OPTI 646 Homework Set 1 Posted October 6, 2023, Due October 20, 2023

Jessen

Ι

A system is composed of two qubits labeled (1) and (2). The single-qubit basis states are $|x_1\rangle$ and $|y_2\rangle$, and the two-qubit basis states are $|x_1, y_2\rangle$, where (x, y) = (0, 1).

Consider a measurement of the single-qubit observables $\hat{X}(1) = |1_1\rangle\langle 1_1|$ and $\hat{Y}(2) = |1_2\rangle\langle 1_2|$.

- (a) Find the eigenvalues, eigenvectors, and corresponding projectors for $\hat{X}(1)$ and $\hat{Y}(2)$
- (b) For a product state $|\psi\rangle = (a_0|0_1\rangle + a_1|1_1\rangle)(b_0|0_2\rangle + b_1|1_2\rangle)$, compute the probabilities for the outcomes of measuring $\hat{X}(1)$. Repeat for $\hat{Y}(2)$. Then compute the same probabilities for the entangled state $|\chi\rangle = \alpha |0_1, 0_2\rangle + \beta |1_1, 1_2\rangle$.

Next, consider a measurement of the two-qubit observable $\hat{C} = |0_1, 0_2\rangle \langle 0_1, 0_2| + |1_1, 1_2\rangle \langle 1_1, 1_2|$.

- (c) Find the eigenvalues, eigenvectors, and corresponding projectors for \hat{C} . What do the measurement outcomes indicate about the correlations between the qubits?
- (d) Find the reduced density matrix $\hat{\rho}(1)$, for the product state $|\psi\rangle$ and the entangled state $|\chi\rangle$. Use the result to compute the probabilities for the outcomes of measuring $\hat{X}(1)$, for the product and entangled states.

Π

Consider a system of two identical spin-1/2 particles. Let $\hat{\mathbf{S}}_1$, $\hat{\mathbf{S}}_2$ be the individual spins and $\hat{\mathbf{J}} = \hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2$ the total spin of the system. We know from our basic quantum mechanics that the eigenstates $|j,m_j\rangle$ of \hat{J}^2 , \hat{J}_z can be written in terms of the eigenstates $|m_{1s},m_{2s}\rangle$ of \hat{S}_{1z} , \hat{S}_{2z} as

$$|1,1\rangle = \left|\frac{1}{2},\frac{1}{2}\right\rangle, \quad |1,0\rangle = \frac{1}{\sqrt{2}} \left(\left|\frac{1}{2},-\frac{1}{2}\right\rangle + \left|-\frac{1}{2},\frac{1}{2}\right\rangle\right), \quad |1,-1\rangle = \left|-\frac{1}{2},-\frac{1}{2}\right\rangle, \\ |0,0\rangle = \frac{1}{\sqrt{2}} \left(\left|\frac{1}{2},-\frac{1}{2}\right\rangle - \left|-\frac{1}{2},\frac{1}{2}\right\rangle\right).$$

We now measure \hat{J}^2 , \hat{J}_z for each member of an ensemble of N two-spin systems. The outcome is

$j = 1, m_j = 1$	40% of the time,
$j = 1, m_j = 0$	30% of the time,
$j = 1, m_j = -1$	20% of the time,
$j = 0, m_j = 0$	10% of the time.

The above tells us exactly what states $|j,m_j\rangle$ are present and with what probability.

(a) Find the density matrix for the ensemble in the $|j,m_j\rangle$ representation. Use one of the tests to determine if the state is pure or mixed.

III

Let $\hat{\rho}$ be the density operator of an arbitrary system.

(a) Explain why $\hat{\rho}$ must have eigenvalues π_i and corresponding eigenstates $|\chi_i\rangle$ that form an orthonormal basis in state space. Write $\hat{\rho}$ and $\hat{\rho}^2$ in terms of the π_i 's and the $|\chi_i\rangle\langle\chi_i|$'s.

Consider now the representation of $\hat{\rho}$ and ρ^2 in the basis $\{|\chi_i\rangle\}$

(b) Find the general form of the matrices representing ρ̂ and ρ² in the basis {|χ_i⟩}. Begin by showing that in a pure case, ρ̂ has only one non-zero diagonal element with a value of 1. Then show that for a statistical mixture, ρ̂ has at least two non-zero diagonal elements. Finally, show that ρ̂ corresponds to a pure case if and only if Tr ρ̂²=1.

Consider now a system whose density operator is $\rho(t)$, evolving under the influence of the Hamiltonian H(t).

- (c) Show that $\operatorname{Tr} \hat{\rho}^2$ is a conserved quantity. