Quantum Computation (Preskill ch. 6)

Quantum Computation

Classical Circuits Quantum Circuits

% Universal Gates % Quantum Complexity

% Circuit Complexity * Universal Quantum Gates

Review of Classical Circuit Theory

Think of a Computation as
a function that maps n bits s f°n4}n”> fo,ﬂm
to m bits T

Maps n bits to m bits

A function with an m bit output is equivalent to m
functions with a one bit output, so the basic task can
be broken into m functions mapping n bits to one bit

There are 2" possible inputs
w/2 possible outputs, so a
total of 22" functions that
map n bits to one bit

s {0.1]" > fo,1]

,n of these simple
functions

Function evaluation «—» sequence of logic operations

Given a binary input X =X, X, ... X,
Loy = ¢
® separate in sets
P =0
Consider the input

tar A 1 for x=x
) . = T e) =
X (;Cx Y =1 ® define /(Y; (x) 6 for X x®

one of the m n of these
simple functions

Given, for example,

we implement :})cm w/logic operations

= D) =X AXRAX, L, AKX,

111...
X =
010... => P00 = (W) AX AXA (K)o

Finally, given the § () ‘s we can implement the J(x) ‘s as

Jixy = JO v IR () Vel v (x)
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Circuit Complexity

( Pick a universal gate set )

Central Question: How hard is it to solve PROBLEM ?

% One measure is the size of the smallest circuit
that solves it

Size = Width x Depth

><} —— > Width
X

Depth

!

Consider a circuit family §¢.]
that solves a decision problem

/

Examples

v

FACTORING

J: go({]n_" fo,1]

1 ifinteger X has divisor <y
Lixy) = .
») otherwise

HAMILTONIAN ’?[& '{J\ : 1 if graph X has Hamiltonian Path
PATH ' o otherwise

Easy Problems: ghe (¢, ¢ poly(n)

We define:

Hard Problems: $ize(C,) > poly(n)

This distinction allows us to define Complexity Classes,
for example

Decision Problems solved by }

Problem Class P = o o
a polynomial-sized circuit
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Consider a circuit family §¢..]
that solves a decision problem

/

Examples

v

FACTORING

1?: sqqn_\ {011}

1 ifinteger X has divisor <y
Lixy) = )
») otherwise

HAMILTONIAN /\?[& ‘3\ : 1 ifgraph X has Hamiltonian Path
PATH I o otherwise

Easy Problems: e (C,\ ¢ poly(n
We define: y a) € poly )

Hard Problems: $ize(C,) > polv(n)

% Whether PROBLEM & P is independent of circuit
design, universal gate set & other specifics

* Problems in P are special — they have structure
that allows efficient computation

Note: The majority of functions ¢ P

For example, if the output P(<) ~ random
we must compute «PCK) by lookup table with

2" entries
‘

Circuit that does lookup has exponential size

Special Class: One-Way Function

This distinction allows us to define Complexity Classes,
for example

Problem Class P = { Decision Problems solved by }

polynomial-sized circuit

!

PROBLEM i hard, but
Problem Class NP={ o is easy or hard, bu }

1 the answer is easy to check

Stands for “Non-deterministic Polynomial Time

FACTORING £ NP
HAMILTONIAN PATH £ NP

Examples:

Note: Clearly P < NP, Conjecture that P+ AP

3
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% Whether PROBLEM & P is independent of circuit
design, universal gate set & other specifics

* Problems in P are special — they have structure
that allows efficient computation

Note: The majority of functions § P

For example, if the output <) ~ random
we must compute «P(z) by lookup table with

2" entries
—_—

Circuit that does lookup has exponential size

Special Class: One-Way Function

Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits
Problem = is there an m-bit input w/output =1

(1 i3 xm S clx™) =1
/XCC) - {o Atherwice

Easy to check solution because if we have the input
circuit C we can run it with the input x(™) and determine
if it evaluates to 1.

Cooks Theorem: Every PROBLEM € NP is

¢

PROBLEM i
Problem Class NP = { o is easy or hard, but}>

I the answer is easy to check

Stands for “Non-deterministic Polynomial Time

FACTORING £ NP
HAMILTONIAN PATH £ NP

Examples:

Note: Clearly P< NP, Conjecture that P+ AP

polynomially reducible to CIRCUIT-SAT

NP- Complete NPC # NP

HAMILTONIAN

CIRCUIT-SAT
€
PATH
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Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits

Problem = is there an m-bit input w/output =1

1 (m) Y =
/XCC_) - -P £ X So c(x ) 1
o Olherwice

Easy to check solution because if we have the input

circuit C we can run it with the input x(™) and determine
if it evaluates to 1.

