EPR and Bell Inequalities (Preskill ch. 4.1)

Clauser-Horne-Shimony-Holt (C.H.S.H.) Inequality

(Different version of Bell's inequality)

Alice: 2 settings
$$\Rightarrow$$
 measure
$$\begin{cases} A & w/outcome \pm 1 \\ A & w/outcome \pm 1 \end{cases}$$

Bob: 2 settings
$$\Rightarrow$$
 measure
$$\begin{cases} & \frac{w}{\text{outcome}} \pm 1 \\ & \frac{w}{\text{outcome}} \pm 1 \end{cases}$$

Note:
$$a_1 a^1 = \pm 1$$
 \Rightarrow
$$\begin{cases} a+a^1 = 0 & a-a^1 = \pm 1 \\ a-a^1 = 0 & a+a^1 = \pm 2 \end{cases}$$

Combine w/b,
$$b^c = \pm 1$$
 \Rightarrow

$$C = (a + a^c)b + (a - a^c)b^c = \pm 2$$

HV assumption: Values ± 1 can be assigned simultaneously to all 4 observables $\alpha_i \alpha_i^{\prime} \beta_i \beta^{\prime}$

It follows that $|\langle c \rangle| \le \langle |c| \rangle = 2$

(C.H.S.H. inequality)

Quantum
$$\alpha = \sigma^{(A)} \cdot \vec{\alpha}$$
 $\beta = \sigma^{(B)} \cdot \vec{\beta}$ Mechanics $\alpha' = \sigma^{(A)} \cdot \vec{\alpha}'$ $\beta' = \sigma^{(B)} \cdot \vec{\delta}'$

$$\begin{cases} \langle ab \rangle = \langle a'b \rangle = \langle ab' \rangle = -\cos\theta = -\frac{1}{\sqrt{2}} \\ \langle a'b' \rangle = -\cos(\theta + \frac{1}{2}) = \frac{1}{\sqrt{2}} \end{cases}$$
For $\theta = 45^{\circ}$ (max violation)

$$|\langle ab \rangle + \langle a'b \rangle + \langle ab' \rangle - \langle a'b' \rangle| = \frac{4}{\sqrt{2}} = 2\sqrt{2} > 2$$

End 10-09-2023

EPR and Bell Inequalities (Preskill ch. 4.1)

It follows that $|\langle c \rangle| \le \langle |c| \rangle = 2 \Rightarrow$

(C.H.S.H. inequality)

Quantum **Mechanics**

$$a = \sigma^{(a)} \cdot \vec{a}$$

$$\alpha = \sigma^{(A)} \cdot \vec{\alpha}$$
 $\beta = \sigma^{(B)} \cdot \vec{\beta}$
 $\alpha' = \sigma^{(A)} \cdot \vec{\alpha}'$ $\beta' = \sigma^{(B)} \cdot \vec{\beta}'$

$$\begin{cases} \langle ab \rangle = \langle a'b \rangle = \langle ab' \rangle = -\cos\theta = -\frac{1}{\sqrt{2}} \\ \langle a'b' \rangle = -\cos(\theta + \frac{1}{2}) = \frac{1}{\sqrt{2}} \end{cases}$$
For $\theta = 45^{\circ}$

- violates C.H.S.H. inequality

Laboratory Experiment (Aspect, many others)

End 10-09-2023

The Bayesian Update Rule

Consider two stochastic variables A and B. The joint, conditional, and univariate probabilities are related as follows:

$$P(A,B)=P(A|B)P(B)$$
 $P(A,B)=P(B|A)P(A)$
 $P(A|B)=\frac{P(B|A)P(A)}{P(B)}$

Thus, with knowledge of P(A) and P(B) we can update our prior knowledge P(B|A) when new information, P(A|B), becomes available.

There are subtleties when working with a mix of probability densitity funticons (pfd's) and discrete data points. Let

★ : continuous variable with pdf
 ★ (<)
</p>

B: random discret data point

か(Bid): likelihood function

The Bayesian Update Rule generalizes like this:

$$p(\alpha|B)d\alpha = \frac{p(B|\alpha)p(\alpha)d\alpha}{P(B)}$$

where
$$P(B) = \int_{-\infty}^{\infty} \gamma(B[\alpha] \gamma(\alpha) d\alpha$$
 is a number.

