Quantum Information Theory (preskill ch. 5)

Shannon’s Noisy Channel Coding Theorem

noisy channel
Alice > Bob

Alice & Bob need redundancy to communicate
reliably over a noisy channel. How much?

Key Question: Can we always find a reliable
code when the message length n 250 ?

Binary alphabet: {Oc‘lz

p(no flip) =¢ - plolo) = p(1la) = t-n
p(flip) =1 {/{p(oli) = /((1(1/0) = ﬁ’l

Basic Idea: Encode k bits of info in block of size n

We define the Code Rate R = k/n

Optimal Code: max # of bits must flip to

: {X, (I(x\} errors specified by ,64[43 [®) Vs 5"@.’(‘("3\1

interchange code words
diffuses into error bubble of
@ 91Hlp) words
Hamming
words in code space radius np
/7

n bits =» np flips

Reliable Decoding: Error bubbles must not overlap

» 9_[< g Hip) ¢ M = total # of words
= in code space
# of words required

Setting [c = nIQ and solving for the Code Rate we get

R<1- H[rp\ = C(y\\<— Channel Capacity
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Quantum Information Theory:

Key Results from Classical Information Theory

% Message of letters drawn from ensemble 5 X, 1’\(&\]

# of incompressible bits
Shannon Info =
HCK) per letter in limit N> o®

% Correlation between sent (X ) and received (Y ) messages

Mutual Info J:C'X,Y) H[X:] H(X]| )
= H(¥)-H(y¥)

# of bits of info about (X ) learned from (Y)

Quantum Information Theory

®» Need to generalize these concepts

Basic Scenario:

Alice sends letters drawn from the ensemble

for el ® e221u e

Bob reads message by measuring the POVM

R = @0 :-T(Re)

We define the von Neumann Entropy

sle)=-Tr(ologe)

In the eigenbasis of © we have

= 2 AN »
A

S(e) = -i}\AL%A Inxal = Hp)

T

Shannon Entropy of the ensemble A = gl>\>‘)\2
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Basic Scenario:

Alice sends letters drawn from the ensemble

{0 ] ® €221 e

Bob reads message by measuring the POVM

R = @0 :-T(Re)

We define the von Neumann Entropy

sle)=-Tr(ologe)

In the eigenbasis of © we have

Conclusion:

% If the alphabet consists of mutually orthogonal
pure states then the quantum source reduces

to a classical source

* In that case all signal states are perfectly
distinguishable

* S(Q) = H(A)

Q=2 ADXA »
A

Sl@V= =2 Alogalaxal =H(A
A

T

Shannon Entropy of the ensemble A = gl%)(A}

We can show the Von Neumann entropy quantifies

% The incompressible information content of a
quantum source

% The quantum information content per quantum letter

% The classical information content per quantum letter
(extractable by POVM)

% Entanglement of a bipartite pure state
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Conclusion:

% If the alphabet consists of mutually orthogonal
pure states then the quantum source reduces
to a classical source

* In that case all signal states are perfectly
distinguishable

* S(Q) = H(A)

We can show the Von Neumann entropy quantifies

% The incompressible information content of a
quantum source

% The quantum information content per quantum letter

% The classical information content per quantum letter
(extractable by POVM)

% Entanglement of a bipartite pure state

Mathematical properties of <(Q) (N° proofs, )

see Preskill
(1) Purity Q =IyXy[ = S(Q) =0

(2) Invariance $(veUL™) = S(g)

(3) Maximum @ has (l eigenvalues o = S(@) < Leg ol

For Ayd,.. 2,20, 22;=¢ =
SIMQt... +2nG, ) 2 ASIQ ) +... Anslg,)

(4) Concavity

( vNE grows when ignorant of )
how the state was prepared

(6) Entropy of Measurement (Q Meas adds randomness)

Measure A = %0.9 Ia.ax%[ -» outcomes Y = 5%,: 'Wa‘\)l)}

S. E. of outcomes H(Y) 2> S(), W/ =" for [A,@] =0

. Mix N. O. states cannot
(7) Entropy of Preparation ( recover full info )

Draw from § 19, ..}, €= .le X > H(X) > S(Q)
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No proofs, )

Mathematical properties of S(Q) (see Preskill

(1) Purity © =IyXy[ —» Sle)=0
(2) Invariance S(LUE L) = S(Q)
(3) Maximum @ has (l eigenvalues 0 = S(@) £ Leo, ol

For Aydy,.. 20,20, 22,=1 =
St . MG, ) 2 AS(Q ) +... MnSlR,)

(4) Concavity

( vNE grows when ignorant of )
how the state was prepared

(6) Entropy of Measurement (Q Meas adds randomness)