Cooks Theorem: Every PROBLEM € NP is
polynomially reducible to CIRCUIT-SAT

HAMILTONIAN NP- Complete

PATH

CIRCUIT-SAT
€ NPC = NP

Complexity Hierarchy

% Conjecture: P € NP

*¥ 3 Problems in NP that are neither P or NPC
* NPI: Problems of intermediate difficulty
% Conjecture: Factoring € NPI

NP-Hard NP-Hard
NP-C
NP P =NP = NP-C
P
PzNP P=NP

Takeaway Message

% Complexity theory is a rich field with many
known complexity classes

% Many foundational conjectures remain unproven

% As we will see, switching to Quantum Circuits
changes things
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Complexity Hierarchy

% Conjecture: P € NP

% 3 Problems in NP that are neither P or NPC
* NPI: Problems of intermediate difficulty
% Conjecture: Factoring € NPI

NP-Hard NP-Hard
NP-C
NP P =NP = NPC
P
PzNP P=NP

Takeaway Message

% Complexity theory is a rich field with many
known complexity classes

% Many foundational conjectures remain unproven

% As we will see, switching to Quantum Circuits
changes things

Aside: Classical Reversible Computation

Motivation:

Quantum Computation = Unitary Transformation

— -

Reversible!

Classical Reversible Comp: §: {0,1]" = /o, 1}“

Repackage : {o, 1]"—5 fo1f™ asreversible

. N+ M nEm we separate n + m qubit
g. {D,l} —> 50:4} register into input and

output so no information
Jlx,o™) = (x; Joar is lost

Note: Not all 1 & 2-bit gates are reversible, e. g.,
AND, OR, ERASE
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Quantum Circuits

Classical Computer = finite set of gates acting on bits

Quantum Computer = finite set of quantum gates
acting on quantum bits

Quantum Computation:

U¢[000...0> > [T

— \

unitary composed of  n qubit gr:;r:)ut anl;ﬁjo:nﬁ::t
finite # of gates &

input in basis {(0%, (15 &

Note:

% The Hilbert space of the Quantum Computer has a preferred
decomposition into tensor producs of low dimensional
spaces (qubits), respected by gates which act on only a

few qubits at a time.

- This helps establish notion of Quantum Complexity

%k Decomposition into subsystems and local manipulations
means gates act on qubits in a bounded region.

* It is suspected, but not proven, that the power of
Q. C. derives from this decomposition:

N qubits -> 2" dimensional ¥ resource grows ~ o

% Unitaries form a continuum, but we restrict to
discrete gate sets. This is necessary for

Fault Tolerance

% Quantum Gates could be Superoperators, and
readout could be POVM’s

However:
we can Superoperators as unitaries i
simulate POVM’s as Orthog. Meas in larger 3f

— -

Our simpler conceptualization is general



Quantum Computation (Preskill ch. 6)

* It is suspected, but not proven, that the power of
Q. C. derives from this decomposition:

1 qubits -> 2" dimensional ¥ resource grows ~ o

% Unitaries form a continuum, but we restrict to
discrete gate sets. This is necessary for

Fault Tolerance

% Quantum Gates could be Superoperators, and

readout could be POVM’s

However:

we can
simulate

Superoperators as unitaries
POVM'’s as Orthog. Meas

—

in larger 4f

Our simpler conceptualization is general

% Final readout could be collective or in a basis
# the standard logical basis =»

Unitary maps to standard basis {(07, (15 ¥ with
overhead included in complexity

% We could do measurements during computation,
then condition later steps on the outcomes. But
one can show the same results can be achieved by
measuring at the end of the computation

- In practice measurement during computation is
essential for error correction

Note: None of the above changes notion of complexity
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% Final readout could be collective or in a basis
# the standard logical basis =»

Unitary maps to standard basis {(07, (15} with
overhead included in complexity

% We could do measurements during computation,
then condition later steps on the outcomes. But
one can show the same results can be achieved by
measuring at the end of the computation

- In practice measurement during computation is
essential for error correction

Note: None of the above changes notion of complexity

At this point we are left with 3 main issues

(1) Universality: we must be able to implement the
most general unitary & Su(L")

t

group of unitaries in ‘35, Diwm P = "

== Circuit of chosen gates must approx.any U & SU(&."')

New class BQP 1

I

Decision problems solved w/high prob.
by poly-sized quantum circuits

(2) Quantum Complexity:

(3) Accuracy: BQP is defined assuming perfect gates.
What happens if circuit elements do not have
exponential accuracy?

T - gate circuit requires

Can show noisy gatesare OK: |~ -/ 1" e 1/

1) BQP = Bounded-error Quantum Polynomial time
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At this point we are left with 3 main issues

(1) Universality: we must be able to implement the
most general unitary & SU(L")

group of unitaries in ‘3(’, Diwm P = 4"

== Circuit of chosen gates must approx. any U & SU(D."')

(2) Quantum Complexity: New class BQP

1

Decision problems solved w/high prob.

by poly-sized quantum circuits

(3) Accuracy: BQP is defined assuming perfect gates.
What happens if circuit elements do not have
exponential accuracy?

T - gate circuit requires

Can show noisy gates are OK: error prob. ¢ 1/1"

1) BQP = Bounded-error Quantum Polynomial time

Note on Quantum Complexity:

A QC can simulate a probabilistic classical computer
(most general class)

— RPP?c RAP

Open Question: Is RPP+ RAP ? Seems reasonable,
as a prob. C.C. cannot easily simulate QM in a
2" — dimensional Hilbert space.

If so, a QC will negate the Strong Church-Turing Thesis
which holds that any physically reasonable model of
computation can be simulated on a probabilistic
classical computer with only polynomial slowdown.

2) BPP = Bounded-error Probabilistic Polynomial time

10
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Definition:

Let U- Q_l‘ Hjole be generic ( H‘-) is the generator of )

Jn e N, so 0" comes arbitrarily close to U(a)= e'® H3

( U () is reachable by powers V")

Seems extraordinarily cumbersome! Why do it that way?

Answer: This is necessary for Fault Tolerant Operation

{ v, VleM,,] is a set of measure zero —» any “noise
takes us to an invalid state that can be detected
and corrected.

This is not enough! What else can we do?

(2) Switching leads

k qubits =p ( 2¥)! permutations U’=PU P!

9 P U p-1

o = <H B

This is not enough! What else can we do?

Aside: Consider acl - dimensional Hilbert space &f .

N { Operators (A xcl matrices) are vectors & A dim.
Hilbert space &' w/a scalar product defined as

(m; [wy) =T [m¥m;]

e
lAq\,...{AdtS
3 orthonormal basis ; ] in &'
(A:145) = 0y

(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

fHy Hyy oo Ho Q) né (dim 0\

1y~

Trotter Formulae: fordt->0

g AU =i BHE 1  @HIAE (Lin, comb. of k)

o 1Hy At ipHdt ikl SipHdt = e—[a Hy @R o2
(NL. Comb. of Hg,!—{k)

11
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Aside: Consider acl - dimensional Hilbert space &f .

{ Operators (dxcl matrices) are vectors & 4% dim.

vector space &' w/a scalar product defined as

(m; Tm) =Te[mFm,7]

-
14,,...184)
3 orthonormal basis { ; ! ] in &'
(A:1A) = 0ij

(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

[Hy, Hay .. Ha Y, n & (dim N
Trotter formulae: fordt->0
P TP P G A

Q—JO(H d‘fe u[&”kd{: ID(H d'{: l{-lde'L - e [O(H ((‘Lnk_] 0{{2

* From the Set {H, H,, .. H,{ we can “simulate”
new Hamiltonians using the Trotter formulae

% If a new Hamiltonian is linearly independent
we add it to the set.

% Continue until the Set has d%: (im®) linearly
independent members (Lie Algebra complete)*)

Set is a basis in d*x< ol matrix space

Allows to simulate any H(t) & implement any U

Examples:

d=2 =» ilﬁ;)] T, 0,5, cr} set of 22=4

2 X 2 matrices

=y =p 51@\,)1 4= set of d?=16 4 x4 matrices

Example: (single qubit control)
Let d=2_, initial set 50(\')‘,) {-2(3‘.0] ( generic)

[th()‘.o] =Ty =P wecansimulate . §T,

Set [T, avx, 28] sufficient for control
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Deutsch’s Gate

Quantum Computation (Preskill ch. 6)

First generic gate,
Reaches any & SU(3)

X

’la,

13



