Quantum Computation

Classical Circuits

Quantum Circuits

* Universal Gates

- * Quantum Complexity
- * Circuit Complexity
- * Universal Quantum Gates

Review of Classical Circuit Theory

Think of a <u>Computation</u> as a function that maps *n* bits to *m* bits

$$\begin{cases} 0.1 \end{cases}^n \Rightarrow \{0.1\}^m$$

Maps *n* bits to *m* bits

A function with an *m* bit output is equivalent to *m* functions with a *one* bit output, so the basic task can be broken into *m* functions mapping *n* bits to *one* bit

There are 2^n possible inputs w/2 possible outputs, so a total of 2^{2^n} functions that map n bits to *one* bit

$$\begin{cases} 0,1 \end{cases}^{N} \rightarrow \{0,1\}$$

$$\uparrow$$
2ⁿ of these simple functions

Function evaluation \longrightarrow sequence of logic operations

Given a binary input $X = X_1 X_2 \cdots X_N$ \Rightarrow separate in sets $\begin{cases} P(x) = 1 \\ P(x) = 0 \end{cases}$

Consider the input

$$x^{(\alpha)}: f(x^{(\alpha)}) = 1$$
 define $f^{(\alpha)}(x) = \begin{cases} 1 & \text{for } x = x^{(\alpha)} \\ 0 & \text{for } x \neq x^{(\alpha)} \end{cases}$
one of the m
one of the m
simple functions

Given, for example, we implement for w/logic operations

$$X = \begin{cases} 111... & \Rightarrow & f(x) = X_1 \land X_2 \land X_3 ... \land X_n \\ 0110... & \Rightarrow & f(x) = (7x_1) \land x_1 \land x_3 \land (7x_4)... \end{cases}$$

Finally, given the $\mathcal{L}^{(A)}(x)$'s we can implement the $\mathcal{L}^{(A)}(x)$'s as

$$f(x) = f^{(1)}(x) \vee f^{(2)}(x) \vee \dots \vee f^{(n)}(x)$$

Circuit Complexity

(Pick a universal gate set)

Central Question: How hard is it to solve PROBLEM?

* One measure is the size of the smallest circuit that solves it

Consider a circuit family $\{C_n\}$ that solves a decision problem $\{c_n\}^n \to \{c_n\}^n \to \{c_n\}$

Examples

FACTORING f(x,y) =

$$f(x,y) = \begin{cases} 1 & \text{if integer } x \text{ has divisor } < y \\ 0 & \text{otherwise} \end{cases}$$

HAMILTONIAN $f(x,y) = \begin{cases} 1 & \text{if graph } x \text{ has Hamiltonian Path} \\ 0 & \text{otherwise} \end{cases}$

We define:

Easy Problems: Size $(C_n) \in poly(n)$

Hard Problems: $Size(C_n) > poly(n)$

This distinction allows us to define <u>Complexity Classes</u>, for example

Problem Class P =

Decision Problems solved by a polynomial-sized circuit

Consider a circuit family $\{C_n\}$ that solves a decision problem

Examples

$$f(x,y) = \begin{cases} 1 & \text{if integer } x \text{ has divisor } < y \\ 0 & \text{otherwise} \end{cases}$$

HAMILTONIAN
$$\gamma(x,y) = \begin{cases} 1 & \text{if graph } x \text{ has Hamiltonian Path} \\ 0 & \text{otherwise} \end{cases}$$

We define:

Easy Problems: Size
$$(C_n) \in poly(n)$$

Hard Problems:
$$Size(C_n) > poly(n)$$

This distinction allows us to define Complexity Classes, for example

- * Whether PROBLEM ϵ P is independent of circuit design, universal gate set & other specifics
- * Problems in P are special they have structure that allows efficient computation

Note: The majority of functions $\notin P$

For example, if the output $/(\kappa)$ ~ random we must compute f(x) by lookup table with 2^h entries

Circuit that does lookup has exponential size

Special Class:

One-Way Function

Stands for "Non-deterministic Polynomial Time

Examples: FACTORING & NP

HAMILTONIAN PATH € NP

Clearly $P \subseteq NP$, Conjecture that $P \neq NP$ Note:

- ***** Whether PROBLEM € P is independent of circuit design, universal gate set & other specifics
- **★** Problems in P are special they have structure that allows efficient computation

Note: The majority of functions **₱**

For example, if the output $f(x) \sim \text{random}$ we must compute f(x) by lookup table with 2^h entries

Circuit that does lookup has exponential size

Special Class:

One-Way Function

Problem Class NP =

PROBLEM is easy or hard, but the answer is easy to check

Stands for "Non-deterministic Polynomial Time

Examples: FACTORING € NP

HAMILTONIAN PATH € NP

Note: Clearly $P \subseteq NP$, Conjecture that $P \neq NP$

Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits

Problem = is there an m-bit input w/output = 1

$$S(c) = \begin{cases} 1 & \text{if } \exists x^{(m)} \text{ So } c(x^{(m)}) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Easy to check solution because if we have the input circuit C we can run it with the input $x^{(m)}$ and determine if it evaluates to 1.

