General Theory of Quantum Measurement (Preskill ch. 3)

How to do it?

We can effectively do non-OM’s in part of Hilbert
space if we can add extra dimensions to X

R-%,0% o R-%,e0,

Direct Sum Implementation

Let gﬁpr & 962 X A ’X;

Alice prepares states Cx€ 9@(
Bob (and/or Alice) makes OM §EA} in 3{, B, = l'V\a\XMA]

Geometric visualization: ( like an over complete )

L

basis in 2D subspace

| 4

Xy
s = WS¢ 5

We can now define effective measurement operators
Fa = B, Ec. EA = IivaXﬂJJ = )\'Alq{axq‘fal
» Plmg) = Tr[Ea 84T = TF[RQaT]

Properties:
* Each Fj is Hermitian & non-negative ® P(m,) >

* Individual F, are not projectors unless r\,\= 1

*%Faz EA% E,Eq = EpNLE, =4, < identity on &,

POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators f&?

such that the F, ‘s are non-negative & % R4




General Theory of Quantum Measurement (Preskill ch. 3)

We can now define effective measurement operators
Fa = BaB, By = LXH[ = A 190X, |
» Pms) = Tr[E,847 = TW[F@a7]

Properties:
* Each F, is Hermitian & non-negative ® P(m,) > p

* Individual F; are not projectors unless A, =1

*%Pa: EA% E, By = EAtLE, = 1, < identity on QFA

POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators fﬁ}

such that the F. ‘s are non-negative & % R4

Example : POVM on Qubit encoded in Qutrit

¥pp (F=1) atomic HF state

%A Unitary Transformation
’-..-.-~~\\ \\\ ~ - g{
R 1A T S
' ~ ~ T
'r:‘-,-‘ — {-.- Us 14>+ 1> —> 10> {rﬂo- ~0- -0—"

. .. St o~
m= -4 o 1 U3 14>+ 15> —> 11> T
Bob measures

Alice prepares in QeA Em= Im¥Xm| & 8f

Choose the map U
®» any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to &,
an orthogonal complement 962'

If N F,s are desired, where n's{)im P
then we need  Lim (Xat9y) 2N

( Preskill 3.1.4)
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Toy Example: One Qubit POVM, illustrates different
capabilities of OM & non-OM POVM’s

Pick 3 unit vectorss.t. 2>_ QJ\A =0, Z_ TIa =1
[ 0

Measurement operators
FQ:QGAM\F\'AX%J » %szﬂ*
For the above & following, note that
(95,2 = Cos(ao’) [ T2+ Sin (0 1iz 5 = = «r—se LT
- > i [~Ln® - l -\ o
1950 = 0os(6e) 1952 +Sin[-60') 157 - ,_qu iuﬁp

Application: Discriminating between

non-orthogonal states

. ny
Alice prepares |15 11.°5
7 Ny
w/equal probability
'3 9o
How can Bob best tell

the difference ?
i o ic ?
OMin § | ">, [J,ﬁ.q)? basis ?

) Bob’s guess
(13,7 Bob gets [T; 7 w/®=1

4.7

Alice sends < !

[Tﬁ.,? W/(P: ’/,_{

[17,>= Bob gets -

-

daow/ P=3 (13D

Note: Bob can never know for sure he received [’L‘ﬁ17
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Application: Discriminating between
non-orthogonal states

Alice prepares |15 11.°5
1) Wy
w/equal probability
') o’
How can Bob best tell

the difference ?
. o -
OMin § | "%,, prf basis ?

; Bob’s guess
(12,7 Bob gets [T; 7 w/®P=1

[’l\ﬁ17

. o N

Alice sends - [ lﬁ17 w/P = /l{

[17, Y= Bob gets

.

oW/ P=3 (13D

Note: Bob can never know for sure he received [1‘&»17

Fidelity of Bob’s guess (Prob. his guess if correct)

o 1 ) =29 o

(@ (b)) () (d) (Quite good)

(a) Asent(T; ?w/P =14, B guesses 12,2 w/P=1 (?:j_)

(b) Asent|q; > w/P=

(c) Given 75> B gets |47,> & guesses [T >w/ P= Yo (4= j_)

(d) Given|T; > B gets ;7 & guesses [T, 7 w/ P= ", (?:%,)




General Theory of Quantum Measurement (Preskill ch. 3)

Instead -
I Ny
Bob does
the POVM

Fa= 2 105 X45,) A

—

-

[z, 7= Bob gets -

.

