Begin 10-11-2023

The Bayesian Update Rule

Consider two stochastic variables A and £ . The
joint, conditional, and univariate probabilities are
related as follows:

P(A,B)=P(AIB)P(B)
P(A,8)=P(BlA)P(A)

P(B)

Thus, with knowledge of P (A) and P(2] we can
update our prior knowledge P(21A) when new

information, P(AlR), becomes available.

There are subtleties when working with a mix
of probability densitity funticons (pdf’s) and discrete
data points. Let

ol : continuous variable with pdf /KLKO()
$ : random discret data point

A BIKY : likelihood function

Bayes rule and the updating of probabilities

The Bayesian Update Rule generalizes like this:

Ax1e)oda = A L8l lec) A
P(B?

where P(B)= f A8 )/{ft(pﬂdocisanumber.

Therefore, to within a normalization factor,

PRIB) ec qulBla) )

See https://math.mit.edu/~dav/05.dir/clss13-slidesall.pdf Page 17
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Bayes rule and the updating of probabilities

Bayesian Update of Classical Information

Consider a classical particle located somewhere
on the X - axis. The Bayesian interpretation holds
that a probability distribution quantifies prior
knowledge, in this example about the position of
the particle.

Let /(v(_o() be the probability density for finding the
particle at position & . We assume this pdf is a
Gaussian centered at X =o.
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Next, we measure the position of the particle
without disturbing it. The measurement has finite
resolution, i. e., there is a change of observing

the particle at > even if the actual position is X .
This resolution is quantified by the likelihood
Function /. (5[d)
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Next, we measure the position of the particle
without disturbing it. The measurement has finite
resolution, i. e., there is a change of observing

the particle at > even if the actual position is X .
This resolution is quantified by the likelihood
Function /(o)

Bayes rule and the updating of probabilities

Bayesian Update of Classical Information, cont.

Let ) (BIA) be a Gaussian,

MBI
p(Bx‘X\ .___L e ‘82/20’39\

| ' >
X

Post-measurement, we can use Bayes Rule
to update our knowledge of the position of
the particle given that we observed > :

UK B) o Blx) ()
1
Gpm Gl GZ

The product of two Gaussians is a Gaussian,
and therefore G, is also a Gaussian.

Furthermore, there are exact expressions for
the means and G’s of the products, see, e. g.

http://www.lucamartino.altervista.org/2003-003.pdf



Bayes rule and the updating of probabilities

Bayesian Update of Classical Information, cont. Physical Interpretation, Sharp Measurement

Let ) (BIA) be a Gaussian,
MBI Now let Gy << G,. Then G; is ~ constant

over the range where G, # 0. In that case the

e -82/2%9\ : pdf’s will look like this:
P(Blx) =
era . A &IB)

| X >
/@Lo{[&)" °‘/2 T 1
Post-measurement, we can use Bayes Rule
to update our knowledge of the position of > X
the particle given that we observed > :
1B L BI) /K‘(D(] Here we learn a lot from the measurement,
T T T and this leads to a large update of our Prior.
In this example there will be a large change
Gpm G, in the mean and uncertainty that we assign
post-measurement. The resulting pdf looks
The product of two Gaussians is a Gaussian, much more like the resolution function than
and therefore G, is also a Gaussian. the pdf for the original Gaussian ’X"(-‘X) .

Furthermore, there are exact expressions for
the means and G’s of the products, see, e. g.

http://www.lucamartino.altervista.org/2003-003.pdf




Bayes rule and the updating of probabilities

Physical Interpretation, Sharp Measurement

Physical Interpretation, Unsharp Measurement

Now let Gp << G,. Then G; is ~ constant
over the range where G, # 0. In that case the
pdf’s will look like this:

/p[«[&)

OCA Blcx
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Now let Gp, = O,. Then G,and G,are very
similar and the pdf’s will look like this:
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Here we learn a lot from the measurement,
and this leads to a large update of our Prior.
In this example there will be a large change
in the mean and uncertainty that we assign
post-measurement. The resulting pdf looks
much more like the resolution function than
the pdf for the original Gaussian /wa) .

Here we learn little from the measurement
and this leads to at most a minor update of
our Prior. In this example there will be at most
a modest change in the mean and uncertainty
that we assign post-measurement. The result
looks like a slightly shifted and broadened
version of the original.




