EPR and Bell Inequalities (preskill ch. 4.1)

Clauser-Horne-Shimony-Holt
(C.H.S.H.) Inequality

(Different version of Bell’s inequality)
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It follows that [{c>| ¢ {Ic]|> =2 »

[<aBS+{a B+ by ~<a'brs] € 2

(C.H.S.H. inequality)

a=0@ 5  pHa=g®.h
o :Q—CA\.]}:( ,(,fgﬁ-(m.@’f

Quantum
Mechanics

N {<a6>- dA'BY 240 >= — 030 = - L

\F}
L0'8S = ~cos(6+T) =5 ~ /
For &=48°
-7 (max violation)

[Kad> +¢a' D +{08> -<ollry] = %—: 907 S L

- violates C.H.S.H. inequality

Laboratory Experiment (Aspect,

many others)

A A
\
N
' PBS @ PBS '
Alice Bob
s
-
] !
™~
, CRCTL
polarizer \ =
settings ? 0

End 10-09-2023

2






Begin 10-11-2023

The Bayesian Update Rule

Consider two stochastic variables A and £ . The
joint, conditional, and univariate probabilities are
related as follows:

P(A,B)=P(AIB)P(B)
P(A,8)=P(BlA)P(A)

P(B)

Thus, with knowledge of P (A) and P(2] we can
update our prior knowledge P(21A) when new

information, P(AlR), becomes available.

There are subtleties when working with a mix
of probability densitity funticons (pfd’s) and discrete
data points. Let

ol : continuous variable with pdf /KLKO()
$ : random discret data point

A BIKY : likelihood function

Bayes rule and the updating of probabilities

The Bayesian Update Rule generalizes like this:

Ax1e)oda = A L8l lec) A
P(B?

where P(B)= f A8 )/{ft(pﬂdocisanumber.

Therefore, to within a normalization factor,

PRIB) ec qulBla) )

See https://math.mit.edu/~dav/05.dir/clss13-slidesall.pdf Page 17
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Bayes rule and the updating of probabilities

Bayesian Update of Classical Information

Consider a classical particle located somewhere
on the X - axis. The Bayesian interpretation holds
that a probability distribution quantifies prior
knowledge, in this example about the position of
the particle.

Let /(v(_o() be the probability density for finding the
particle at position & . We assume this pdf is a
Gaussian centered at X =o.

A ()
1 !
( > o<
I

T
O

Next, we measure the position of the particle
without disturbing it. The measurement has finite
resolution, i. e., there is a change of observing

the particle at > even if the actual position is X .
This resolution is quantified by the likelihood
Function /. (5[d)
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Function /(o)

Bayes rule and the updating of probabilities

Bayesian Update of Classical Information, cont.

Let ) (BIA) be a Gaussian,

MBI
p(Bx‘X\ .___L e ‘82/20’39\

| ' >
X

Post-measurement, we can use Bayes Rule
to update our knowledge of the position of
the particle given that we observed > :

UK B) o Blx) ()
1
Gpm Gl GZ

The product of two Gaussians is a Gaussian,
and therefore G, is also a Gaussian.

Furthermore, there are exact expressions for
the means and G’s of the products, see, e. g.

http://www.lucamartino.altervista.org/2003-003.pdf



Bayes rule and the updating of probabilities

Bayesian Update of Classical Information, cont. Physical Interpretation, Sharp Measurement

Let ) (BIA) be a Gaussian,
MBI Now let Gy << G,. Then G; is ~ constant

over the range where G, # 0. In that case the

e -82/2%9\ : pdf’s will look like this:
P(Blx) =
era . A &IB)

| X >
/@Lo{[&)" °‘/2 T 1
Post-measurement, we can use Bayes Rule
to update our knowledge of the position of > X
the particle given that we observed > :
1B L BI) /K‘(D(] Here we learn a lot from the measurement,
T T T and this leads to a large update of our Prior.
In this example there will be a large change
Gpm G, in the mean and uncertainty that we assign
post-measurement. The resulting pdf looks
The product of two Gaussians is a Gaussian, much more like the resolution function than
and therefore G, is also a Gaussian. the pdf for the original Gaussian ’X"(-‘X) .

Furthermore, there are exact expressions for
the means and G’s of the products, see, e. g.

http://www.lucamartino.altervista.org/2003-003.pdf




Bayes rule and the updating of probabilities

Physical Interpretation, Sharp Measurement

Physical Interpretation, Unsharp Measurement

Now let Gp << G,. Then G; is ~ constant
over the range where G, # 0. In that case the
pdf’s will look like this:

/p[«[&)

OCA Blcx

/pto([?;)“

rrt

Now let Gp, = O,. Then G,and G,are very
similar and the pdf’s will look like this:

ARIB), A ()

PRI T e VaT, m‘“
ek

o /(»Lo() B ™

O‘-——-

Here we learn a lot from the measurement,
and this leads to a large update of our Prior.
In this example there will be a large change
in the mean and uncertainty that we assign
post-measurement. The resulting pdf looks
much more like the resolution function than
the pdf for the original Gaussian /wa) .

Here we learn little from the measurement
and this leads to at most a minor update of
our Prior. In this example there will be at most
a modest change in the mean and uncertainty
that we assign post-measurement. The result
looks like a slightly shifted and broadened
version of the original.







