{(n)}(x)$$

Circuit Complexity

(Pick a universal gate set)

Central Question: How hard is it to solve PROBLEM?

* One measure is the size of the smallest circuit that solves it



Consider a circuit family $\{C_n\}$ that solves a decision problem

f: {0,1}"→ {0,1}

Examples

FACTORING

$$f(x,y) = \begin{cases} 1 & \text{if integer } x \text{ has divisor } < y \\ 0 & \text{otherwise} \end{cases}$$

HAMILTONIAN
$$\gamma(x,y) = \begin{cases} 1 & \text{if graph } x \text{ has Hamiltonian Path} \\ 0 & \text{otherwise} \end{cases}$$

We define:

Easy Problems: Size $(C_n) \in poly(n)$

Hard Problems: $Size(C_n) > poly(n)$

This distinction allows us to define Complexity Classes, for example

Consider a circuit family $\{C_n\}$ that solves a decision problem

Examples

$$f(x,y) = \begin{cases} 1 & \text{if integer } x \text{ has divisor } < y \\ 0 & \text{otherwise} \end{cases}$$

HAMILTONIAN
$$f(x,y) = \begin{cases} 1 & \text{if graph } x \text{ has Hamiltonian Path} \\ 0 & \text{otherwise} \end{cases}$$

We define:

Easy Problems: Size $(C_n) \in poly(n)$

Hard Problems: Size (Cn) > poly(n)

This distinction allows us to define Complexity Classes, for example

- * Whether PROBLEM ϵ P is independent of circuit design, universal gate set & other specifics
- * Problems in P are special they have structure that allows efficient computation

Note: The majority of functions $\notin P$

For example, if the output $/(\kappa)$ ~ random we must compute $\mathcal{I}(\kappa)$ by lookup table with 2^h entries

Circuit that does lookup has exponential size

Special Class:

One-Way Function

Problem Class NP =

PROBLEM is easy or hard, but the answer is easy to check

Stands for "Non-deterministic Polynomial Time

Examples: FACTORING € NP

HAMILTONIAN PATH & NP

Clearly $P \subseteq NP$, Conjecture that $P \neq NP$ Note:

- ***** Whether PROBLEM € P is independent of circuit design, universal gate set & other specifics
- * Problems in P are special they have structure that allows efficient computation

Note: The majority of functions $\notin P$

For example, if the output $f(x) \sim \text{random}$ we must compute f(x) by lookup table with 2ⁿ entries

Circuit that does lookup has exponential size

Special Class:

One-Way Function

Stands for "Non-deterministic Polynomial Time

Examples: FACTORING \in NP

HAMILTONIAN PATH \in NP

Note: Clearly $P \subseteq NP$, Conjecture that $P \neq NP$

Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits

Problem = is there an m-bit input w/output = 1

$$f(c) = \begin{cases} 1 & \text{if } \exists x^{(m)} \text{ so } c(x^{(m)}) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Easy to check solution because if we have the input circuit C we can run it with the input $x^{(m)}$ and determine if it evaluates to 1.

<u>Cooks Theorem</u>: Every PROBLEM € NP is polynomially reducible to CIRCUIT-SAT

Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits

Problem = is there an m-bit input w/output = 1

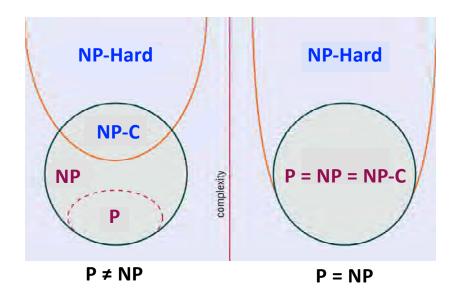
$$f(c) = \begin{cases} 1 & \text{if } \exists x^{(m)} \text{ So } c(x^{(m)}) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Easy to check solution because if we have the input circuit C we can run it with the input $x^{(m)}$ and determine if it evaluates to 1.

<u>Cooks Theorem</u>: Every PROBLEM € NP is polynomially reducible to CIRCUIT-SAT

Complexity Hierarchy

- ***** Conjecture: P ∈ NP
- * 3 Problems in NP that are neither P or NPC
- * NPI: Problems of intermediate difficulty
- **★** Conjecture: Factoring ∈ NPI



Takeaway Message

- Complexity theory is a rich field with many known complexity classes
- * Many foundational conjectures remain unproven
- * As we will see, switching to Quantum Circuits changes things

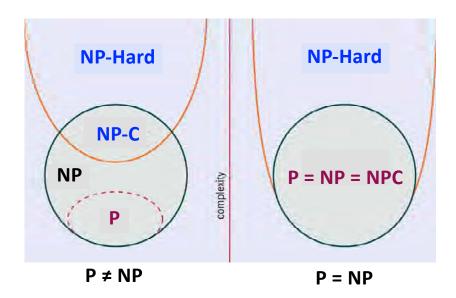
Complexity Hierarchy

***** Conjecture: P ∈ NP

* 3 Problems in NP that are neither P or NPC

* NPI: Problems of intermediate difficulty

★ Conjecture: Factoring ∈ NPI



Takeaway Message

- Complexity theory is a rich field with many known complexity classes
- * Many foundational conjectures remain unproven
- As we will see, switching to Quantum Circuits changes things

Aside: Classical Reversible Computation

Motivation:

Quantum Computation = Unitary Transformation

Classical Reversible Comp: $\{c,i\}^n \rightarrow \{c,i\}^n$

Repackage $2: \{0,1\}^n \rightarrow \{0,1\}^m$ as reversible

$$\begin{cases} \{o_i i\}^{n+m} \longrightarrow \{o_i i\}^{n+m} \\ \{(x_i o^{(m)}) = (x_i f^{(x)}) \end{cases}$$

we separate *n* + *m* qubit register into input and output so no information is lost

Note: Not all 1 & 2-bit gates are reversible, e. g., AND, OR, ERASE

Universal Quantum Gates

- What constitutes a universal gate set?
 Answer: Almost any generic 2-qubit quantum gate will do!
- * What is a generic gate?

A k-qubit gate $U = 2^k \times 2^k$ matrix w/evals $\{e^{i\theta_k}, \dots e^{i\theta_2 k}\}$ is generic if

- Θ , is an irrational multiple of π
- Θ_i , Θ_i are incommensurate (Θ_i / Θ_i) irrational multiple of π)
- (1) Powers of a generic gate:

$$\begin{array}{c}
\downarrow^{n} \longrightarrow \text{ evals } \left\{ e^{in\theta_{1}}, \dots, e^{in\theta_{2}\kappa} \right\} \\
\downarrow^{n} \qquad \qquad \downarrow^{n}
\end{array}$$
points on 2^k dim torus

Definition:

Let $U = e^{iH_j dt}$ be generic (H_j is the generator of U) $\exists n \in N_0$ so U^n comes arbitrarily close to $U(\alpha) = e^{i\alpha H_j dt}$ ($U(\alpha)$ is reachable by powers U^n)

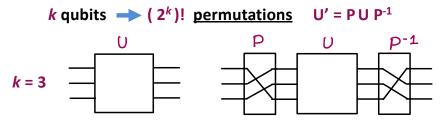
Seems extraordinarily cumbersome! Why do it that way?

Answer: This is necessary to

- * Limit the gate set and and keep scaling arguments related to circuit size.
- **★** Establish coarse graining → required for fault tolerance
 - {Uⁿ, n∈N_o} is a set of measure zero → any "noise takes us to an invalid state that can be detected and corrected.
- * Note: It is not how current quantum circuits work!

This is not enough! What else can we do?

(2) Switching leads



This is not enough! What else can we do?

Definition:

Let $U = e^{iH_j dt}$ be generic (H_j is the generator of U) $\exists n \in N_0$ so U^n comes arbitrarily close to $U(\alpha) = e^{i\alpha H_j dt}$ ($U(\alpha)$ is reachable by powers U^n)

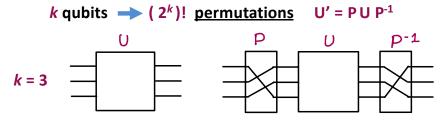
Seems extraordinarily cumbersome! Why do it that way?

Answer: This is necessary to

- * Limit the gate set and and keep scaling arguments related to circuit size.
- * Establish coarse graining -> required for fault tolerance
 - {Uⁿ, n∈N_o} is a set of measure zero → any "noise takes us to an invalid state that can be detected and corrected.
- * Note: It is not how current quantum circuits work!

This is not enough! What else can we do?

(2) Switching leads



This is not enough! What else can we do?

<u>Aside</u>: Consider a α - dimensional Hilbert space α .

