Quantum Information Theory (preskill ch. 5)

Main Topics of QIT:

(1) Transmission of classical info over quantum channels
(2) Information/disturbance tradeoff in QM
(3) Quantifying entanglement

(3) Transmission of quantum info over quantum channels

Our Program: (1) & (4) ~ 3 Lectures

Key Concept — Incompressible information content

Classical Measure: Shannon Entropy

Quantum Measure: von Neumann Entropy

Review of Classical Information Theory

( Shannon for Dummies, Preskill 5.1 )

Shannon, 1948: Core findings of classical info theory

(1) How much data can be compressed (redundancy)

(2) Reliable communication rate over noisy channel
(Redundancy needed to protect against errors)

Shannon Entropy and Data Compression

(Shannon’s noiseless coding theorem)
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Review of Classical Information Theory

( Shannon for Dummies, Preskill 5.1 )

Shannon, 1948: Core findings of classical info theory

(1) How much data can be compressed (redundancy)

(2) Reliable communication rate over noisy channel
(Redundancy needed to protect against errors)

Shannon Entropy and Data Compression

(Shannon’s noiseless coding theorem)

Message = String of letters chosen from iahD\.L] o 0(&]

A priori probability of occurrence: o), '217(0‘,) =1

Basic Question: given message w/ in 5> 1 letters

Can we compress to length { \n ?

Look at Binary case: Typical Occurrence

0 qb)=1-1 (t-p)
i q@=p nq

Binomial
{ coefficient

Number of distinct typical strings ~ (mw«\)

use Stirlings formula

Logw!= mLoﬁw~m+[9[Loﬁv)\

no\ _ n!
Log(”{p} - Loy (npd! [w(1- ]!

base 2

&N Lo%m—m - [Vb(l Log(nm\-[hp)-m['l-/p) LO%[VI('(T\]- W(q-!p)]

=nHu), | Hip)= -nlogp - (-n)Log(e-p) = 3 4ix) Logpix)
R=0,1

|— entropy function

# of bits needed to specify all typical strings, for a given 1
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Why the Log?
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Look at Binary case: Typical Occurrence

0 qb)=1-7 n(1-p)
I oqp@= nq

Binqmial
coefficient

Number of distinct typical strings ~ (V\V”“)

use Stirlings formula

Loyw!=wnlogn-n +[9[Logn\

no\ n!
Loﬂ(n{p} S (apd¢[n(r- )]

base 2

& nloon-n -[vwnLog(wm\-lwr)+V\(1-fn)Log,[wu~7\\]-w(«-fp)]

=nHw), [ Hip)= -plogp - (1-n)Log (1-p) = 3 1ix) logpix)
R=0,1

|— entropy function

# of bits needed to specify all typical strings, for a given

Basic idea of Data Compression:

% Assign integer code letter to each typical string

% This block code has 2"H(P) |etters

% Each code letter specified by n H(p) bits

O¢péd — O<¢H(PISL } Block code compresses

Hin) =1 onlyfor L =‘/)_ message for ' '/,

Generalization:

% letters, prob. /{ltx)
Ensemble X = fx,'p(xJZ of letters

N - letter string — X occurs o VI'J\(R) times

. . o n! - ~nH(X)
# of typical strings —T[m'p[x)] i 2

_ Shannon
HEX) = -2 ptalog il == “antropy !
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Basic idea of Data Compression:

We will see that H(X) quantifies how much info is

L . . conveyed, on average, by a letter drawn from the
% Assign integer code letter to each typical string

ensemble [ X) (alphabet)
% This block code has 2"H(P) |etters

% Each code letter specified by n H(p) bits

Note: Boltzman Entropy C= -/& Z 1 LD@ m

Block code compresses

O¢méd — ocH(MSL
Here the sum is over the microstates consistent with

Hin) =1 onlyfor T =‘/)_ message for 7\ //,

the given microstate. Assuming all microstates are

equally likely, the System will be in the macrostate

Generalization: with the largest S.

% letters, prob. /(I[x)
Ensemble X = 57&,1‘! (")Z of letters

N - letter string — X occurs ~ Vl»p(&) times

n! )
# of typical strings ~ ——— ~ 2 nH(X)

ST 1
E [Wptx)] .

Shannon
HIX) = =D 1l Log ) «— entropy
X
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We will see that H(X) quantifies how much info is

conveyed, on average, by a letter drawn from the
ensemble [X) (alphabet)

Note: Boltzman Entropy

Q-‘-‘-& Z/(l, Lr)g/p;

Here the sum is over the microstates consistent with
the given microstate. Assuming all microstates are
equally likely, the System will be in the macrostate
with the largest S.

Shannons Noiseless Coding Theorem

Consider a random, typical message Xy Xy 000X,

with Xp £X in y’thplace

/KICX“..X.“\ = Tl(’(‘l) ’0'\(’<2Ju.- ’lexm)
» /{100 = a priori prob. of X in placecf)

occurs n, times
) on average

Then ——Lora/pqu..)(] "'ZL%T{’(’Q

= -1 ;WXLDC&’{\[AN Hx)

Here, in the 2™ to last step we grouped together the n, occurrences
of x, used -/(1 (x:)~ Ny, and converted the sum over p05|t|ons in the
string into a sum over letters in the alphabet. As a last step, - ~qpx)

Now: Forany £ 5 30 there exist an 1 large enoughss. t.