General Theory of Quantum Measurement (Preskill ch. 3)

Von Neumann’s Theory of Measurement

interaction
< >

System Observable VI

Meter
(Pointer)

Pointer observable

(position x of a free particle)

Hamiltonian for the coupled System and Meter

H=H,+—p-t AmP
p 0 D.WIt N

system ] interaction
y free particle

System-Meter interaction correlates M and x
® Measure x = indirect measurement of VI

Heavy pointer,
Strong interaction

H=AmpP

Note: P is the generator of translations along x

~AEMP,
®» Timeevolution U#)=¢ /8

If then
M=> m, laXa UlL) =D \aXa) e EMalp
o a

D) S a5 10> @ 141> = > &, 185 @ |4 (x - MWy
(L} [/ _

I

Standard Quantum Limit (example)

' 1
Heisenberg: Axap =% B AX(O ~ axi)E4 (2:2« ))
' o

Interaction time £ ®» Ax(4) > AxgaL«/{’?&t
m

translation along x o< m,

— -

Projective Non - Projective

[y (x-pem;312

JUUL

g (x-pem )1

.y m}x

1 T } t }
Abm - Mm, xEmg AEM Atm,  Mtmy

10




General Theory of Quantum Measurement (Preskill ch. 3)

Von Neumann’s Theory of Measurement

interaction
< >

System Observable VI

Meter
(Pointer)

Pointer observable

(position X of a free particle)

Hamiltonian for the coupled System and Meter

H=H,+—p-t AmP
p 0 D.WIt N

system ] interaction
y free particle

System-Meter interaction correlates M and x
® Measure x = indirect measurement of VI

Heavy pointer,
Strong interaction

H=AmpP

Note: P is the generator of translations along x

~AEMP,
®» Timeevolution U#)=¢ /8

If then
M=> m, laXa UlL) =D \aXa) e EMalp
o a

D) S a5 10> @ 141> = > &, 185 @ |4 (x - MWy
(L} [/ _

I

Standard Quantum Limit (example)

' 1
Heisenberg: Axap =% B AX(O ~ axi)E4 (2:2« ))
' o

Interaction time £ ®» Ax(4) > AxgaL«/{’?&t
m

translation along x o< m,

— -

Projective Non - Projective

[y (x-pem;312

JUUL

g (x-pem )1

.y m}x

1 T } t }
Abm - Mm, xEmg AEM Atm,  Mtmy

11




General Theory of Quantum Measurement (Preskill ch. 3)

12



General Theory of Quantum Measurement (Preskill ch. 3)

Orthogonal Measurement (OM)

Consider a set of measurements SE,,} such that

- £t — -
Em - Ea EA E'a' ""Saa' B, > Ea, =4
. 2 4
orthogonal projectors complete set

We can associate such a
M= m. E
set with any observable % & =0

This allows us to restate the measurement postulates:

An Orthogonal Measurement of an observable /| is
described by a collection of operators Zc qu )

-~ =t
En= & EuBa :_‘5%' E, % Bp=4

The outcome M, occurs w/prob. P(m,)= <[ E, |%>
» the state collapses as  [%> 5,14 >/\Pima

Plm,) =F77[Ea?:(, ©= ExQE, [®Plmy)

M, degenerate: Eal projects onto subspace

Mixed state:

Can we generalize to a broader class? - Yes!

Consider:

% En =1 isrequired  E,E, =9,, E, can be relaxed

(orthogonality)

—~

(completeness)

Concept of non-orthogonal measurements (POVMs)

POVM = Positive Operator Valued Measure
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General Theory of Quantum Measurement (Preskill ch. 3)

How to do it?

We can effectively do non-OM'’s in part of Hilbert
space if we can add extra dimensions to X

%:%A@Qfé or Qﬁsng@gfg

Direct Sum Implementation

. Pid
Let %A@%A @ ¥

Alice prepares states Sp€ gfpr
Bob (and/or Alice) makes OM §E,,\} in 3{ , B, = [MAXM,\]

a

Geometric visualization: ( like an over complete )

L

basis in 2D subspace

.

s = Qs> (-

Bob’s OM has 3 outcomes m, w/projectors E,€ ¥

If Alice only prepares states @, € QCA then

[~ norm <1
O N NPRNERS AT-NL

= >\a<t['g_lg;\h\['q>
number <1 —— t—— normalized
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General Theory of Quantum Measurement (Preskill ch. 3)

Bob’s OM has 3 outcomes m, w/projectors E,¢€ ¥

If Alice only prepares states @, € QeA then

Plmy) = Tr [9&\5&] = 'l\r[EﬂQA EHEOJ
- 1y EaBrB, T = T [QaFy]

Fa i._ norm £1
=Ly, 1@ > = (U@, (Y, D
=Aa<%&lgi\lu’q>

number <1 — L normalized

Geometric visualization: ( like an over complete )

| 4

basis in 2D subspace

L

Xy

s = Qs> (-

We can now define effective measurement operators
FA = BEpE, EA = 'ﬁaxﬁu = A’AMAX%I
» Pmy) = Tr[€,847 = TW[FQaT

Properties:
* Each F, is Hermitian & non-negative » ©P(m,) > p

* Individual F, are not projectors unless r\Az 1

*%Fa: EA% E,Eq = EA1LE, = 4, < identity on o,

POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators fﬁ?
such that the F, ‘s are non-negative & > F, =4
(7N
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