The Bayesian Update Rule

Consider two stochastic variables A and B. The joint, conditional, and univariate probabilities are related as follows:

$$P(A,B)=P(A|B)P(B)$$

$$P(A,B)=P(B|A)P(A)$$

$$P(A|B)=\frac{P(B|A)P(A)}{P(B)}$$

Thus, with knowledge of P(A) and P(B) we can update our prior knowledge P(B|A) when new information, P(A|B), becomes available.

There are subtleties when working with a mix of probability densitity funticons (pdf's) and discrete data points. Let

 α : continuous variable with pdf α

B: random discret data point

か(Bid): likelihood function

The Bayesian Update Rule generalizes like this:

$$p(\alpha|B)d\alpha = \frac{p(B|\alpha)p(\alpha)d\alpha}{P(B)}$$

where
$$P(B) = \int_{-\infty}^{\infty} \gamma(B[\alpha] \gamma(\alpha) d\alpha$$
 is a number.

Therefore, to within a normalization factor,

$$p(x|B) \propto p(B|\alpha) p(\alpha)$$

See https://math.mit.edu/~dav/05.dir/clss13-slidesall.pdf Page 17

The Bayesian Update Rule generalizes like this:

$$p(\alpha|B)d\alpha = \frac{p(B|\alpha)p(\alpha)d\alpha}{P(B)}$$

where
$$P(B) = \int_{-\infty}^{\infty} \gamma(B[\alpha] \gamma(\alpha) d\alpha$$
 is a number.

Therefore, to within a normalization factor,

$$p(x|B) \propto p(B|x) p(x)$$

See https://math.mit.edu/~dav/05.dir/clss13-slidesall.pdf Page 17

Bayesian Update of Classical Information

Consider a classical particle located somewhere on the α -axis. The Bayesian interpretation holds that a probability distribution quantifies prior knowledge, in this example about the position of the particle.

Let $\gamma \nu(x)$ be the probability density for finding the particle at position x. We assume this pdf is a Gaussian centered at x = 0.

$$p(\alpha) = \frac{1}{\sqrt{2\pi\sigma_{\alpha}^{2}}} e^{-\alpha^{2}/2\sigma_{\alpha}^{2}}$$

Next, we measure the position of the particle without disturbing it. The measurement has finite resolution, i. e., there is a change of observing the particle at \mathcal{B} even if the actual position is α . This resolution is quantified by the likelihood Function $\mathcal{M}(\mathcal{B}[\alpha])$

Bayesian Update of Classical Information

Consider a classical particle located somewhere on the $normalfont{1}{n} - axis$. The Bayesian interpretation holds that a probability distribution quantifies prior knowledge, in this example about the position of the particle.

Let $\gamma \iota(x)$ be the probability density for finding the particle at position α . We assume this pdf is a Gaussian centered at $\alpha = 0$.

$$p(\alpha) = \frac{1}{\sqrt{27\pi G_{\alpha}^{2}}} e^{-\alpha^{2}/2} \sigma_{\alpha}^{2}$$

Next, we measure the position of the particle without disturbing it. The measurement has finite resolution, i. e., there is a change of observing the particle at β even if the actual position is α . This resolution is quantified by the likelihood Function $\gamma(\beta|\alpha)$

Bayesian Update of Classical Information, cont.

Let $\gamma(B[d])$ be a Gaussian,

$$P(B|\alpha) = \frac{1}{\sqrt{2\pi\sigma_{B}^{2}}} e^{-B^{2}/2\sigma_{B}^{2}}$$

Post-measurement, we can use Bayes Rule to update our knowledge of the position of the particle given that we observed **B**:

The product of two Gaussians is a Gaussian, and therefore G_{pm} is also a Gaussian.

Furthermore, there are exact expressions for the means and σ 's of the products, see, e. g.

http://www.lucamartino.altervista.org/2003-003.pdf

Bayesian Update of Classical Information, cont.

Let n(B[d]) be a Gaussian,

$$P(B|\alpha) = \frac{1}{\sqrt{2\pi\sigma_{B}^{2}}} e^{-B^{2}/2\sigma_{B}^{2}}$$

Post-measurement, we can use Bayes Rule to update our knowledge of the position of the particle given that we observed **B**:

The product of two Gaussians is a Gaussian, and therefore G_{pm} is also a Gaussian.