 $\exists \text{ orthonormal basis } \begin{cases} \{ |A_1|, \dots, |A_{d_2}| \} \\ (A_i | A_{d_i}) = \partial_{id_i} \end{cases} \text{ in } \mathcal{U}^1$

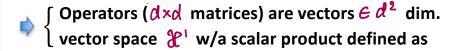
(3) Completing the Lie Algebra

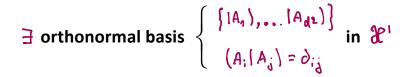
Assume access to a set of Hamiltonians

Trotter Formulae: for dt -> 0

$$e^{-i\alpha H_{\delta}dt}e^{-i\beta H_{k}dt}=e^{-i(\alpha H_{\delta}+(\beta H_{k})dt)}$$
 (Lin. Comb. of H_{δ} , H_{k})
$$e^{-i\alpha H_{\delta}dt}e^{-i\beta H_{k}dt}e^{i\alpha H_{\delta}dt}e^{i\beta H_{k}dt}=e^{-[\alpha H_{\delta},(\beta H_{k})]dt^{2}}$$
(NL. Comb. of H_{δ} , H_{k})

Consider a α - dimensional Hilbert space \Re . Aside:





(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

Trotter Formulae: for dt -> 0

$$e^{-i\alpha H_{3}dt}e^{-i\beta H_{k}dt}=e^{-i(\alpha H_{3}+\beta H_{k})dt} \text{ (Lin. Comb. of } H_{3},H_{k})$$

$$e^{-i\alpha H_{3}dt}e^{-i\beta H_{k}dt}e^{i\alpha H_{3}dt}e^{i\beta H_{k}dt}=e^{-[\alpha H_{3},\beta H_{k}]}dt^{2}$$
(NL. Comb. of H_{3},H_{k})

- * From the Set $\{H_0, H_1, \dots H_n\}$ we can "simulate" new Hamiltonians using the Trotter formulae
- * If a new Hamiltonian is linearly independent we add it to the set.
- * Continue until the Set has $d^2 = (dim \mathcal{U})^2$ linearly independent members (Lie Algebra complete)*)

Set is a basis in $d^2 \times d^2$ matrix space Allows to simulate any H(t) & implement any U

Examples:

$$d = 2 \longrightarrow \{ [A_i] \} = \{ T_j \nabla_x, \nabla_y, \nabla_z \} \longrightarrow \begin{cases} \text{set of } 2^2 = 4 \\ 2 \times 2 \text{ matrices} \end{cases}$$

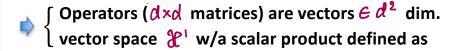
$$d = 4 \longrightarrow \{ [A_i] \} \longrightarrow \text{set of } d^2 = 16 \quad 4 \times 4 \text{ matrices} \end{cases}$$

Example: (single qubit control)

Let
$$d = 2$$
, initial set $\{ \alpha \sigma_x, \rho \sigma_y \}$ (generic) $[\nabla_x, \nabla_y] = i \nabla_z \implies$ we can simulate $i \delta \nabla_z$

*) This is not always possible. The Lie Algebra may "close" before generating a basis. If so, add more Hamiltonians to the original set.

Aside: Consider a α - dimensional Hilbert space \Re .



 $\exists \text{ orthonormal basis } \begin{cases} \{|A_1|, \dots |A_{d^2}|\} \\ (A_i |A_d|) = \partial_{id} \end{cases} \text{ in } \mathcal{X}^1$

(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

Trotter Formulae: for dt -> 0

$$e^{-i\alpha H_{3}dt}e^{-i\beta H_{k}dt}=e^{-i(\alpha H_{3}+(\alpha H_{k})dt)}$$
 (Lin. Comb. of H_{3} , H_{k})
$$e^{-i\alpha H_{3}dt}e^{-i\beta H_{k}dt}e^{i\alpha H_{3}dt}e^{i\beta H_{k}dt}=e^{-[\alpha H_{3},(\beta H_{k})]dt^{2}}$$
(NL. Comb. of H_{3} , H_{k})

- * From the Set $\{H_0, H_1, ... H_n\}$ we can "simulate" new Hamiltonians using the Trotter formulae
- * If a new Hamiltonian is linearly independent we add it to the set.
- * Continue until the Set has d^{ℓ_z} (dim \mathcal{U}) linearly independent members (Lie Algebra complete)*)