Measure A = %0.9 Ia,aXa.al =» outcomes Y = Ea,g, ?ﬂfa‘\,')g

S. E. of outcomes H(Y) > S(g), W/ =" for [A,@] =0

(7) Entropy of Preparation ( Mix N. O. states cannot)

recover full info

Draw from § 19, .. ], €= le X > H(X) > s(Q)

No proofs, )

Mathematical properties of S(Q) (see Preskill

(8) Subadditivity (info in whole < sum of info in parts)

. classical H(X;v) ¢ H(X)+H(¥) with
S(4g) ¢ Sleal * S(%) ( “=“ when X,¥ uncorrelated )

uncertainty about whole can be
less than uncertainty about parts

(9) Triangle inequality (

$(Qqy) 2 [S094) ~Sl@g)|  (classical H(%,Y) 2 H(¥), H(Y)‘)
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Quantum Data Compression

(Quantum analog of Shannons Noiseless Coding Theorem)

Starting Point: n-letter message drawn from {upJt >, ’M

t

need not be orthogonal

Each letter described by ©= 2/())4 180, XeP, |
X

Message described by o" = Cage... @0

Basic Question: How redundant is this information?

— is there a “quantum code” which can compress to a
smaller Hilbert space while retaining the fidelity
of the encoded quantum information ?

Answer: Optimal Compression requires

LDg[dim &) = nSle) qubits

(Schumacher’s Theorem)

Corrollary: The von Neumann entropy is the # of qubits

carried per letter in a message. We can always
compress unless g=’/z 1

Example of how we might do this:
IT%> ' ﬂzl/?.
Alice sends a message using the alphabet

PO (A

3y Yy )

-~ d -
B = 3ILXNI+ 0K = (1/.{ e

(z or x basis )

Symmetry —p eigenvectors are 1, ] along i =\;—3_ [)?*t-i)

CoS &7,
[0 = [Tad = 7
. 1 Cin 'a-/g
elgenvectors
Sin T/g
I = oy -
7= 13> (-Cos"’73>

eigenvalues J




Quantum Information Theory (preskill ch. 5)

Corrollary: The von Neumann entropy is the # of qubits
carried per letter in a message. We can always

compress unless g=’/2 1
Example of how we might do this:

‘T%>| fl=,/2_
%>, =t

Alice sends a message using the alphabet

( _ 3l My
» Q = '5(-[?%5(1\%143_[Tx><¢,<‘. = (1/L{ "/Ll>

(z or x basis )

Symmetry —p eigenvectors are 1, along i 9\,1-?'_ (X+32)

[0 = 194 = (C"W* )

Cin -‘T/g

Sin T/g
I = vy =
1) [ba> (*CDSWS)

Mo) = 5+ f\—li = Cos: T
|

eigenvectors

eigenvalues %

l'..'___,___‘: .
NCLERT S5 ° S s

01> = <ot 15 = Cos* Ty = 03538
Overlap

LTt = KT = giut Wy = o.146S

If Bob does not know what was sent, best guess is (3> = [p'>
» ?=<mgh{> ~ 3'_[%11011 + {Kmp!l =6.8538

Scenario:

Alice wants to send a 3-qubit message, but can transmit

only 2 qubits. Could send Bob those qubits [$=1) and
have Bob guess (p*) for the third

®» Baseline Fidelity (no tricks) @: 0.353S

How to improve:

Likely subspace [0'>
for 1 bit

Diagonalize @
Unlikely subspace 11°)

either (T35 or 195 Note: all possible [{>) have the same
f_/%

Let (P = m1>[‘f'{7 WO overlap‘vrlith states of the type [i)[é')lk)‘
where ’,J,kefD', 1-}
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Corrollary: The von Neumann entropy is the # of qubits
carried per letter in a message. We can always
compress unless g=’/2 1

Example of how we might do this:
[T%> ' fl='/2_

Alice sends a message using the alphabet

PO ()

| 3 Uy
B O = SITXNI+3[0X| = (1/q w)

(z or x basis )

Symmetry - eigenvectors are 1, ] along > ( 3)

{or> a [Tﬁ) o (0031179 )

Cin -‘T/g

Sin T/g
)= - > =
7= 1> (~Cos “73)

eigenvectors

eigenvalues %

01> = <ot 15 = Cos* Ty = 03538

Overlap
LTt = KT = giut Wy = o.146S

How to improve:

Likely subspace [0'D>
Diagonalize @ for 1 bit
Unlikely subspace 11°)

either (13 or 19>
~———— Note: all possible [{>) lhave the same
Let (5 = 14,504, ['435 overlap with states of the type [i)[;)1k)

where ] 550', 1-}

Note: for any [¢>) |drawn from Alice and Bobs alphabet,
we have

Likely subspace /A
<00t [P = cos* T = 0,629
|<o'st [ oIt = 1Ko'y oflwl Koo oIt = cos' Tsin E=0.106%

1
Unlikely subspace A\
[<ot 11t grlL = 1ol | gL = [t tle I L = oY i 3 =o.0183
Kapat [2dt = & m";{- = 5.603]
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01> = <ot 15> = Cos* Ty = 03538
Overlap
LTt = KT = giut Wy = o.146S

How to improve:

Likely subspace [0'D>

Diagonalize @ { for 1 bit

Unlikely subspace 11°)

either (13 or 19>
~——————  Note: all possible [{>) have the same
Let (95 = 14,504, WO overlap with states of the type [i)[;)1k>

where i,j,k 550'1 1?