Furthermore, there are exact expressions for the means and σ 's of the products, see, e. g.

http://www.lucamartino.altervista.org/2003-003.pdf

Physical Interpretation, **Sharp Measurement**

Now let $\sigma_{B|\alpha} << \sigma_{\alpha}$. Then G_1 is ~ constant over the range where $G_2 \neq 0$. In that case the pdf's will look like this:

$$p(\alpha|\beta) \approx \frac{1}{\sqrt{2\pi\sigma_{B}^{2}}} e^{-\alpha^{2}/2\sigma_{B|\alpha}^{2}}$$

Here we learn a lot from the measurement, and this leads to a large update of our Prior. In this example there will be a large change in the mean and uncertainty that we assign post-measurement. The resulting pdf looks much more like the resolution function than the pdf for the original Gaussian $\chi_{\nu}(x)$.

Physical Interpretation, Sharp Measurement

Now let $\sigma_{B|\alpha} << \sigma_{\alpha}$. Then G_1 is \sim constant over the range where $G_2 \neq 0$. In that case the pdf's will look like this:

$$p(\alpha|B) \approx \frac{1}{\sqrt{2\pi\sigma_{B}^{2}}} e^{-\alpha^{2}/2\sigma_{B|\alpha}^{2}}$$

Here we learn a lot from the measurement, and this leads to a large update of our Prior. In this example there will be a large change in the mean and uncertainty that we assign post-measurement. The resulting pdf looks much more like the resolution function than the pdf for the original Gaussian $\chi_{\nu}(x)$.

Physical Interpretation, <u>Unsharp Measurement</u>

Now let $\sigma_{B|\alpha} \approx \sigma_{\alpha}$. Then G_1 and G_2 are very similar and the pdf's will look like this:

$$p(\alpha|B) \approx \frac{1}{\sqrt{2\pi\sigma_{g}^{2}}} e^{-\alpha^{2}/2\sigma_{B|\alpha}^{2}}$$

$$\approx p(\alpha)$$

$$p(\alpha|B) \approx \frac{1}{\sqrt{2\pi\sigma_{g}^{2}}} e^{-\alpha^{2}/2\sigma_{B|\alpha}^{2}}$$

$$p(\alpha|B) \approx \frac{1}{\sqrt{2\pi\sigma_{g}^{2}}} e^{-\alpha^{2}/2\sigma_{B|\alpha}^{2}}$$

Here we learn little from the measurement and this leads to at most a minor update of our Prior. In this example there will be at most a modest change in the mean and uncertainty that we assign post-measurement. The result looks like a slightly shifted and broadened version of the original.

Von Neumann's Theory of Measurement

System Observable M

Pointer observable

(position X of a free particle)

Hamiltonian for the coupled System and Meter

$$H = H_0 + \frac{1}{2m}P^2 + \lambda MP$$
system free particle interaction

System-Meter interaction correlates *M* and *x*

Measure x → indirect measurement of M

Standard Quantum Limit (example)

Heisenberg:
$$\triangle \times \triangle p = \frac{p}{2} \implies \triangle \times (4)^2 \sim \triangle \times (6)^2 + \left(\frac{\hbar + 1}{2m \triangle \times (6)}\right)^2$$

Interaction time $t \Rightarrow \Delta x(t) \geq \Delta x_{SQL} \sim \sqrt{\frac{ht}{m}}$

Heavy pointer, Strong interaction

Note: P is the generator of translations along x

Time evolution $U(t) = e^{-i\lambda t MP/R}$

If then
$$M = \sum_{\alpha} m_{\alpha} |\alpha \times \alpha| \qquad U(t) = \sum_{\alpha} |\alpha \times \alpha| e^{-i\lambda t} m_{\alpha} e^{\lambda t}$$

$$U(t) \sum_{\alpha} \alpha_{\alpha} |\alpha \rangle \otimes |\alpha \times \alpha| = \sum_{\alpha} \alpha_{\alpha} |\alpha \rangle \otimes |\alpha \times \alpha|$$

$$U(t) \sum_{\alpha} \alpha_{\alpha} |\alpha \rangle \otimes |\alpha \times \alpha| = \sum_{\alpha} \alpha_{\alpha} |\alpha \rangle \otimes |\alpha \times \alpha| = \sum_{\alpha} \alpha_{\alpha} |\alpha \rangle \otimes |\alpha \times \alpha| = \sum_{\alpha} \alpha_{\alpha} |\alpha \times \alpha| = \sum_{\alpha} \alpha|\alpha \times \alpha|\alpha| = \sum_{\alpha} \alpha|\alpha$$

translation along $\mathbf{x} \propto \mathbf{m}_{a}$

Projective

Non - Projective

Orthogonal Measurement (OM)