Alice sends <

—

k[1‘.;,1>-> Bob gets -

C

— -

[4z,7 == Bob knows

Bob gets 1 [J;;,> = Bob knows

[4z,7 =+ Bob doesn’

by
1

A i

-,

nl.
v
-’—.
iy
[$a, 7 w/ P=0

[4z,7 w/P =1y
[4z,7 w/P =1y

[ ” w/ P =1y
[$i,7 w/ P=0
[4z,7 w/P =1y

Alice sent M‘ﬁ?

Alice sent (T 7
1

t know (DK)

Fidelity of Bob’s guess (Prob. his guess if correct)

- | J [
opun™ 5~ L %% (3xL0 825 ) =2 0.9

I (a) I (b) (c)

P(know) P(don’t know)

(a) Asent(T;7or |75, B knows which one w/ Pelly (§F=1)
(b) Asent(T; 7 or |95 >, B DK, correct guess w/ P- il (?}i)
(c) Asent(T; 2or [15>, B DK, wrong guess w/ P=1l, (?:4/9)

Note: If in (c) Bob guesses [4z,> w/ =3/ he
gets a slightly better fidelity of

= v
g;o‘w‘— 'IZ = 0.37S0

However: if Bob sticks with Heralded Success

he will have a subensemble w/ g,;ow = if

Check out R. M. B Clarke et al., “Experimental Realization of
Optimal Detection Strategies for Overcomplete States”. You
can find it on the OPTI 646 website under the “Reading” Tab.

5
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Rewind: how to implement a non-OM ?

% The Postulates of QM tells us we can do OM’s in
a given Hilbert space

% We can effectively do non-OM’s in part of X if

%:%A@QEAL or Qﬁ.—_ %A@%&

|

Look at this option!

Motivation:

s We cannot count on our system to be embedded
in a larger Hilbert space

* A more realistic implementation is to juxtapose
system A with a second system B and doing OM’s
in the resulting tensor product space

Systems 4 &6, - QCAQXB, Cae = Sa®€,

Set of orthogonal E, actingin I, > E,-41
O

Theorem: Given 964'& POVM §r—;3 we can choose
%o, € &an oM §&,] in X=X, 0%, s.t.
Plmy) =Ty 154 (€29 [ = Ta [RG4]

where F, =T, [£,&,7

E,(€,89,) Ea

and Sap~> géelmﬂ\ = o )
MA

Math details

Trasl EA{QA'@?!’.S] = WA[WGI(QA &%g) E'A?Y
=Tf‘é\[ gATrB IQQEAY] = 774 [':a ?n-]
where R, =('7‘3£5,,\ng

Hint: Make frequent use of the Trace invariance
under cyclic permulation.

Also: for any operators X 4 ,Yg, we have
_ !

Tracing over System B leaves a new operator
that acts only on System A, and vice versa!
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Theorem: Given QKA & POVM §f—;} we can choose
Xao, €0 &an oM j&,] in K= €%, s.t.

(P[Ma\ 5‘7;1-\8 Y.EG.(QAQ?Q\] = Trg [Fmgﬁ]

where F, :‘"I?G[Eo‘gs'}

and Ea(€a @9433 Ea

> 0| -
Sho Cag (M) @(M,\)

The F, have the properties of POVM elements:

* Hermiticity:
+
Fo = Tr[ 8,057 =T leF E1] = Th [£,%( = Fy

% Positivity: £,, @, positive (eigenvalues 20) (i)
» €, g, positive, marginal Tr, 1E,Qe ] =F,

% Completeness: D F, =1 (ii)
7]

>%¥a
¢ Dom (£,08E8)

% Non-orthogonality: =#F,'s g

<=

Eigenbasis of &g . There are d of these if

Math Details %a is d-dimensional

— (i) Let o220, Ly, <nl B K =2 0 aplE, i,

R AR 1YY, - %‘0,«(4\4‘“@3‘/'\1) Eaﬁ’/“s&w)«)"o

- TR S gnl ZE W - 4,
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Theorem: Given 9€A & POVM f&} we can choose
X, € &an oM §&,] in X=¥,0%, s.t.
(P[Ma\ 5‘7:&6 YEG.(Q‘L\@?Q\] = Trq [Fmgﬁ]

where F, =We[Eo\§31

Eﬁ ( g(-\ @QQB EA
Plm, )

and  Gaa> Qualmy) =

The F, have the properties of POVM elements:

* Hermiticity:
+
Fo = Tr[ 8,057 =T leF E1] = Th [£,%( = Fy

% Positivity: £,, @, positive (eigenvalues 20) (i)
» E,q, positive, marginal Tr, 1E,Qe ] =F,

% Completeness: D F, =1 (ii)
7]

>%¥a
¢ Dom (£,08E8)

% Non-orthogonality: =#F,'s {

How to do it?

