Measurement on One Part of a System
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Quantum Measurement on
Bipartite Systems

&

System 1 System 2

Joint system

Consider the following:

E=-¢8,®E
All) = Aﬁ') &4p)

Observable on System 1

Bipartite System

~N/
Possible outcomes when measuring A(¢)?

Measurement on One Part of a System

{ Same possible outcomes @,, indep of Ig->

Degeneracy in & increases by a factor A,

A
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T
for eigenvalue 2,

Projector:

Using the recipe to extend an operator into £
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Measurement on One Part of a System

Some Observations: Some Observations: (Continued)

3. Entangled States

1. Basis [y, (1)) arbitrary, no phys. significance

If we measure A(1) and observe the outcome a,,
then the posterior state is

2. Product States Let ) =1p0))&1X(%)>

If we measure 4(1) and observe [anm) then

1D Yol P (111001 > @4 (o) IX(2) > X IcP'm)? %)

still a product state

. Entangled States

Consider a pair of states where n and i labels the
eigenvalues and degeneracies within the subspace g,,

9w
[@O>=3 D O ta, (1Y o XY= % be [Xa (0>

n iz

The corresponding product state is of the form

I'(P? = %% %Qutb‘&lﬁq;(l))‘?(&[?.»
03]

By comparison, the most general state in £ has the form
Q.
¥ 2 > Cuik [ ¥ a3
n oz

If the C,,;p, are all products of the type Q,: b&

then [¢>? is a product state. Otherwise, [ is entangled.

An
1"y [PA)({)@ 1[9_\] [tp-)wzl %CN.'L [ln;00ye] Xa(‘)f»}

Now, if 9,0 = { then the state IMMU)) occurs exactly
once in the sum above, and therefore

[e>ec wnma%zmw < [lagln>® 1¥@)]

Conceptually, once the measurement tells us that
system 1 is in the exact state WI\)U»’ then it factors
out in the global state.

The case 9, > 1 is more subtle. Once we measure
Q, » We know system 1 resides in the degenerate
subspace associated with the outcome @, . Repeat
measurements do not generate further information
about which of the exact |i4,,,(1)) our system is in.
Thus, the measurement removes some, but not all of
the entanglement present in [¢>) . To completely
factorize the state we would need to measure a
C.S.C.0. This will identify not only the degenerate
subspace but also the specific state vector [#,;(1)).
See Cohen-Tannoudji Chapter Ill, Complement Dy,
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Measurement on One Part of a System

Some Observations: (Continued)

3. Entangled States

If we measure A(1) and observe the outcome a,,
then the posterior state is

B
193 BN 40 [t[r)wzl E;CN;&[WN;U)M YON|

Now, if 9’0 = { then the state W,\)U)) occurs exactly
once in the sum above, and therefore

(> LUy a%zmm < [lagln> @ x> ]

Conceptually, once the measurement tells us that
system 1 is in the exact state [MMU)), then it factors
out in the global state.

The case 9, > 1 is more subtle. Once we measure
., » we know system 1 resides in the degenerate
subspace associated with the outcome a,,. Repeat
measurements do not generate further information
about which of the exact [#,,(1)) our system is in.
Thus, the measurement removes some, but not all of
the entanglement present in [¢>) . To completely
factorize the state we would need to measure a
C.S.C.O. This will identify not only the degenerate
subspace but also the specific state vector [#4,;(1)}.
See Cohen-Tannoudji Chapter Ill, Complement Dy,

Physical Interpretation of T.P. States

From (2) above, measuring A() B(2)

Plon,by,) = LO0)) 8,010 X B,e)X(2) >

Independent
Random Var’s

% Outcomes 0, b, are

t Uncorrelated

Physical Interpretation of Entangled States

From (3) above, measuring A(:) B()
Global |t)r> cannot be written as [Pl ) &[X())

In general, 4,2 by,

(P(a,,}bb) = (| P,0) %(2)[ o> { will be correlated

random variables

Conclusion: We cannot assign state vectors to
the individual subsystems !