General Theory of Quantum Measurement (Preskill ch. 3)

Von Neumann’s Theory of Measurement

interaction
< >

System Observable VI

Meter
(Pointer)

Pointer observable

(position X of a free particle)

Hamiltonian for the coupled System and Meter

H=H,+—p-t AmP
p 0 D.WIt N

system ] interaction
y free particle

System-Meter interaction correlates M and x
® Measure x = indirect measurement of VI

Heavy pointer,
Strong interaction

H=AmpP

Note: P is the generator of translations along x

~AEMP,
®» Timeevolution U#)=¢ /8

If then
M=> m, laXa UlL) =D \aXa) e EMalp
o a
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Standard Quantum Limit (example)

' 1
Heisenberg: Axap =% B AX(O ~ axi)E4 (2:2« ))
' o

Interaction time £ ®» Ax(4) > AxgaL«/{’?&t
m

translation along x o< m,

— -

Projective Non - Projective
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General Theory of Quantum Measurement (Preskill ch. 3)

Orthogonal Measurement (OM)

Consider a set of measurements SE,,} such that

- £t — -
Em - Ea EA E'a' ""Saa' B, > Ea, =4
. 2 4
orthogonal projectors complete set

We can associate such a
M= m. E
set with any observable % & =0

This allows us to restate the measurement postulates:

An Orthogonal Measurement of an observable /| is
described by a collection of operators Zc qu )

-~ =t
En= & EuBa :_‘5%' E, % Bp=4

The outcome M, occurs w/prob. P(m,)= <[ E, |%>
» the state collapses as  [%> 5,14 >/\Pima

Plm,) =F77[Ea?:(, ©= ExQE, [®Plmy)

M, degenerate: Eal projects onto subspace

Mixed state:

Can we generalize to a broader class? - Yes!

Consider:

% En =1 isrequired  E,E, =9,, E, can be relaxed

(orthogonality)

—~

(completeness)

Concept of non-orthogonal measurements (POVMs)

POVM = Positive Operator Valued Measure




General Theory of Quantum Measurement (Preskill ch. 3)

Bob’s OM has 3 outcomes m, w/projectors E,¢€ ¥

If Alice only prepares states @, € QeA then

Plmy) = Tr [9&\5&] = 'l\r[EﬂQA EHEOJ
- 1y EaBrB, T = T [QaFy]

Fa i._ norm <1
=y |Gl > = (A€, 1Y,
=AD\<?{'&I9A“1LA>

number <1 — L normalized

Geometric visualization: ( like an over complete )

| 4

basis in 2D subspace

L

Xy

My = lﬁOH:ﬂ?

We can now define effective measurement operators
Fo("' EA Eo\ EA = ]ﬁaxﬁ;[ = )\'ANEAX%O\I
» Pmy) = Tr[E6,847 = T[F8aT

Properties:

* Each Fp is Hermitian & non-negative » ©P(m,) > p

* Individual F, are not projectors unless r\Az 1

*%Fa: EA% E,Eq = EA1LE, = 4, < identity on o,

POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators fﬁ?
such that the F, ‘s are non-negative & > F, =4
(7N
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We can now define effective measurement operators

Foos BB, By = XL = Apl %Xt

» Plmy) = ”"[EAQAY 7 ?"J

Properties:
* Each F, is Hermitian & non-negative » ©P(m,) > p

* Individual F, are not projectors unless r\A'-‘ 1

*x) F, = EA% E, B4 = EA1LE, = 1, < identity on &,
A

POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators fﬁ}
such that the F, ‘s are non-negative & > F, =4
7N

Example : POVM on Qubit encoded in Qutrit

t
Pi0b (F=1) atomic HF state

%A Unitary Transformation
-__...-~~\ \\. ~ -
Tl N Usdeihy >y £
' ) ! ~;~ "
r\b-,f — ‘r~|- Us 14> +1fy) = 10> ¢ =0~ ~0— ~O= "
- ~ \ .

Us g+ 2y —> 14y -~ =~

- <
.

m= -4 o0 1

Bob measures
Alice prepares in Q(fp, E =lmXm| el
"=

Choose the map U
®» any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by addlng to 964
an orthogonal complement 964

If N F,s are desired, where N>{)im ®a
then we need  Lim (QCA+9CZ‘) s

( Preskill 3.1.4)
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Example : POVM on Qubit encoded in Qutrit

Pioh (F=1) atomic HF state

%A Unitary Transformation

-_...-~~‘\ \\ ~ - g{
’ \ooLe "’1‘1>+’¥f7">f’7> e,
-

( \ '

'T".‘ — f'." Us I(‘l;l;>+11~pi7——> 10> {r_0~ - ~O—
m= -4 o0 1 U“"’;{P”ﬁé?’?fi) IRRERE RN