Set is a basis in $d^2 \times d^2$ matrix space Allows to simulate any H(t) & implement any U

Examples:

$$d = 2 \longrightarrow \{ [A_i] \} = \{ T_j \nabla_x, \nabla_y, \nabla_z \} \longrightarrow \begin{cases} \text{set of } 2^2 = 4 \\ 2 \times 2 \text{ matrices} \end{cases}$$

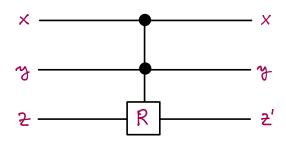
$$d = 4 \longrightarrow \{ [A_i] \} \longrightarrow \text{set of } d^2 = 16 \quad 4 \times 4 \text{ matrices} \end{cases}$$

Example: (single qubit control)

Let
$$d = 2$$
, initial set $\{ \alpha \sigma_x, \rho \sigma_y \}$ (generic) $\{ \nabla_x, \nabla_y \} = i \nabla_2 \implies$ we can simulate $i \& \nabla_2$

Deutsch's Gate

First generic gate,
Reaches any UE SU(8)



Rotation
$$R = -iR_{x}(\theta) = -ie^{i\theta/2\nabla_{x}} = -i\left(\cos\frac{\theta}{2} + i\nabla_{x}\sin\frac{\theta}{2}\right)$$
 iff $xy = 1$
incommensurate w/π

Special case $\Theta = \pi$ this is a <u>Toffoli gate</u>: $-iR_{\times}(\pi) = -iV_{\times}$ to within a phase

Note:
$$R^{4n} = R_{\times}(4n\theta)$$
 (b/c $i^4 = 1$)
$$R^{(4n+1)} = (-i) \left[\cos \frac{(4n+1)\theta}{2} + i \nabla_{\times} \sin \frac{(4n+1)\theta}{2} \right] \simeq \nabla_{\times} \text{ for some } N$$

Action on the basis states: R⁽⁴ⁿ⁺¹⁾ transposes (6) & (7)

Note: A Deutsch gate on a 3-qubit state can be cast as an 8 x 8 matrix acting in an 8-dimensional vector space.

With the basis states numbered as in *) above, $R^{(4n+1)}$ has the matrix representation

$$(\sigma_{\times})_{67} = \begin{pmatrix} \frac{1}{\circ} & \circ \\ \circ & \sigma_{\times} \end{pmatrix}$$
 flips the spin of the 2-level system (6),(7)

By <u>switching leads</u> and applying <u>Toffoli gates</u>, we can do any permutation of basis states. Thus we can reach

On matrix form: Identity $\begin{bmatrix} (\mathbf{r}_{x})_{S6}, (\mathbf{r}_{x})_{67} \end{bmatrix} = \begin{bmatrix} \mathbf{T} & \mathbf{D} & \mathbf{T} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} & \mathbf{D} \mathbf{D} & \mathbf{D} & \mathbf{D$

In turn, this allows us to reach $e^{i(\nabla_x)_{\zeta\zeta}}$ and $e^{i(\nabla_x)_{\zeta\zeta}}$ we can reach $e^{-i[(\nabla_x)_{\zeta\zeta}, (\nabla_x)_{\zeta\zeta}]}$

Thus: Compositions of (5) nm's - i(5) ng's

these generators these generators

Note: A Deutsch gate on a 3-qubit state can be cast as an 8 x 8 matrix acting in an 8-dimensional vector space.

With the basis states numbered as in *) above, $R^{(4n+1)}$ has the matrix representation

$$(\nabla_{\kappa})_{67} = \begin{pmatrix} I & O \\ O & \nabla_{\kappa} \end{pmatrix}$$
 flips the spin of the 2-level system (6),(7)

By <u>switching leads</u> and applying <u>Toffoli gates</u>, we can do any permutation of basis states. Thus we can reach

$$P(a^{x})^{63}b_{-1} = (a^{x})^{NM}$$

On matrix form:

$$\left[\left(\mathcal{T}_{x} \right)_{SG}, \left(\mathcal{T}_{x} \right)_{G7} \right] = \left[\left(\begin{array}{c|c} \mathcal{I} & \mathcal{Q} \\ \hline \mathcal{Q} & 0 & 1 & 0 \\ \hline \mathcal{Q} & 1 & 0 & 0 \\ \hline \mathcal{Q} & 0 & 1 & 0 \\ \hline \mathcal{Q} & 0 & 1 & 0 \\ \hline \mathcal{Q} & 0 & 0 & 1 \\ \hline \mathcal{Q} & 0 & 0 & 0 \\ \hline \mathcal{Q} & 0 & 0 \\ \hline \mathcal{Q} & 0 & 0 \\ \hline$$