Measurement on One Part of a System

Physical Interpretation of T.P. States

From (2) above, measuring A() B(2)

Plow,b,) = L0W)) R0 Q0> X B,)lX(2)>

Independent
Random Var’s

% Outcomes 0, b, are

t Uncorrelated

Physical Interpretation of Entangled States

From (3) above, measuring A(:) B(2)
Global [t)r> cannot be written as [Pl ) &[X())

In general, a,,2 by,

(/3(0\,,,}[9&) = (| P,0) %m[c{y) { will be correlated

random variables

Conclusion: We cannot assign state vectors to
the individual subsystems !

Note:

Even though we cannot assign /9017, 1X(2)5 ,
it is still possible to have a local description
of each subsystem on its own. It must be
consistent with tensor product states, yet it
must reduce the information that is locally
available when the global [t is entangled

— -

Density Matrix Formalism

Definition: A system for which we know only
the probabilities 4! % of finding the system in
state (Yg is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state




Measurement on One Part of a System

Note:

Even though we cannot assign /901>, 1X(2)5 ,
it is still possible to have a local description
of each subsystem on its own. It must be
consistent with tensor product states, yet it
must reduce the information that is locally
available when the global > is entangled

-

Density Matrix Formalism

Definition: Density Operator for pure states

Q) = 1) X (L)

Definition: Density Matrix
31 = 2. C 10 1u,> »
Con [4) = <Ml OB [ M, = Col) Cf H)

Definition: A system for which we know only
the probabilities 4l % of finding the system in
state [%¢ 7 is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

Definition: Density Operator for mixed states

QW) =2y @), G =1, () Ky )|
%

Note: A pure state is just a mixed state for
which one 4l = 1L and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably




Measurement on One Part of a System

Definition: Density Operator for pure states

Q) = 1Ht ) X u(L)|

Definition: Density Matrix
B = 26,814, »
Con [4) = <Ml OLH | M, > = Col) Cf 1)

Let A be an observable w/eigenvalues 0,

Let £, be the projector on the eigen-subspace of On

For a pure state, O(¢)= I{t) X u(L)|, we have

Definition: Density Operator for mixed states

QW) =2 Ay Q) , € =1, () Xy i)
T

Note: A pure state is just a mixed state for
which one 4lp =1L and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably

(%) Tr Q&)= 2 Q&)= Ic"=1
(%) {Ad= ('l[—[{) [A26£)) =E<QH'£) [A] MPX Mp‘%»
)
=2 Ol = oygroaluyy
P

=TrlgwA]  (Imp> basisin & )

(%) Let £ be the projectcr on eigensubspace of 4,

Pa,)=<y8)18, 11t ="Tr[Q)B, ]

(k) S = IlE XA I X!
= Hma:)xueat?’a e H

= LHgl




Measurement on One Part of a System

Let A be an observable w/eigenvalues 0, Let A be an observable w/eigenvalues 0,

Let £ be the projector on the eigen-subspace of 0, Let £, be the projector on the eigen-subspace of On

For a pure state, o) = I{(+) X u(£)[, we have For a mixed state, Q(+) =Z’{‘x‘ Gult) , €p =1, [t)XYg (£)]
%
(%) T Q)= D Quult)=D I, =1 #) Tegle) = S, Tguu) =1

(%) <AY={pl)A lz,cce3>=pz<'4mm X o |4EE)) (%) <A>=% P @AY= 1y TGy LOA]
b

=PZ<MPu;m><4ze)mrup> =) Lulealu,d = TrlQ®A]
P

=71_'[§(-[=)A] (lnp2 basis in X )

(%) Let ), be the projector on eigensubspace of 4,
(%) Let £ be the projector on eigensubspace of 4,

P@,) = <18, 144> =T [, ] Pl)=2 usolR ) = T LQUIE
(k) Q)= 1K+ 1% XH LA (%) Qi) =%/{\&(h{[-é)x1&[-é\[+hp[ﬂé\x?{—(-&m
= # H luH:)X"-f&ﬁ)["-'—% ["{(‘é)X#fH:“H :hZJp& ,—%( Hh[{ﬂm{)]_ (33X | H)

-1
:i—'lé[_p[‘g] —'}’.E[H.?] Density Operator
formalism is general !
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Measurement on One Part of a System