Bob measures

Alice prepares in gep, Em= ImXm| & af

Choose the map U
®» any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to &,
an orthogonal complement 962,'

If N F,s are desired, where Ns>{)im Xa
then we need  Jim (Xt9y) 2N

( Preskill 3.1.4)

Toy Example: One Qubit POVM, illustrates different
capabilities of OM & non-OM POVM'’s

Pick 3 unit vectorss.t. > ﬂ,ﬁl\‘,\ =0, Z_ TIa =1
[ 0

-5

Nazlh

Measurement operators

Fo= 2l X% %Pa =1

For the above & following, note that
¢ > L \)
(0,9 = Cos(ao') [95) +Sin (801> =3 155 € 5[4
19,0 = 008 (60%) 192 +Siu(-60') [3; ) = 4 17,5 - J;s_ >



General Theory of Quantum Measurement (Preskill ch. 3)

Toy Example: One Qubit POVM, illustrates different
capabilities of OM & non-OM POVM'’s

Pick 3 unit vectorss.t. >_ U,Jl\',,\ =0, 2. =1
[ O

Measurement operators
For the above & following, note that

45,5 = Cos(ao’) [ 530 +Sin (7)1 45> =5 45 3{--—[4 >
1975 = Coc(eo?) 1 +5in[-6) ;) = m -5y

Application: Discriminating between

non-orthogonal states

. n,
Alice prepares [1. > 11.°5
4" ) Wy
w/equal probability
') 190
How can Bob best tell

the difference ?
OMiin j 1 5, 145> basis ?

) Bob’s guess
(13,7~ Bob gets (12,7 w/P=1
[’l\ﬁ17

Ali T, =1
ice sends < ( (M17 w/P= /“/,

[T7,>= Bob gets

-

L ow/P=3% 17>

Note: Bob can never know for sure he received [’l\ﬁ17
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Application: Discriminating between
non-orthogonal states

. n,
Alice prepares [1. > 11.°5
4" ) Wy
w/equal probability
73 [[o°
How can Bob best tell

the difference ?
OMin § 195>, "LWPY basis ?

Bob’s guess
(12,7~ Bob gets (12,7 w/P=1

—

Alice sends - [1‘“17 w/P= '/,{

[17,>= Bob gets

-

L, >w/ P=3%4 (17>

Note: Bob can never know for sure he received [’l\ﬁ17

Fidelity of Bob’s guess (Prob. his guess if correct)

| l I _ 29 _
g‘;DUM- 'i(,'l_"l' 3 (3/q<1+%(& /c./) ——3—; —0.9063

(@ (b)) () (d) (Quite good)

(a) Asent(f; ?w/P=14 , B guesses 12,2 w/P=1 (?:j_)

(b) Asent|T;> w/P=l

(c) Given|T; > B gets |{ii,> & guesses |5, > w/ P=3 (4= j_)

(d) Given!ys> B gets [T; ? & guesses [1; 7 w/ Pz (?=‘/L,)




General Theory of Quantum Measurement (Preskill ch. 3)

Instead -
EE— Ny
Bob does
the POVM

F;\ = % 1 aLX%\ ;".s

_

(13,7 Bob gets -

.-

Alice sends <

_

| [14, = Bob gets -

\

-

y
1

r'y s

-1,

Ay
v
-’—.
il
V3,2 w/ P=0

[4z,” w/P =y
4, w/P =z

[, w/ P =1y
U;;Q w/ P=0
H;3> w/ P =1y

[J-,,,-J => Bob knows Alice sent [T >

Bob gets § [J;:,> == Bob knows Alice sent [7; 7

N;:3> => Bob is not sure

Fidelity of Bob’s guess (Prob. his guess if correct)

= | J [
g';owv\’ "i‘i'*'%.(l‘i*é‘?‘f} =<,—2~=O.3/2S

I (a) ] (b) (e

P(know) P(don’t know)

(a) Asent [’%;17 or M‘ﬁQ , B knows which one w/ P- il (?Ei)
(b) Asent(T; 7 or (45 >, B DK, correct guess w/ P-1l, (§=1)
(c) A sent [’t‘ﬁ17 or Wﬁ,) , B DK, wrong guess w/ P- M (?=’/5,)

Note: If in (c) Bob guesses [4;,> w/ { =3/, he
gets a slightly better fidelity of

L
Groum™ i = 08750

However: if Bob sticks with Heralded Success

he will have a subensemble w/ ?;M =1¥