<u>Cooks Theorem</u>: Every PROBLEM € NP is polynomially reducible to CIRCUIT-SAT

Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits

Problem = is there an m-bit input w/output = 1

$$f(c) = \begin{cases} 1 & \text{if } \exists x^{(m)} \text{ So } c(x^{(m)}) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Easy to check solution because if we have the input circuit C we can run it with the input $x^{(m)}$ and determine if it evaluates to 1.

<u>Cooks Theorem</u>: Every PROBLEM € NP is polynomially reducible to CIRCUIT-SAT

Complexity Hierarchy

- ***** Conjecture: P ∈ NP
- * 3 Problems in NP that are neither P or NPC
- * NPI: Problems of intermediate difficulty
- ***** Conjecture: Factoring ∈ NPI

Takeaway Message

- * Complexity theory is a rich field with many known complexity classes
- * Many foundational conjectures remain unproven
- * As we will see, switching to Quantum Circuits changes things

Complexity Hierarchy

***** Conjecture: P ∈ NP

* 3 Problems in NP that are neither P or NPC

* NPI: Problems of intermediate difficulty

***** Conjecture: Factoring ∈ NPI

Takeaway Message

- Complexity theory is a rich field with many known complexity classes
- * Many foundational conjectures remain unproven
- * As we will see, switching to Quantum Circuits changes things

Aside: Classical Reversible Computation

Motivation:

Quantum Computation = Unitary Transformation

Reversible!

Classical Reversible Comp: $\{o,i\}^n \rightarrow \{o,i\}^n$

Repackage $\{0,1\}^n \rightarrow \{0,1\}^m$ as reversible

$$f: \{o_i i\}^{n+m} \longrightarrow \{o_i i\}^{n+m}$$

$$f(x_i o^{(m)}) = (x_i f(x_i))$$

we separate *n* + *m* qubit register into input and output so no information is lost

Note: Not all 1 & 2-bit gates are reversible, e. g., AND, OR, ERASE

Quantum Circuits

Classical Computer = finite set of gates acting on bits

Quantum Computer = finite set of <u>quantum gates</u> acting on <u>quantum bits</u>

Note:

- * The Hilbert space of the Quantum Computer has a preferred decomposition into tensor producs of low dimensional spaces (qubits), respected by gates which act on only a few qubits at a time.
 - This helps establish notion of Quantum Complexity
- * Decomposition into subsystems and local manipulations means gates act on qubits in a bounded region.

* It is suspected, but not proven, that the power of Q. C. derives from this decomposition:

n qubits -> 2h dimensional of resource grows ~ 2h

- Unitaries form a continuum, but we restrict to discrete gate sets. This is necessary for Fault Tolerance
- * Quantum Gates could be Superoperators, and readout could be POVM's

However:

we can simulate

Superoperators as unitaries POVM's as Orthog. Meas

in larger 🦞

Our simpler conceptualization is general

* It is suspected, but not proven, that the power of Q. C. derives from this decomposition:

n qubits -> 2^h dimensional of resource grows ~ 2^h

- Unitaries form a continuum, but we restrict to discrete gate sets. This is necessary for Fault Tolerance
- * Quantum Gates could be Superoperators, and readout could be <u>POVM's</u>

However:

we can simulate

Superoperators as unitaries POVM's as Orthog. Meas

in larger **H**

Our simpler conceptualization is general

- ***** Final <u>readout</u> could be collective or in a basis ≠ the standard logical basis →
 - Unitary maps to standard basis $\{\{0\}, \{1\}\}^n$ with overhead included in complexity
- * We could do <u>measurements during computation</u>, then condition later steps on the outcomes. But one can show the same results can be achieved by measuring at the end of the computation
 - <u>In practice</u> measurement during computation is essential for error correction

Note: None of the above changes notion of complexity

- ★ Final <u>readout</u> could be collective or in a basis
 ≠ the standard logical basis
 - Unitary maps to standard basis $\{(0), (1)\}^n$ with overhead included in complexity
- * We could do measurements during computation, then condition later steps on the outcomes. But one can show the same results can be achieved by measuring at the end of the computation
 - <u>In practice</u> measurement during computation is essential for error correction

Note: None of the above changes notion of complexity

At this point we are left with 3 main issues

(1) Universality: we must be able to implement the most general unitary と Su(1ⁿ)

group of unitaries in \mathcal{X} , \mathcal{D} im \mathcal{X} = 2^n

- \rightarrow Circuit of chosen gates must approx. any $\cup \in SU(2^n)$
- (2) Quantum Complexity:

Decision problems solved w/high prob. by poly-sized quantum circuits

(3) Accuracy: BQP is defined assuming perfect gates. What happens if circuit elements do not have exponential accuracy?

Can show noisy gates are OK:

T - gate circuit requires error prob.