Consider a set of measurements { E_A } such that

$$E_{\alpha} = E_{\alpha}^{\dagger}$$
 $E_{\alpha}E_{\alpha} = \delta_{\alpha\alpha}$ E_{α} $\sum_{\alpha} E_{\alpha} = 1$ orthogonal projectors complete set

We can associate such a set with any observable

$$M = \sum_{\alpha} m_{\alpha} E_{\alpha}$$

This allows us to restate the measurement postulates:

An Orthogonal Measurement of an observable M is described by a collection of operators $\{E_{a}\}$,

$$E_a = E_a^{\dagger}$$
 $E_a E_{ai} = \delta_{aa}$, E_a $\sum_a E_a = 1$

The outcome M_{Ol} occurs w/prob. $P(m_a) = \langle \psi | E_a | \psi \rangle$ the state collapses as $|\psi\rangle \Rightarrow E_a |\psi\rangle / \sqrt{P(m_a)}$

Mixed state:
$$P(m_{\alpha}) = Tr[E_{\alpha}g], g \Rightarrow E_{\alpha}gE_{\alpha}/P(m_{\alpha})$$

 M_{O_1} degenerate: E_{O_2} projects onto subspace

Can we generalize to a broader class? - Yes!

Consider:

$$\sum_{\alpha} E_{\alpha} = 1$$
 is required $E_{\alpha} E_{\alpha'} = \delta_{\alpha \alpha'} E_{\alpha}$ can be relaxed (completeness) (orthogonality)

Concept of non-orthogonal measurements (POVMs)

POVM = Positive Operator Valued Measure

Bob's OM has 3 outcomes M_{α} w/projectors $E_{\alpha} \in \mathcal{X}$

If Alice only prepares states $\mathcal{L}_A \in \mathcal{L}_A$ then

$$P[M_{A}] = Tr [g_{A}E_{A}] = Tr [E_{A}g_{A}E_{A}E_{A}]$$

$$= Tr [g_{A}E_{A}E_{A}] = Tr [g_{A}F_{A}]$$

$$= A \qquad \qquad \text{norm} \leq 1$$

$$= A \qquad \qquad \text{norm} \leq 1$$

$$= A \qquad \qquad A \qquad \qquad \text{normalized}$$

$$= A \qquad \qquad \text{normalized}$$

We can now define effective measurement operators

$$F_A = E_A E_A E_A = |\widetilde{Y}_a \times \widetilde{Y}_a| = \lambda_a |Y_a \times Y_a|$$

$$P(m_a) = Tr[E_a Q_a] = Tr[F_a Q_a]$$

Properties:

- * Each F_{α} is Hermitian & non-negative $\Rightarrow P(m_{\alpha}) \ge 0$
- * Individual F_A are not projectors unless $\lambda_{a} = 1$
- * $\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} + E_{A} + E_{A} = 1$ identity on \mathcal{X}_{A}

Geometric visualization: (like an over complete basis in 2D subspace)

POVM: Positive Operator Valued Measure

A set of non-orthogonal meas. Operators $\{F_{\alpha}\}$ such that the F_{α} 's are non-negative & $\sum_{\alpha} F_{\alpha} = 1$

We can now define <u>effective</u> measurement operators

$$F_{a} = E_{a} E_{a} E_{A} = |\widetilde{\Psi}_{a} \times \widetilde{\Psi}_{a}| = \lambda_{a} |\Psi_{a} \times \Psi_{a}|$$

$$\Rightarrow P(m_{a}) = Tr[E_{a} S_{A}] = Tr[F_{a} S_{A}]$$

Properties:

- * Each F_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \ge \delta$
- * Individual F_A are not projectors unless $\lambda_A = 1$

*
$$\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} 1 E_{A} = 1_{A} \leftarrow identity on \mathcal{X}_{A}$$

POVM: Positive Operator Valued Measure

A set of non-orthogonal meas. Operators $\{F_{\alpha}\}$ such that the F_{α} 's are non-negative & $\sum_{\alpha} F_{\alpha} = 1$

Example: POVM on Qubit encoded in Qutrit

87
Pb(F=1) atomic HF state

Alice prepares in $\mathcal{U}_{\mathcal{A}}$

Bob measures $E_m = |m \times m| \in \mathcal{H}$

Choose the map U

any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to \mathcal{X}_A an orthogonal complement \mathcal{X}_A^{\perp}

If $N = S_A$ are desired, where $N > Dim \mathcal{H}_A$ then we need $Dim(\mathcal{H}_A + \mathcal{H}_A^L) \ge N$