H(x)-o ¢ —mlf.o%m(x,... x,) ¢ H(X)+o
» 2—&4(_”"6) 2_ m(xq”'xk) S 1*”“‘“-5) (1)
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Shannons Noiseless Coding Theorem

Consider a random, typical message XqXy 000X,

with )(‘i £¥X in <] " th place

Ay Xol] = ) k), i)
» »ﬁ(x) = a priori prob. of X in placeé

occurs n, times
{~ onaverage

w
Then —‘; Log 4 (xq.- X, = --V'l— Z'Loﬁ'p(xﬁ
3=

= -% ;meocﬂfp(x)N H(x)

Now: Forany £ o so there existan 1 large enough s. t.

H(x)-0 ¢ -1 log nlx,...x,,) & HX)+d (1)
n 04

B 27D sy (X, .,.x,) 3 27N H)

But: jn(x,...x,) is just one of many typical strings
with the same number of occurrences of each letter
and thus identical a priori probabilities J(\CiypicaL') .
Then for n large enough, we also have

1-2 £ 5 pleypicar) ¢ P

1 = N(E_‘&} x «l[éypical,)
# of typical strings

Taking the ratio -(—'L x (2) gives us the final result

1)

(1-2) lmCH-é\ < NEssYE )" (H+8)
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But: (... x,) is just one of many typical strings ) )
with the same number of occurrences of each letter Conclusion ( Shannons Noiseless )

and thus identical a priori probabilities J(\CﬁypicaL') . Coding theorem
Then for n large enough, we also have

% We can encode all typical strings w/blocks
1-¢ &> nlbypicat) ¢ 4 2) of n[H+8 ) bits

% Atypical strings occur w/prob. < & , where
g 8=0 for nao

T oNes) = pltypieat)

# of typical strings
% An optimal code thus compresses each letter
y to H(Y) bits

Taking the ratio -c—-) x (2) gives us the final result
1

n(H-0)

(1-2) 2 & Mg 8) ¢ g ()
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% Atypical strings occur w/prob. < & , where
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1

n(H-0)
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Joint and Conditional Entropy,
Mutual Information

Consider the following scenario:

noisy channel
Alice > Bob

% - {me} errors specified by T‘[“{) () V- 5“6«’(‘(’:)\.(

!

known about channel

known about
Alices alphabet

Alyl) nix)
)
L 1) = %/(L(\alx)/r\(x)

Bayes Rule: p(xly) =

Bob uses this to estimate the prob. that Alice sent x
given he received y. The “width” of the distribution
/(lbclad\ is thus a measure of Bob’s information gain
per letter.

Think about this in terms of joint events

§x.y] = §Lay), nixe]

» Joint entropy

HEX ¥) = =2 qixiyg) Lomq(xa)
Ay

This is a measure of information content per letter
in the combined strings

% Assume Bob measures the value of a letter d@' in
the message

% He gets H(Y) bits of info about the letter pair X4
% Bob’s remaining uncertainty about the letter X is

then tied to his lack of knowledge about X given
that he knows 4 -

11
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Think about this in terms of joint events

§x.y] = §tay), nlxa]

» Joint entropy

HEX ¥) = =2 pixiyg) Lomq(x,)

Ay

This is a measure of information content per letter
in the combined strings

% Assume Bob measures the value of a letter dﬁ— in
the message

% He gets H(Y) bits of info about the letter pair X4

% Bob’s remaining uncertainty about the letter X is
then tied to his lack of knowledge about X given
that he knows &% -

The entropy of X conditioned on Y is
therefore

HIX YY) = HIY)+H(XIY)
» HXIY) =z HXY)-HY

The Conditional Entropy H (X Y)

is the number of bits of info per letter in
Alice’s message that Bob is missing due to
channel errors

— measure of information loss due to errors —

Equivalently, it is the # of extra bits Alice
must send to ensure Bob gets the complete
message in the presence of channel errors.

12
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The entropy of X conditioned on Y is
therefore as

HIXY)= HIY)+H(XIY)
» HXIY): HXY)-HY

The Conditional Entropy H [X[V)

is the number of bits of info per letter in

Alice’s message that Bob is missing due to
channel errors

— measure of information loss due to errors —
Equivalently, it is the # of extra bits Alice

must send to ensure Bob gets the complete
message in the presence of channel errors.

Note: From the above it follows that the
conditional entropy is given by

HEIY) = H(X,Y)-H(Y)

XY

We can similarly quantify the # of bits of info
about X that Bob has gained by measuring %Y .

This is the Mutual Information:

TIR;¥) = HR)ItHEY) - HEY)
= HX)-H(XIY) = HY) - H(YIX)

Note: When we added the info content of X
to the info content of Y we overcounted the
total info because some info is common to

X and Y, and must be subtracted to get the
proper measure for the Mutual Information

13



Quantum Information Theory (preskill ch. 5)

Note: From the above it follows that the . . .
~ conditional entropy is given by Note: We can also quantify the # of bits of info

about ¥ that Bob has gained by measuring <.
HEXIY) = H(X,Y)-H(Y)

This is the Mutual Information:

=~ 3 i) Log ik, o) + %mwo% )
K(Q

T(X;¥Y) = HRItHEY) - HXY)

We can similarly quantify the # of bits of info = HX)-H{XIY) = H (¥) - H(ZIx)
about X that Bob has gained by measuring %Y .

This is the Mutual Information:

Note: When we added the info content of X

to the info content of Y we overcounted the
T(X-v) = +HY) - HIZ Y total info because some info is common to
! ¥) = HE (¥) H( ,'}_/) X and Y, and must be subtracted to get the
= H (X) - H(YIY) =~ H(Y)- H(YIY) proper measure for the Mutual Information
Note: When we added the info content of X Next Lecture — Final Topic in QIS:
to the info content of Y we overcounted the ] ]
total info because some info is common to Shannon’s Noisy Channel Coding Theorem

X and Y, and must be subtracted to get the
proper measure for the Mutual Information
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