✓ 1/

T

1) BQP = Bounded-error Quantum Polynomial time

At this point we are left with 3 main issues

(1) Universality: we must be able to implement the most general unitary と Suにい

group of unitaries in \mathcal{X}_{i} Dim \mathcal{X}_{i} 2ⁿ

- \rightarrow Circuit of chosen gates must approx. any $\cup \in SU(2^n)$
- (2) Quantum Complexity:

Decision problems solved w/high prob. by poly-sized quantum circuits

(3) Accuracy: BQP is defined assuming perfect gates. What happens if circuit elements do not have exponential accuracy?

Can show <u>noisy gates</u> are OK:

T - gate circuit requires error prob.

✓ 1/T

Note on Quantum Complexity:

A QC can simulate a probabilistic classical computer (most general class)

Open Question: Is GPP + BQP? Seems reasonable, as a prob. C.C. cannot easily simulate QM in a 2^h - dimensional Hilbert space.

If so, a QC will negate the Strong Church-Turing Thesis which holds that any physically reasonable model of computation can be simulated on a probabilistic classical computer with only polynomial slowdown.

¹⁾ BQP = Bounded-error Quantum Polynomial time

²⁾ **BPP** = Bounded-error Probabilistic Polynomial time

Definition:

Let $U = e^{iH_{i}}dt$ be generic (H_i is the generator of U) $\exists n \in N_0 \text{ so } U^n \text{ comes } \underline{\text{arbitrarily close}} \text{ to } U(\alpha) = e^{i\alpha H_0}$ $(U(\alpha))$ is <u>reachable</u> by powers U^{N})

Seems extraordinarily cumbersome! Why do it that way?

Answer: This is necessary for Fault Tolerant Operation

 $\{U^{n}, n \in \mathbb{N}_{o}\}$ is a set of measure zero \longrightarrow any "noise takes us to an invalid state that can be detected and corrected.

This is not enough! What else can we do?

(2) Switching leads

k qubits \rightarrow (2^k)! permutations U' = PU P⁻¹

This is not enough! What else can we do?

Aside: Consider a α - dimensional Hilbert space α .

Operators ($d \times d$ matrices) are vectors $e d^2$ dim. Hilbert space \mathcal{U}^1 w/a scalar product defined as

$$(m; lm_j) = Tr[m; +m_i]$$

 $\exists \text{ orthonormal basis } \begin{cases} \{|A_1\rangle, \dots |A_{d^2}|\} \\ (A_1|A_1\rangle = \partial_{11} \end{cases} \text{ in } \mathcal{X}^1$

(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

Trotter Formulae: for dt -> 0

$$e^{-i\alpha H_{3}dt}e^{-i\beta H_{k}dt}=e^{-i(\alpha H_{3}+(\alpha H_{k})dt} \text{ (Lin. Comb. of } H_{3},H_{k})$$

$$e^{-i\alpha H_{3}dt}e^{-i\beta H_{k}dt}e^{i\alpha H_{3}dt}e^{i\beta H_{k}dt}=e^{-[\alpha H_{3},[\alpha H_{k}]]dt^{2}}$$
(NL. Comb. of H_{3},H_{k})

<u>Aside</u>: Consider a α - dimensional Hilbert space α .

(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

<u>Trotter formulae</u>: for dt -> 0

$$e^{-i\alpha H_{\delta}dt}e^{-i\beta H_{K}dt}=e^{-i(\alpha H_{\delta}+\beta H_{K})dt}$$

$$e^{-i\alpha H_{\delta}dt}e^{-i\beta H_{K}dt}e^{i\alpha H_{\delta}dt}e^{i\beta H_{K}dt}=e^{-[\alpha H_{\delta},\beta H_{K}]dt^{2}}$$

- * From the Set $\{H_0, H_1, ... H_n\}$ we can "simulate" new Hamiltonians using the Trotter formulae
- * If a new Hamiltonian is linearly independent we add it to the set.
- * Continue until the Set has $d^{\ell_{z}} (dim \mathcal{U})^{\perp}$ linearly independent members (Lie Algebra complete)*)

Set is a basis in $d^2 \times d^2$ matrix space

Allows to simulate any $H(\ell)$ & implement any U

Examples:

$$d = 2 \longrightarrow \{ [A_i] \} = \{ T_j \nabla_x, \nabla_y, \nabla_z \} \longrightarrow \begin{cases} \text{set of } 2^2 = 4 \\ 2 \times 2 \text{ matrices} \end{cases}$$

$$d = 4 \longrightarrow \{ [A_i] \} \longrightarrow \text{set of } d^2 = 16 \quad 4 \times 4 \text{ matrices} \end{cases}$$

Example: (single qubit control)

Let
$$d = 2$$
, initial set $\{ \alpha \sigma_x, \rho \sigma_y \}$ (generic)
$$[\nabla_x, \nabla_y] = i \nabla_z \implies \text{ we can simulate } i \delta \nabla_z$$

Set [T, &Tx, /25] sufficient for control

Deutsch's Gate First generic gate, Reaches any UE SU(8) X Y 2