System Meter

ST oy 1

. 2%

(00748 101D, 1027

= has TP basis
=X,8%q [10%g 1404 11154

L start meter in o>,

The interaction drives a unitary map, for example

where the c-numbers
a;,b; are chosen to
ensure orthonormality

2
10024 = 2-0;16%15>5
5

2
110500 = 2.b; 119413

9 =9

Measuring the meter ® 3 possible outcomes §=0,1, 2

Note: Here we are arguing only that there exist a unitary map
such that the POVM criteria are fulfilled. With a bit of practice
it is not too hard to guess one. The problem is closely related
to that of finding/guessing the Unitary representation for
for the Depolarizing Channel on operator form, see below.



Theorem: Given 9€A & POVM gf-}.] we can choose
X, € &an oM §&,] in X=¥,0%, s.t.
(P[Ma\ '-'*ng YEG.(Q‘L\@?B\] = Trq [Fmgﬁ]
where F, :W?G[Eo‘gs'}

ond - Gae> Gigtm - SEOLES
MA

The F, have the properties of POVM elements:
* Hermiticity:
+ + -
Fo = Tra[8.€07" = Trplgg B ] = %CE*?QZ =k

% Positivity: £,, @, positive (eigenvalues 20) (i)

» E,q, positive, marginal Tr, 1E,Qe ] =F,

% Completeness: D F, =1 (ii)
7]

> %
% Non-orthogonality: =#F,'s { {‘
¢ Dum (X2 8E0)
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How to do it?

System Meter
HS-M
< 5 [0>g 11 >,3 lz>3

(00748 101D, 1027

(1024 114048  1M1D4a

X - %A&‘XB has TP basis

L— start meter in o>,
The interaction drives a unitary map, for example
2
[00>AB - ’_?T_"GJ 161575 where the c-numbers
T

a;,b; are chosen to

2
[1054p — ,ZjobJIDA’:\)s ensure orthonormality
5=

How to do it: Let the unitary map be of the form
Jooy > @, oo +Q, (o> +Q, |02 .
an
[oY~ b, 10>+, 114> +8,[197
LHS, all states remain orthogonal \/
a.

§
= — [
24,2,% ~ Prm, 3=1 s —
PiCk, e.g 4=, l$ \’:?: » ( njé lz‘l5> 2
[
2

18,1410, 126 14,1 = £
18,1 [ B\t 18,12= 1

(normalization)

Even weight
of outcomes

9

z@»{] R @[m&:):m,:s) z
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Example #1: Coupling to an Environment
(Lecture 10-04-23)

(2) <=y

System Coupling

Environment/Reservoir

% System + Environment evolves unitarily, become
entangled ®» the system on its own evolves
non-unitarily

% Reasonable assumptions about the environment

“Master Equation” for &

* The Liouvillian &
accounts for relaxation and decoherence

Example #2: Coupling to a Meter

(Lecture 10-04-2023)

Meter
(Pointer)

Evolution, interrupted by random Quantum

l Stochastic Schrodinger equation with unitary
Jumps when measurements occur

Operator-Sum representation

Our starting point: of non-Unitary evolution

Let ©=¢, ® [0)g,<0l w/unitary evolution U,q
© ® Usg (€48 0>, 440! ) U;a
Reduced density operator for system A in basis fI/OB]

Oa = Ty [ Upg (€,8165,,¢01) g ]

= ; ,§</mlujmlo>£3 €a 001 Y4 |4,

L~ operator /L, actingon &5
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Example #2: Coupling to a Meter

(Lecture 10-18-2022)

interaction
¢ >

» Stochastic Schrodinger equation with unitary

Meter
(Pointer)

Evolution, interrupted by random Quantum
Jumps when measurements occur

Operator-Sum representation

Our starting point: of non-Unitary evolution

Let Q= ¢, & [0)g,<0l w/unitary evolution U,q
© ® Ung (948 100 <01 ) Vas
Reduced density operator for system A in basis {l/oe]
Qa = Ty [Upg (.8 165, ¢o1) Ugg