Important properties of the Density Operator Summary So Far
. . +_ .
(1) @ is Hermitian, Q"=Q W © is an observable Density Operator: o)=Y W&n}gle'&l
® J basis in which © is diagonal &
In this basis a pure state has one Terminology: known pure
diagonal element = 1 , therest =@ L% W ™ state
Y&, !¥%> known —» r;‘t':f:
(2) Test for purity.
Pure: Gg*':=qQ ® T gt =1
. Properties
Mixed: Q" *Q ®» Tro'cl
(1) Tre=-1
(3) Schrodinger evolution does not change the A (2) LAY = W[QA]
- .
- Q" is conserved (3) Pw,\= Tr[¢Pr,7, R: projector onto £
E pure states stay pure
{
mixed states stay mixed (4) %g = - [H,g] Schrodinger Eq.
(5) © pure —» g =@, Trg" = L
Changing pure ® mixed requires non-Hamiltonian J
evolution — see Cohen Tannoudji D;; & E;, (6) T Trgq‘ =0 =» S. E. conserves purity

9



Measurement on One Part of a System

Summary So Far Separate Description of Part of a System
Density Operator: QU= g 1 XY | Let £ = g &® &
Lo
T.P. Basis {lm,—tn\)}®{)vﬂ m)}
Terminology: (%) known —» ?t:;(;
Densitv O in £ < Describes
mixed ensity Operator € In global system
Yo %> known — "o
Goal: To “reverse engineer operators
Properties o) in & and @) in &, such that they
describe the systems independently
(1) Tro-=1
(2) <A> = T?[QA] Our starting point is the global density operator

(3) Pa,\= Tr[¢pr,7, R: projectoronto £
g = Z gf"é\w'e) lu;«u-Xu&‘uel

Dl - —L o — ——
(4) EZ B [H¢gj M;i) H\ /
5 ure = gt=¢ Trot= L :
(5) ¢p § =€, ¢ i,k € System (1) T.P. basis states

j,1 € System (2)

(6) %_— Trg‘l =0 =» S. E. conserves purity

End 09-27-2023
10




Begin 10-02-2023 Measurement on One Part of a System

Separate Description of Part of a System

Let ﬁ = gl ® El.
T.P. Basis {lu,- m)]&{w,. m)}

_ . Describes
Density Operator ¢ in E + global system

Goal: To “reverse engineer operators
o in & and @) in &, such that they

describe the systems independently

Our starting point is the global density operator

G ‘)ST;.Q_) g[t‘j\(&e) Erd)‘jng,vejl

———\

i,k €System (1) ¢ p pasis states
j,1 € System (2)

Definition: Partial Trace

_ §— Orthonormal basis in &,
g{ﬂ = H‘lg = %(vafglq)ﬁ_)
Sj0.Oyl 4 X4y

gt@z&@) Cegue) Ol Xug 0y 10y

=% % 9(,'9\(&%\ [w; X Mg | <= operatorin &,

Check properties of o)
c.c. numbers,
l l H.C. swap indices,

+ - * kets & bras
(1) g(ﬂ Z E 9(;&“&@) [«M;XM&’

=229 | g X 4 | €= Relabel T
g lhgdig) T & —

2 E Q(;Q\C&Q\ [M;XM&’ = 9(4)
9

5‘

(2) @) Hermitian = we can choose a basis {iw, 1))}
so ©[1) is diagonal =» Qc;mwm £ 0:8

11




Measurement on One Part of a System

Definition: Partial Trace

_ §—— Orthonormal basis in &,
o =T g = %@QJQI%)
) ;zm%w_) Supuse) 10X g 0 lug)
1— i,k € System (1), j,I € System (2)

=% % g”‘?ﬂch\ [w; X4y | < operatorin £,

Check properties of o)
c.c. numbers,
l l H.C. swap indices,

kets & bras
( + - *
(1) gl Z& % Siiaig) M X g |

=229 | sy XU | €= Relabel o
ng Slegl) TR %

—_

=§ E g(ig‘\(&g\ o XM&’ = 9(4)
9

R

(2) @) Hermitian =» we can choose a basis fiw, 1))}
so ©[1) is diagonal =» g(fml&a\ £ 0:8

Thus 8w = % %_ Sthe)itg) !”&X"‘U

e
= 14 Az, 19 Xy, |

Note:
(1) 9,%\(&%\ = population of W) ® 11,10, i.e.
prob. of finding the global system in this state.