Note: for any [¢>) |drawn from Alice and Bobs alphabet,
we have

Likely subspace /A
[<00'e [P = cos* T = 0,629
[<ot ot [ It = 1Kot o POt = [K1oter [dIL = cos‘gsm%f = 0,166%

1
Unlikely subspace £\
[<ot 11| ol = 1Kol | gL = [t 1! [ eIt - (:OS"";T Sint3 =0.0143
Katgat [gr)L = sim";—t = 5.603]

This structure of message space suggests Alice should send
only the part €7\, which fits in 2 qubits (Dim A =y ). She
can do this by performing a measurement that projects her
3—qubit state onto either A or Nt

(Pl.ike(y = 0.6LIO +2x&.1067 = 0.9Y19

(lbun“[‘eLy = 2x0.018% +0.00%) =0.05%1

Geometric illustration of a space
with likely and unlikely subspaces.

likely A

The state vector (black) has a large projection on the
“likely subspace” (pink), and a much smaller projection
on the “unlikely subspace” (grey). Accordingly, when
we project onto the likely subspace and ignore the
unlikely subspace, we don’t loose much information.
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01> = <ot 15> = Cos* Ty = 03538
Overlap
LTt = KT = giut Wy = o.146S

How to improve:

Likely subspace [0'D>

Diagonalize @ { for 1 bit

Unlikely subspace 11°)

either (13 or 19>
~——————  Note: all possible [{>) have the same
Let (95 = 14,504, [““Q overlap with states of the type [i)[;)1k>

where i,j,k 550'1 1-3

Note: for any [¢>) |drawn from Alice and Bobs alphabet,
we have

Likely subspace /A
[<00'e [P = cos* T = 0,629
[<ot ot [ It = 1Kot o POt = [K1oter [dIL = cos‘gsw} = 0,166%

1
Unlikely subspace £\
[<ot 11| ol = 1Kol | gL = [t 1! [ eIt - (:OS"";T Sint3 =0.0143
Katgat [gr)L = s;m";—f- = 5.603]

This structure of message space suggests Alice should send
only the part €7\, which fits in 2 qubits (Dim A =y ). She
can do this by performing a measurement that projects her
3—qubit state onto either A or Nt

(Pl.ike(y = 0.6LIO +2x&.1067 = 0.9Y19

»

(lbun“[‘eLy = 20.018V +0.00%] = 0.0581

To do this Alice can apply the Unitary Transformation
U that maps

O (e, => 1+D1-S10)

O [%n[,f[{ek;) = [*D1-D11")
She measures the 3 qubit
(0> =» projectsonto A\

»

L
1Y =» projects onto 4\

If Alice’s outcome is (6> she sends I?@'c,,mp) a e[

Bob decompresses by appending |o'> and undoing U
B [P0 = U ([ Vo> 109)

10
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This structure of message space suggests Alice should send
only the part &7\, which fits in 2 qubits (Dim A =y ). She
can do this by performing a measurement that projects her
3—qubit state onto either A or ANt

(PLike(y = 06110 +23x&.1067 = 0.9Y19

»

(thtikel.y = 2x@.018%3+0.00%] =0.0531

To do this Alice can apply the Unitary Transformation
U that maps

O [ Ppery” = 0D1-S 10

O [ By niiielyY = 11147
She measures the 3" qubit

[0'> =» projectsonto A\

»

- L
11') = projects onto A\

If Alice’s outcome is [0' > she sends I?@'CO,MP) a e[S

Bob decompresses by appending (0> and undoing U

B [P0 = U ([ Vo> 109)

If Alice’s outcome is 11°) she sends Ulo'o'S
B B = U {100510)= [Oo">

This leaves Bob with the state

Caop = EITXKYB + LD 1-BIPD [0'0'd Xo'o' |

( E= projectionon A )
which has Fidelity

g = <¢-lgﬂob IZP->

= LY B2+ <Pl 1- Bl [<grlo'wor > -
= 0.9910% £+ £.0581 x 0.6215 = H O >0.8535

As with classical data compression, longer messages

allow for more compression or compression without
loss.

In Quantum Communication one has the option of
choosing an alphabet where the individual letters

are mixed states. This makes it much more challenging
to find bounds for compressibility and code rates.

See Preskill Chapter 5 for more information.
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