Therefore, to within a normalization factor,

$$p(x|B) \propto p(B|\alpha) p(\alpha)$$

See https://math.mit.edu/~dav/05.dir/clss13-slidesall.pdf Page 17

The Bayesian Update Rule generalizes like this:

$$p(\alpha|B)d\alpha = \frac{p(B|\alpha)p(\alpha)d\alpha}{P(B)}$$

where
$$P(B) = \int_{-\infty}^{\infty} \gamma(B[\alpha] \gamma(\alpha) d\alpha$$
 is a number.

Therefore, to within a normalization factor,

$$p(x|B) \propto p(B|\alpha) p(\alpha)$$

See https://math.mit.edu/~dav/05.dir/clss13-slidesall.pdf Page 17

Bayesian Update of Classical Information

Consider a classical particle located somewhere on the \propto -axis. The Bayesian interpretation holds that a probability distribution quantifies prior knowledge, in this example about the position of the particle.

Let $\gamma \nu(\propto)$ be the probability density for finding the particle at position \propto . We assume this pdf is a Gaussian centered at $\propto = 0$.

$$p(\alpha) = \frac{1}{\sqrt{2\pi\sigma_{\alpha}^{2}}} e^{-\alpha^{2}/2\sigma_{\alpha}^{2}}$$

Next, we measure the position of the particle without disturbing it. The measurement has finite resolution, i. e., there is a change of observing the particle at \mathcal{B} even if the actual position is α . This resolution is quantified by the likelihood Function $\mathcal{M}(\mathcal{B}[\alpha])$

Bayesian Update of Classical Information

Consider a classical particle located somewhere on the $normalfont{1}{n} - axis$. The Bayesian interpretation holds that a probability distribution quantifies prior knowledge, in this example about the position of the particle.

Let $\gamma \iota(x)$ be the probability density for finding the particle at position α . We assume this pdf is a Gaussian centered at $\alpha = 0$.

$$p(\alpha) = \frac{1}{\sqrt{2\pi\sigma_{\alpha}^{2}}} e^{-\alpha^{2}/2\sigma_{\alpha}^{2}}$$

Next, we measure the position of the particle without disturbing it. The measurement has finite resolution, i. e., there is a change of observing the particle at β even if the actual position is α . This resolution is quantified by the likelihood Function $\gamma(\beta|\alpha)$

Bayesian Update of Classical Information, cont.

Let $\gamma(B[d])$ be a Gaussian,

$$P(B|\alpha) = \frac{1}{\sqrt{2\pi\sigma_{B}^{2}}} e^{-B^{2}/2\sigma_{B}^{2}}$$

Post-measurement, we can use Bayes Rule to update our knowledge of the position of the particle given that we observed **B**:

The product of two Gaussians is a Gaussian, and therefore G_{pm} is also a Gaussian.

Furthermore, there are exact expressions for the means and σ 's of the products, see, e. g.

http://www.lucamartino.altervista.org/2003-003.pdf

Bayesian Update of Classical Information, cont.

Let n(B[d]) be a Gaussian,

$$P(B|\alpha) = \frac{1}{\sqrt{2\pi\sigma_{B}^{2}}} e^{-B^{2}/2\sigma_{B}^{2}}$$

Post-measurement, we can use Bayes Rule to update our knowledge of the position of the particle given that we observed **B**:

The product of two Gaussians is a Gaussian, and therefore G_{pm} is also a Gaussian.