(2) {e * % Sttty 152 marginal probability,

i.e., the prob. of finding system 1in jw,),
found by adding the probs Sttig ks of
finding the global system in the states |4, V>

Visualization - Marginal Probability

12



Measurement on One Part of a System

Thus QlL) = % %_ &&\(&Q\ h\)&XW&]
= gy
% &4
Note:
Srteg\(g) [We (1)) ® v (43

prob. of finding the global system in this state.

(2) {e * % g{z@(%\ is a marginal probability,

i.e., the prob. of finding system 1in jw,)>,
found by adding the probs Stteg ks of
finding the global system in the states |4, V>

Visualization - Marginal Probability

) Partial Traces
el =Tr 9
We define * or
Q2 =Try @ Reduced Density
Operators

Note: We already know these are Hermitian
operators. Also,

Tro = > 2 4, @ |u, U
¢=< g " * Sl Unit Trace
/ =Tr, (T @) = T, (¢(n) Operators!

global © “T;‘Q_('T g) - Tf,_ (?(9_')) 2 1

Expectation Values:
Insert identity here

{BMS = W‘{€[1)3£1\]= Z(ﬂ,%l?(ﬂ"ﬁ(«)lu ¥y

= Z Z <“n%|€f‘5ﬂlu,,.-vq XMnu%«‘A[l\Qﬂ(ﬂ) 2 Up>
qu_ “ql N

gnm (1)

Saq ot 180 >
identity

=2 <L) [y Xty [ALN L, >

nn

= > Luglelllu> = Trieam))
n —

13



Measurement on One Part of a System

) Partial Traces
el) = Tr 9
We define * or
Q) =lry @ Reduced Density
Operators

Note: We already know these are Hermitian
operators. Also,

Tro = > 2 4, @ |u, U,
$T 4 q St Unit Trace
globalo = Try (T @) = Tr, (¢(n) Operators!

~T7, (T, @) = Ty (9(9_}) 2 1

Expectation Values:
Insert identity here

AW =T (@A) ] = Z(a,«h[g[«)"ﬁwlu,,ap
ng

=> 5 <unmgflet«)/uﬂ.uq,xun.1)q.!Atuwﬂ(ﬂwn«up

wq_ Wy . \ ~—
Cpni (1) éqﬁ' duy ALY I, S
identity
=2 < L@ [ty Xty [ALN LA, >
e
=Y Lu lelu,> = Trigua))
n —

We conclude:

e, gt&_\ are unit trace, Hermitian Operators

ALY =Tr (gUNAMY), LB =T Q) BR)

are density operators for

QLS B iem (1) and system (2)

14




Measurement on One Part of a System

Additional Comments:

(1) If the Global state # T. P. state
®» Cannot assign states 90>, [¥@)> to Sq, S,
Can assign @(),©(1) % Local description

(2) If € is pure, 1r e =4, westill can have

Tretn' £ 4, Tre@ 4.4

(2) If the Global stateisa T. P., Idr7=10)>) % (2)>

T = 1@ NX Q)]

then T(Y) = 1Y @X %]
Q=0 @T()

(3) The Global state can itself be mixed. In
that case a product state will have the
following structure

Tr, [€t0 8 T] = 50)

=TUIRT(
groweTh) ¥ {Tr,tq*m@m)]:ru)

Additional Comments:

(4) However, if QU)=Tr (¢), Q) =T, ()

then in general ©'=QM)B<Q(L) + ©

(5) If the evolution of € is Hamiltonian, é =éfl—l,9] ,
we cannot in general find a Hy) that allows
analogous equations for (), 0(1)

Note:

Hamiltonian evolution conserves the purity of €.
However, if ©(() is initially pure (unentangled S, S, )
the global evolution may entangle S, , S, and cause
©(() to become mixed.

-

Evolution of ©(() is not Hamiltonian

15



Measurement on One Part of a System

Important Application: Important Application:
System-Reservoir Theory System-Reservoir Theory

% Reasonable assumptions about the environment

@ » “Master Equation” for &

System Coupling

Environment/Reservoir

és‘ =;—1g [Hg»g]‘i—f{gS)

* We do measurements on the system only
Describe it by s evolve by a non-Hamiltonian

Equation of Motion. % The Liouvillian ée
accounts for relaxation and decoherence

% The environment is too large, with too many
degrees of freedom to keep track of. Coupling
correlates (entangles) the system and environment,
but information transferred to the latter is lost.