(Preskill 3.1.4)

Example: POVM on Qubit encoded in Qutrit

Unitary Transformation

Alice prepares in \mathcal{U}_{Δ}

Bob measures

$$E_{m} = |m \times m| \in \mathcal{H}$$

Choose the map U

any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to \mathscr{X}_A an orthogonal complement \mathscr{X}_{A}^{\perp}

If N F_a 's are desired, where $N > Dim \mathcal{H}_A$ then we need $\Im im(\mathscr{X}_A + \mathscr{X}_A^{\perp}) \geq N$

(Preskill 3.1.4)

Toy Example: One Qubit POVM, illustrates different capabilities of OM & non-OM POVM's

Pick 3 unit vectors s. t. $\sum_{\alpha} y_{\alpha} \vec{v}_{\alpha} = 0$, $\sum_{\alpha} y_{\alpha} = 1$

Measurement operators

$$F_a = 2\eta_a | \uparrow_{\vec{n}_a} \times \uparrow_{\vec{n}_a} | \Rightarrow \sum_{\alpha} F_{\alpha} = 1$$

$$\sum F_a = 1$$

For the above & following, note that

$$| \hat{T}_{\vec{n}_{2}} \rangle = \cos(60^{\circ}) | \hat{T}_{\vec{n}_{1}} \rangle + \sin(60^{\circ}) | \hat{J}_{\vec{n}_{1}} \rangle = \frac{1}{2} | \hat{T}_{\vec{n}_{1}} \rangle + \frac{\sqrt{3}}{2} | \hat{J}_{\vec{n}_{1}} \rangle$$

$$| \hat{T}_{\vec{n}_{3}} \rangle = \cos(60^{\circ}) | \hat{T}_{\vec{n}_{1}} \rangle + \sin(-60^{\circ}) | \hat{J}_{\vec{n}_{1}} \rangle = \frac{1}{2} | \hat{T}_{\vec{n}_{1}} \rangle - \frac{\sqrt{3}}{2} | \hat{J}_{\vec{n}_{1}} \rangle$$

Toy Example: One Qubit POVM, illustrates different capabilities of OM & non-OM POVM's

Pick 3 unit vectors s. t. $\sum_{\alpha} y_{\alpha} \vec{v}_{\alpha} = 0$, $\sum_{\alpha} y_{\alpha} = 1$

Measurement operators

$$F_a = 2\eta_a | \uparrow_{\vec{n}_a} \times \uparrow_{\vec{n}_a} | \Rightarrow \sum_{\alpha} F_{\alpha} = 1$$

For the above & following, note that

$$|\uparrow_{\vec{n}_{2}}\rangle = \cos(60^{\circ})|\uparrow_{\vec{n}_{4}}\rangle + \sin(60^{\circ})|\downarrow_{\vec{n}_{4}}\rangle = \frac{1}{2}|\uparrow_{\vec{n}_{4}}\rangle + \frac{\sqrt{3}}{2}|\downarrow_{\vec{n}_{4}}\rangle$$

$$|\uparrow_{\vec{n}_{3}}\rangle = \cos(60^{\circ})|\uparrow_{\vec{n}_{4}}\rangle + \sin(-60^{\circ})|\downarrow_{\vec{n}_{4}}\rangle = \frac{1}{2}|\uparrow_{\vec{n}_{4}}\rangle - \frac{\sqrt{3}}{2}|\downarrow_{\vec{n}_{4}}\rangle$$

<u>Application</u>: Discriminating between non-orthogonal states

How can Bob best tell the difference?

$$\underline{OM}$$
 in $\{ | \uparrow_{\vec{n}_1} \rangle, | \downarrow_{\vec{n}_2} \rangle \}$ basis?

Bob's guess

Alice sends
$$\begin{cases} (\uparrow_{\vec{n}_1}) \rightarrow \text{Bob gets} \quad (\uparrow_{\vec{n}_1}) \text{ w/} \mathcal{P} = 1 \\ (\uparrow_{\vec{n}_1}) \rightarrow \text{Bob gets} \quad (\uparrow_{\vec{n}_1}) \text{ w/} \mathcal{P} = \frac{1}{2} \end{cases}$$

Note: Bob can never know for sure he received $(\hat{r}_{\vec{n}_4})$

<u>Application</u>: Discriminating between non-orthogonal states

How can Bob best tell the difference?

$$\underline{OM}$$
 in $\{ | \hat{\gamma}_{\vec{n}_1} \rangle, | \hat{\beta}_{\vec{n}_2} \rangle \}$ basis ?

