Quantum Computation

Classical Circuits

Quantum Circuits

- * Universal Gates
- * Quantum Complexity
- * Circuit Complexity
- * Universal Quantum Gates

Review of Classical Circuit Theory

Think of a <u>Computation</u> as a function that maps *n* bits to *m* bits

Maps n bits to m bits

A function with an *m* bit output is equivalent to *m* functions with a *one* bit output, so the basic task can be broken into *m* functions mapping *n* bits to *one* bit

There are 2^n possible inputs w/2 possible outputs, so a total of 2^{2^n} functions that map n bits to *one* bit

$$\begin{cases} \langle o,1 \rangle^{N} \rightarrow \langle o,1 \rangle \\ \downarrow o \end{cases}$$
2ⁿ of these simple functions

Function evaluation -> sequence of logic operations

Given a binary input $X = X_1 X_2 ... X_N$ \Rightarrow separate in sets $\begin{cases} f(x) = 1 \\ f(x) = 0 \end{cases}$

Consider the input

$$\chi^{(a)}: f(\chi^{(a)}) = 1 \quad \Rightarrow \quad \text{define} \quad f^{(a)}(\chi) = \begin{cases} 1 & \text{for } \chi = \chi^{(a)} \\ 0 & \text{for } \chi \neq \chi^{(a)} \end{cases}$$
one of the m
simple functions

Given, for example, we implement a w/logic operations

$$X = \begin{cases} 111... & \Rightarrow & f(x) = X_1 \land x_2 \land x_3 ... \land X_n \\ 0110... & \Rightarrow & f(x) = (7x_1) \land x_2 \land x_3 \land (7x_4)... \end{cases}$$

Finally, given the $\int_{-\infty}^{\infty} (x) dx$ is we can implement the $\int_{-\infty}^{\infty} (x) dx$

$$\mathcal{J}(x) = \mathcal{J}^{(1)}(x) \vee \mathcal{J}^{(2)}(x) \vee \cdots \vee \mathcal{J}^{(n)}(x)$$

Circuit Complexity

(Pick a universal gate set)

Central Question: How hard is it to solve PROBLEM?

* One measure is the size of the smallest circuit that solves it

Consider a circuit family $\{C_n\}$ that solves a decision problem

f: {0,1}"→ {0,1}

Examples

FACTORING

$$\mathcal{F}(x,y) = \begin{cases}
1 & \text{if integer } x \text{ has divisor } < y \\
0 & \text{otherwise}
\end{cases}$$

HAMILTONIAN
$$\gamma(x,y) = \begin{cases} 1 & \text{if graph } x \text{ has Hamiltonian Path} \\ 0 & \text{otherwise} \end{cases}$$

We define:

Easy Problems: Size $(C_n) \in poly(n)$

Hard Problems: $Size(C_n) > poly(n)$

This distinction allows us to define Complexity Classes, for example

Consider a circuit family $\{C_n\}$ that solves a decision problem

Examples

$$f(x,y) = \begin{cases} 1 & \text{if integer } x \text{ has divisor } < y \\ 0 & \text{otherwise} \end{cases}$$

HAMILTONIAN
$$f(x,y) = \begin{cases} 1 & \text{if graph } x \text{ has Hamiltonian Path} \\ 0 & \text{otherwise} \end{cases}$$

We define:

Easy Problems: Size $(C_n) \in poly(n)$

Hard Problems: Size(Cn) > poly(n)

This distinction allows us to define Complexity Classes, for example

- * Whether PROBLEM ϵ P is independent of circuit design, universal gate set & other specifics
- * Problems in P are special they have structure that allows efficient computation

Note: The majority of functions $\notin P$

For example, if the output $/(\kappa)$ ~ random we must compute $\mathcal{I}(\kappa)$ by lookup table with 2^h entries

Circuit that does lookup has exponential size

Special Class:

One-Way Function

Problem Class NP =

PROBLEM is easy or hard, but the answer is easy to check

Stands for "Non-deterministic Polynomial Time

Examples: FACTORING € NP

HAMILTONIAN PATH & NP

Clearly $P \subseteq NP$, Conjecture that $P \neq NP$ Note:

- ***** Whether PROBLEM € P is independent of circuit design, universal gate set & other specifics
- * Problems in P are special they have structure that allows efficient computation

Note: The majority of functions $\notin P$

For example, if the output $f(x) \sim \text{random}$ we must compute f(x) by lookup table with 2ⁿ entries

Circuit that does lookup has exponential size

Special Class:

One-Way Function

Stands for "Non-deterministic Polynomial Time

Examples: FACTORING € NP

HAMILTONIAN PATH \in NP

Note: Clearly $P \subseteq NP$, Conjecture that $P \neq NP$

Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits

Problem = is there an m-bit input w/output = 1

$$f(c) = \begin{cases} 1 & \text{if } \exists x^{(m)} \text{ so } c(x^{(m)}) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Easy to check solution because if we have the input circuit C we can run it with the input $x^{(m)}$ and determine if it evaluates to 1.

<u>Cooks Theorem</u>: Every PROBLEM € NP is polynomially reducible to CIRCUIT-SAT

Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits

Problem = is there an m-bit input w/output = 1

$$f(c) = \begin{cases} 1 & \text{if } \exists x^{(m)} \text{ So } c(x^{(m)}) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Easy to check solution because if we have the input circuit C we can run it with the input $x^{(m)}$ and determine if it evaluates to 1.

<u>Cooks Theorem</u>: Every PROBLEM € NP is polynomially reducible to CIRCUIT-SAT

Complexity Hierarchy

- ***** Conjecture: P ∈ NP
- * 3 Problems in NP that are neither P or NPC
- * NPI: Problems of intermediate difficulty
- **★** Conjecture: Factoring ∈ NPI

Takeaway Message

- Complexity theory is a rich field with many known complexity classes
- * Many foundational conjectures remain unproven
- * As we will see, switching to Quantum Circuits changes things

Complexity Hierarchy

***** Conjecture: P ∈ NP

* 3 Problems in NP that are neither P or NPC

* NPI: Problems of intermediate difficulty

***** Conjecture: Factoring ∈ NPI

Takeaway Message

- Complexity theory is a rich field with many known complexity classes
- * Many foundational conjectures remain unproven
- * As we will see, switching to Quantum Circuits changes things

Aside: Classical Reversible Computation

Motivation:

Quantum Computation = Unitary Transformation

Classical Reversible Comp: $\{c,i\}^n \rightarrow \{c,i\}^n$

Repackage $2: \{0,1\}^n \rightarrow \{0,1\}^m$ as reversible

$$\begin{cases}
\{o_{i}\}^{n+m} \longrightarrow \{o_{i}\}^{n+m} \\
\{(x_{i}o^{(m)}) = (x_{i}\}^{(x_{i})}
\end{cases}$$

we separate *n* + *m* qubit register into input and output so no information is lost

Note: Not all 1 & 2-bit gates are reversible, e. g., AND, OR, ERASE

Quantum Circuits

<u>Classical Computer</u> = finite set of gates acting on bits

Quantum Computer = finite set of <u>quantum gates</u> acting on quantum bits

Note:

- * The Hilbert space of the Quantum Computer has a preferred decomposition into tensor producs of low dimensional spaces (qubits), respected by gates which act on only a few qubits at a time.
 - This helps establish notion of Quantum Complexity
- * Decomposition into subsystems and local manipulations means gates act on qubits in a bounded region.

* It is suspected, but not proven, that the power of Q. C. derives from this decomposition:

N qubits -> 2^{N} dimensional \mathcal{X} resource grows $\sim 2^{N}$