Furthermore, there are exact expressions for the means and σ 's of the products, see, e. g.

http://www.lucamartino.altervista.org/2003-003.pdf

Physical Interpretation, **Sharp Measurement**

Now let $\sigma_{B|\alpha} << \sigma_{\alpha}$. Then G_1 is ~ constant over the range where $G_2 \neq 0$. In that case the pdf's will look like this:

$$p(\alpha|\beta) \approx \frac{1}{\sqrt{2\pi\sigma_{B}^{2}}} e^{-\alpha^{2}/2\sigma_{B|\alpha}^{2}}$$

Here we learn a lot from the measurement, and this leads to a large update of our Prior. In this example there will be a large change in the mean and uncertainty that we assign post-measurement. The resulting pdf looks much more like the resolution function than the pdf for the original Gaussian $\chi_{\nu}(x)$.

Physical Interpretation, Sharp Measurement

Now let $\sigma_{B|\alpha} << \sigma_{\alpha}$. Then G_1 is \sim constant over the range where $G_2 \neq 0$. In that case the pdf's will look like this:

$$p(\alpha|B) \approx \frac{1}{\sqrt{2\pi\sigma_{B}^{2}}} e^{-\alpha^{2}/2\sigma_{B}^{2}}$$

Here we learn a lot from the measurement, and this leads to a large update of our Prior. In this example there will be a large change in the mean and uncertainty that we assign post-measurement. The resulting pdf looks much more like the resolution function than the pdf for the original Gaussian $\chi_{\nu}(x)$.

Physical Interpretation, <u>Unsharp Measurement</u>

Now let $\sigma_{B|\alpha} \approx \sigma_{\alpha}$. Then G_1 and G_2 are very similar and the pdf's will look like this:

$$p(\alpha|B) \approx \frac{1}{\sqrt{2\pi\sigma_{g}^{2}}} e^{-\alpha^{2}/2\sigma_{B|\alpha}^{2}}$$

$$\approx p(\alpha)$$

$$p(\alpha|B) \approx \frac{1}{\sqrt{2\pi\sigma_{g}^{2}}} e^{-\alpha^{2}/2\sigma_{B|\alpha}^{2}}$$

$$p(\alpha|B) \approx \frac{1}{\sqrt{2\pi\sigma_{g}^{2}}} e^{-\alpha^{2}/2\sigma_{B|\alpha}^{2}}$$

Here we learn little from the measurement and this leads to at most a minor update of our Prior. In this example there will be at most a modest change in the mean and uncertainty that we assign post-measurement. The result looks like a slightly shifted and broadened version of the original.

Von Neumann's Theory of Measurement

System Observable M

Pointer observable

(position x of a free particle)

Hamiltonian for the coupled System and Meter

$$H = H_0 + \frac{1}{2m}P^2 + \lambda MP$$
system free particle interaction

System-Meter interaction correlates *M* and *x*

Measure x → indirect measurement of M

Standard Quantum Limit (example)

Heisenberg:
$$\triangle \times \triangle p = \frac{R}{2} \implies \triangle \times (4)^2 \sim \triangle \times (6)^2 + \left(\frac{\hbar + 4}{2m \triangle \times (6)}\right)^2$$

Interaction time $t \Rightarrow \Delta x(t) \geq \Delta x_{SQL} \sim \sqrt{\frac{ht}{m}}$

Heavy pointer, Strong interaction

Note: P is the generator of translations along x

Time evolution $U(t) = e^{-i\lambda t MP/R}$

translation along $x \propto m_a$

Projective

Non - Projective

Von Neumann's Theory of Measurement

System Observable M

Pointer observable

(position X of a free particle)

Hamiltonian for the coupled System and Meter

$$H = H_0 + \frac{1}{2m}P^2 + \lambda MP$$
system free particle interaction

System-Meter interaction correlates *M* and *x*

 \Rightarrow Measure $x \Rightarrow$ indirect measurement of M

Standard Quantum Limit (example)

Heisenberg:
$$\triangle \times \triangle p = \frac{R}{2} \Rightarrow \triangle \times (4)^2 \sim \triangle \times (6)^2 + \left(\frac{\hbar + 2}{2M \cdot \triangle \times (6)}\right)^2$$

Interaction time $t \Rightarrow \Delta x(t) \geq \Delta x_{SQL} \sim \sqrt{\frac{ht}{m}}$