- ; a$mlUagl0%; €4 401 Vs YA

L~ operator VL, acting on €5

We can now write

Sa=$(Ca) = Z M., 00,

Furthermore, since U,¢ is unitary, the IV;,,'S have
the property

% M;M/A - %8@1 UMI/A)88</A! UABIOSB

= B<O[UA‘5 UAG]O>B = ﬂ,A

We conclude:

& defines a Linear Map

$: Linear Operator =+ Linear Operator

If ZM; n, = 1, then & is a SuperOperator
”

is the Operator-Sum or
Krauss representation of &

and $(g,) - %-’VL,MQM};'
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We can now write Note: & maps density operators to density operators
because
! = = + . ere -+
QA $(ga) %M/AQAM/M * 9;, is Hermitian: 9;4' = %M/A €a M; = g,;

% G, hasunittrace: Trgp = ;T’TQAM;M/J |

Furthermore, since U,¢ is unitary, the NL,'S have [
the property * 4 is positive:

{ = +
% A/L/'fm ® D 2 <01 VagLi), ;< Ung 105 A<HlGa 1Y, ; (a8 ) G (21} m%) 20
M

+ - ot a4
= 3<0|Usg Vag 1005 = g Used .(ABft) =C'e"A arld .
Trace invariance under cyclic permutation

We conclude: . .
Theorem: Given some § with an operator-sum

representation, we can choose 963 and find the
corresponding unitary Vra in %A ® &B

& defines a Linear Map

$: Linear Operator =+ Linear Operator

If ZM; MM = 4, then & is a SuperOperator
Iz

is the Operator-Sum or
Krauss representation of §

and 4(g,) = %M/A‘?A”};
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Note: & maps density operators to density operators Note:

because ] . .
% Superoperators provide a formalism to describe

% Q. is Hermitian: ot = ZM/M g: Mmr = e, decoherence, i. e., maps from pure to mixed states

% Unitary evolution is a special case with only one

W'-j
. has unittrace: Tre, =2 * | ) .
* Sa unt " <Sa ; VE?AM/" !V&"j term in the operator-sum expansion

% Sa has unit trace: %« Two or more terms = initial pure states éy

A<y lgA( IS = 5 (Aé%lMMB?A(M; HD) 50 become entangled w/states 69€ due to UAQ
M -» mixed final state @d

Used (aBc)t =ce*A* and

. . . . % Superoperators can be concatenated to form
Trace invariance under cyclic permutation

new ones, ¢- &8,

Theorem: Given some § with an operator-sum
representation, we can choose 968 and find the

corresponding unitary v, in %, ® &, Theorem: If (&)™ (¢) =4 then & must
necessarily be unitary

Non-unitary evolution cannot be reversed
-=> “arrow of time”
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Note: We summarize:
% Superoperators provide a formalism to describe A mapping g: © —»gf where 91?' are density
decoherence, i. e., maps from pure to mixed states operators, is a mapping of operators to operators
that satisfy

% Unitary evolution is a special case with only one
in the operator-sum expansion

(0) & isLinear

become entangled w/states 5—96’ due to UAe
- mixed final state @, (2) & is Trace preserving
% Superoperators can be concatenated to form (3) & is completely positive,

new ones, $= 488, $ﬁ@ ﬂg positive in 2‘8% forall 4,

Krauss Representation Theorem

Theorem: If (4)~'(¢) =4 then & must

necessarily be unitary Any & satisfying (0) — (3) has an
Operator-Sum Representation

Non-unitary evolution cannot be reversed
=> ‘“arrow of time”
See Preskill, Ch. 3.2 for more on
Superoperator formalism
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Measurement as a Superoperator:

(NOT COVERED IN CLASS)

Von Neumann: Entangle System A with Meter B
(1)

Uag ¢ 195, (0>, = ;M/"M»AI/OB

Orthogonal measurement on B in “pointer basis” 1;/\>3
yields outcome M and tells us the meter is in )//«>(3 .