* Alternative description in terms of Decohering
Channels.

16



What comes next ?

Congratulations
You Survived Boot Camp



2 Spins, EPR States (Preskill ch. 2.5)

t = O NANOSECONDS

t= 1 NANOSECOND

THS 15 CALLED T
ITLRS FRST— 15 POSSIBLE!
&5 METERS >

BELLS SECOND THEOREM:
MISUNDERSTANDINGS OF BELLS THEOREM
HAPPEN S0 FAST THAT THEY VIOLATE LOCALITY.



2 Spins, EPR States (Preskill ch. 2.5)

Basic Paradigm:
Shared pair of spin-1/2 particles

Bob

— &)

2 — spin state space: & = £,8 &,

Alice

@ ¢ entangled pair
source

Product State Basis: [T, 1162, g%, adad

Example of 1
entangled state ° [Pag = VL ( 15> H‘Lﬁ‘L2>>
Need reduced

Local description of spin A #» Density Operator

G = Tl €g122 RGN el 1Tyl <1, 1 %

_[ho maximally
'(o'/p,) T mixed

Note: | g, contains no information !

Explicitly we have

= TR[10 3 ) 4
Py =Tr[ Rga] = [oo)( '/9_) 7?(0 ol " 2
* e —
observable 4 basis 104>
outcomes (0.
eigenbasis 0 ,(a'>

for any observable,
any outcome

Local Measurements, Correlations?

19



2 Spins, EPR States (Preskill ch. 2.5)

Explicitly we have

Pea)=Tr[ RQy] = ( )(l/’“n/J =Tr (U)' 0) = z'

0o
observable A basis 107,47
outcomes (0

eigenbasis [05,(a'>

Local Measurements, Correlations?

Local Measurements

[,
1. Bob measures 5, ® outcomes { S w/P=l
32
: [9a2n
®» Alice has w/P=l
1Ly 2

D € =g (%<0 Hydldyl) = 14

‘T‘x
2. Bob measures S, ® outcomes { “w/P :UL
x‘g

®» Alice has 90 1
1y, WP

D € =3 (110t Lol ) = 12

Note: This holds for any max entangled state

and any measurement Bob can make.

Same ¢, ®» No “faster than light” communications

20




2 Spins, EPR States (Preskill ch. 2.5)

Local Measurements
739,

w/ P =1/
Y =

1. Bob measures S, ® outcomes {

(730

w/ P =l

274

®» Alice has {
D € =g (15700t Hyhldyl) = 14

11,
(4

e

2. Bob measures S, ® outcomes { w/ P :UL

®» Alice has 2 )
1y, WP

f‘> QA :"2[: ([Tx>AA<q\A["' ILx>AH<‘IS<,) - iﬁ

But something is different:

Ensemble decomposition, Correlations

Correlations:

Note: This holds for any max entangled state
and any measurement Bob can make.

Same ¢, % No “faster than light” communications

1. Bob measures S, on many pairs & TTL,,,

Alice measures S, on many pairs % 1.170J,,,

®» Compare records ® perfect correlation

2. Bob measures Sx on many pairs ® 1.1TLl.,.

Alice measures S, on many pairs ® 14047,

4

No correlation, co-random

Alice can tell if Bob measured Sy or S,
if they compare measurement records

21



2 Spins, EPR States (Preskill ch. 2.5)

But something is different:

Ensemble decomposition, Correlations

Correlations:

1. Bob measures S?} on many pairs » TITL.,..

Alice measures S, on many pairs ® 1.10J,,,

®» Compare records ®» perfect correlation

2. Bob measures Sx on many pairs ® 1U.TLl.,.

Alice measures Sé on many pairs ® 11,47,

4

No correlation, co-random

Alice can tell of Bob measured Sy or S,
if they compare measurement records

Pure State Distillation:

1. Bob tells Alice he measured S, , keeps measurement
record T.TL),,. to himself

Alice keeps spins w/out measuring
A (USSR IR o)

2. Bob shares measurement record with Alice, who

then knows which spins are up and which are down.
She flips the latter.

®» Alice can “distill” a pure state from the ensemble

Conclusion: ©a F &4 +information

- Information is physical -

The above scenarios and variants thereof are
central to Quantum Communication !
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