Heavy pointer, Strong interaction

Note: P is the generator of translations along x

Time evolution $U(t) = e^{-i\lambda t MP/R}$

translation along $x \propto m_a$

Projective

Non - Projective

Orthogonal Measurement (OM)

Consider a set of measurements { E_A } such that

$$E_{\alpha} = E_{\alpha}^{\dagger}$$
 $E_{\alpha}E_{\alpha} = \delta_{\alpha\alpha}$ E_{α} $\sum_{\alpha} E_{\alpha} = 1$

orthogonal projectors complete set

We can associate such a set with any observable

$$M = \sum_{\alpha} m_{\alpha} E_{\alpha}$$

This allows us to restate the measurement postulates:

An Orthogonal Measurement of an observable M is described by a collection of operators $\{E_{\alpha}\}$,

$$E_a = E_a^{\dagger}$$
 $E_a E_{ai} = \delta_{aa}$, E_a $\sum_{\alpha} E_{\alpha} = 1$

The outcome M_{Old} occurs w/prob. $\mathcal{P}(m_a) = \langle \psi | E_a | \psi \rangle$ the state collapses as $|\psi\rangle \Rightarrow E_a |\psi\rangle / \sqrt{\mathcal{P}(m_a)}$

Mixed state: $P(m_{\alpha}) = Tr[E_{\alpha}g], g \Rightarrow E_{\alpha}gE_{\alpha}/P(m_{\alpha})$

 M_{O_1} degenerate: E_{O_2} projects onto subspace

Can we generalize to a broader class? - Yes!

Consider:

$$\geq_{\alpha} E_{\alpha} = 1$$
 is required $E_{\alpha} E_{\alpha'} = \delta_{\alpha \alpha'} E_{\alpha}$ can be relaxed (completeness) (orthogonality)

Concept of non-orthogonal measurements (POVMs)

POVM = Positive Operator Valued Measure

How to do it?

We can effectively do non-OM's in part of Hilbert space if we can add extra dimensions to $\mathcal X$:

$$\mathcal{X} = \mathcal{H}_A \oplus \mathcal{H}_A^{\perp}$$
 or $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

Direct Sum Implementation

Alice prepares states $S_A \in \mathcal{X}_A$

Bob (and/or Alice) makes OM $\{E_a\}$ in \mathcal{H} , $E_a = |u_a \times u_a|$

Geometric visualization:

like an over complete basis in 2D subspace

Bob's OM has 3 outcomes M_{α} w/projectors $E_{\alpha} \in \mathcal{X}$

If Alice only prepares states $\mathcal{L}_A \in \mathcal{L}_A$ then

Bob's OM has 3 outcomes M_{α} w/projectors $E_{\alpha} \in \mathcal{X}$

If Alice only prepares states $\mathcal{L}_A \in \mathcal{L}_A$ then

$$P[M_{A}] = Tr [g_{A}E_{A}] = Tr [E_{A}g_{A}E_{A}E_{A}]$$

$$= Tr [g_{A}E_{A}E_{A}] = Tr [g_{A}F_{A}]$$

$$= A \qquad \qquad \text{norm} \leq 1$$

$$= A \qquad \qquad \text{norm} \leq 1$$

$$= A \qquad A \qquad \qquad \text{normalized}$$
number ≤ 1

We can now define <u>effective</u> measurement operators

$$F_A = E_A E_A E_A = |\widetilde{Y}_a \times \widetilde{Y}_a| = \lambda_a |Y_a \times Y_a|$$

$$\Rightarrow P(m_a) = Tr[E_a Q_A] = Tr[F_A Q_A]$$

Properties:

- * Each \vdash_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \ge 0$
- * Individual F_A are not projectors unless $\lambda_{a} = 1$
- * $\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} + E_{A} + E_{A} = 1$ identity on \mathcal{X}_{A}

Geometric visualization: (like an over complete basis in 2D subspace)

POVM: Positive Operator Valued Measure

A set of non-orthogonal meas. Operators $\{F_{\alpha}\}$ such that the F_{α} 's are non-negative & $\sum_{\alpha} F_{\alpha} = 1$