M Ppal Pl

If no access to the measurement outcome then
' +
Cp>Cy = %P[/“SQ: = % Ny Qatlyy = & (ca)
t

Superoperator

Most general measurement: POVM fl-;J on 94

This projects out a state  [y,) ¢y, [ =
with probability Pln) =A<4>1_M;M,u (D2

Generally &4 is mixed

g

.f.
M 2
Meas. on B projects out 9;‘ = = [/:’fa (1:]
L Mn g Mo

with probability  P(u)= Wﬁ[M:,MM@ﬂ':( =Tr, [EM 2,1

This is a POVM with elements -
2

= nF - + _
EA‘MMMM) % '/:A _§MMMM - ﬂA

Plm) = WalEugp 'l

€é=;\l};§a\f§n

In this case we have {

Note that ¥, Hermitian — S_ET,‘ Hermitian

Follows from the operator sum

%‘ P 4, Normalization condition (2) above

M

Compare w/ (1) above to see this POVM has the
unitary representation

Un ¢ | @405 = ;Jf;i 10>, 1 dg
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If no access to the measurement outcome then
' +
CQp>Cy = %P[/“B?: = % Ny Qo = & (0a)
t

Superoperator

Most general measurement: POVM fl;} on Q4

Plm) = TalFuga'l

el\':;\ﬁ:;gf\ﬁ

In this case we have {

Note that F, Hermitian — {£, Hermitian

Follows from the operator sum

% Fa *4s  Normalization condition (2) above

Compare w/ (1) above to see this POVM has the
unitary representation

Un ¢ | @405 = ;JT—;; 10, L dg

Summary:

% The discussion so far highlights the relationship
between measurement and decoherence. We
can always view the latter as the environment
Doing a measurement and extracting information
that we cannot retrieve. The loss of information
causes an initial pure state to evolve into a
statistical mixture, which is the definition of
decoherence

% Sometimes we can “guess” what kind of
“measurements” the environment implements.
This is useful in the modeling of decohering
“Quantum Channels”

% The example that follows is based on the first of
four examples of decohering quantum channels
given in Preskills notes. These will be particularly
Relevant for those of you working in the area of
Quantum communication over quantum photonic
Networks.
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Example: Depolarizing Channel

Probability of error =41, 3 types, equal probability

oo 0>~ 4>
@sitfip U0 B =G0, o)
10> o> 10
() Phaseflip | OB b, 63’(0-';)

o> >il1>

(3) Both L1>--il0) PR, G ’(Di ﬂo‘ )

Channel is a unitary

Unitary Representation:
Y nep map on A&

One choice (not unique, can always find one)

Un 2 10107 = Ji-ge [%lo

+ [T 02 1,100, ¢ 106+ 52 1%, 518,

Note:

The 4 orthogonal states in %E keep records of what

happened. If available through measurement in %e

the errors would in principle be reversible. We must
have Dim QEE >4 to allow 4 distinct evolutions

On Operator Form: we have

Upg = Tmgn e [T 871005 g ol tnst 125,601 #6133, <O

B Q&l :Tre[UAE C?A[")ee(o 1) UAEY

- A +
% e Ml e (0% 8 e <olUse [0 % Ny G,
AL n

From this we find Kraus operators

- - 4 -t -
MO‘W’IIM Mi‘ﬁ;%—? >'AA1'J;V2_A)M3'@Q—§

Check (c?=1): Zm}mﬂ = (1-p+3§.)ﬂ =4
M

From earlier:

Qs - ; e 1Ung 103, €4 4401 U L3

L~ operator VL, actingon 5
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Evolution of the Qubit:

Sa=> €h = (1-0)9,¢§ (57 €a 0400 6,65 + T} 2,54 )

Bloch Sphere representation:

3 (‘') component of

Bloch vector
vl the Bloch vector

Let: G, = (‘zltuﬁ'if) =3 (a+ 93“3\(1)
L— Choose 53 along P - (0,0,%)

. . I
Sub in expression for €, above and use

03§, = M6, = ~Tg  §36530; = G

-

Sa—>Cat = (1=t dgz(wa‘gﬁ\‘\t) +“;_?ﬁv>.+“_igﬂql>

Can show that ( Math details )

= (-0 + BT [ la-n6 )+ (1- 65, L (185 ]

=gl (- PlesT - s(aenn) > K=[1-4)R

—_-—

P = (4’5511) P

I

Uniform shrinking Bloch Sphere

By symmetry of (1) we have

Continuous limit:

M=Tdd = Pyli+dt) = (1-4rd+) PL)

4/
e'{“"'L

|

Bloch Sphere shrinking at constant rate

- i/,
PlE) = Plo) &8 g

This turns out to be identical to the
Master Equation result

Other Examples:

% Phase Damping ( Bloch sphere shrinks along x, y )

% Amplitude Damping ( Bloch sphere shrinks along z)