In turn, this allows us to reach $e^{i(\nabla_{x})_{\leq \zeta}}$ and $e^{i(\nabla_{x})_{\zeta_{\zeta}}}$ we can reach $e^{-i[(\nabla_{x})_{\leq \zeta_{\zeta}}, (\nabla_{x})_{\zeta_{\zeta}}]}$

Thus:

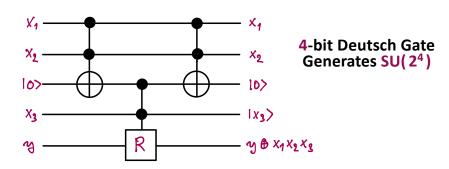
Conclusion: We can reach all transformations generated by linear combinations of the $(\nabla_{x,y,\frac{1}{2}})_{nm}$'s, which together span the SU(8) Lie Algebra

Similarly, $[(\sigma_{\kappa})_{nm}, (\sigma_{\omega})_{nm}] = i(\sigma_{\omega})_{nm}$

Compositions of (5x) Nm's & (5y) Nm's - (52) Nm's

Conclusion: We can reach all transformations generated by linear combinations of the $(\nabla_{x,y,\frac{n}{2}})_{nm}$'s, which together span the SU(8) Lie Algebra

Extending to *n* bit Deutsch gate:

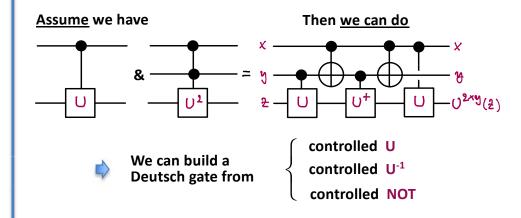


Repeat $\rightarrow n$ bit Deutsch gate generates $SU(2^n)$

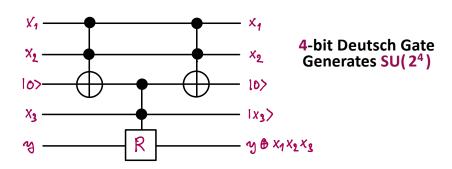
The Deutsch Gate is Universal

Universal 2-qubit gate sets

Proof: can build a Deutsch gate from 2-qubit gates



Extending to *n* bit Deutsch gate:

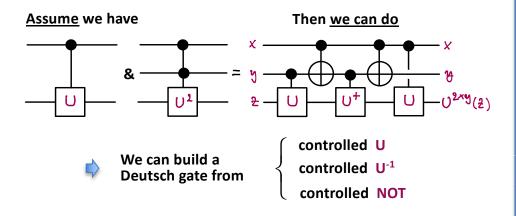


Repeat $\rightarrow n$ bit Deutsch gate generates $SU(2^n)$

The Deutsch Gate is Universal

Universal 2-qubit gate sets

Proof: can build a Deutsch gate from 2-qubit gates



where
$$U^2 = -i R_{\times}(D)$$
 \rightarrow can choose $U = e^{-i V_{\psi}} R_{\times}(\frac{D}{2})$
Powers of $U \rightarrow \nabla_{\times}$, $U^{-1} \rightarrow$ can build a Deutsch gate from U alone if θ_{ψ} is irrational

Generic 2-qubit gates:

Can show that any 2-qubit gate of the type

$$U = e^{iA}$$
, $A = (\alpha I + \beta \sigma_x + \delta \sigma_y)_{nm}$ pair of states in 2-qubit \mathcal{X} is universal incommensurate α, β, δ

Other adequate sets:

Classical multi-bit gates + generic single qubit gate

e. g.: CNOT + Rotations
$$\in SU(2)$$
Toffoli + π /2 Rotations

Comment on Circuit Complexity:

We still need to show that we can build a circuit that implements w to within ε of v with #of gates = $\operatorname{poly}(\varepsilon^{1})$

Distance measure と= !((レール) に (∃ other measures)

This can be proved:

A Quantum Computer built w/universal gates can simulate any Quantum Computer with polynomial slowdown