Bob's guess

Alice sends
$$\begin{cases} |\hat{\gamma}_{\vec{n}_1}\rangle \Rightarrow \text{Bob gets} & |\hat{\gamma}_{\vec{n}_1}\rangle \text{ w/} \mathcal{P} = 1 \\ |\hat{\gamma}_{\vec{n}_2}\rangle \Rightarrow \text{Bob gets} & |\hat{\gamma}_{\vec{n}_1}\rangle \text{ w/} \mathcal{P} = \frac{1}{4} \end{cases}$$

Note: Bob can never know for sure he received $(\hat{r}_{\vec{n}_4})$

Fidelity of Bob's guess (Prob. his guess if correct)

$$\mathcal{F}_{Pov_{M}} = \frac{1}{2} \times 1 + \frac{1}{2} \left(\frac{3}{4} \times 1 + \frac{1}{4} \times \frac{1}{4} \right) = \frac{29}{31} \simeq \underline{0.9063}$$
(a) (b) (c) (d) (Quite good)

- (a) A sent $[\hat{\tau}_{\vec{n}_1}] \times w/\mathcal{P} = \frac{1}{2}$, B guesses $[\hat{\tau}_{\vec{n}_1}] \times w/\mathcal{P} = \underline{1}$ $(\mathcal{F} = \underline{1})$
- (b) A sent $| \P_a \rangle w / \mathcal{P} = \frac{1}{2}$
- (c) Given $|\P_{\widetilde{n}_2}\rangle$ B gets $|\P_{\widetilde{n}_2}\rangle$ & guesses $|\P_{\widetilde{n}_2}\rangle$ w/ $\mathcal{P}=3/\gamma$ ($\mathcal{F}=1$)

Instead

Bob does the POVM

$$F_{a} = \frac{2}{3} \left| \int_{\vec{n}_{a}} \times \int_{\vec{n}_{a}} \right|$$

Alice sends
$$\begin{cases} |J_{\vec{n}_1}\rangle & \text{w}/P = 0 \\ |J_{\vec{n}_2}\rangle & \text{w}/P = 1/2 \\ |J_{\vec{n}_3}\rangle & \text{w}/P = 1/2 \end{cases}$$

$$\begin{cases} |J_{\vec{n}_1}\rangle & \text{w}/P = 1/2 \\ |J_{\vec{n}_2}\rangle & \text{w}/P = 1/2 \\ |J_{\vec{n}_2}\rangle & \text{w}/P = 0 \\ |J_{\vec{n}_3}\rangle & \text{w}/P = 1/2 \end{cases}$$

Bob gets
$$\begin{cases} |\downarrow_{\vec{n}_1}\rangle \longrightarrow \text{Bob knows Alice sent } |\uparrow_{\vec{n}_2}\rangle \\ |\downarrow_{\vec{n}_2}\rangle \longrightarrow \text{Bob knows Alice sent } |\uparrow_{\vec{n}_1}\rangle \\ |\downarrow_{\vec{n}_3}\rangle \longrightarrow \text{Bob is not sure} \end{cases}$$

Fidelity of Bob's guess (Prob. his guess if correct)

$$\mathcal{F}_{POUM} = \frac{1}{2} \times 1 + \frac{1}{2} \left(\frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{4} \right) = \frac{13}{16} = 0.3/25$$

$$\uparrow \quad \text{(a)} \quad \uparrow \quad \text{(b)} \quad \text{(c)}$$

$$P(know) \quad P(don't know)$$

- (a) A sent $(\hat{r}_{\vec{n}_1})$ or $(f_{\vec{n}_2})$, B knows which one w/ $(f_{\vec{n}_2})$
- (b) A sent $(\hat{r}_{\vec{n}_1})$ or $(\hat{r}_{\vec{n}_2})$, B DK, correct guess w/ $(\mathcal{F}=1)$
- (c) A sent $(\mathcal{T}_{\vec{n}_1})$ or $\mathcal{T}_{\vec{n}_2}$, B DK, wrong guess w/ $\mathcal{P}_{\vec{n}_1}$ / $(\mathcal{F}_{\vec{n}_2})$

Note: If in (c) Bob guesses $| \downarrow_{\vec{n}_3} \rangle$ w/ $\mathscr{G} = \mathcal{I}_{\mu}$ he gets a slightly better fidelity of

$$\mathcal{G}_{povm} = \frac{14}{16} = 0.8750$$

However: if Bob sticks with Heralded Success he will have a subensemble w/ $\mathscr{F}_{poun} = 1$?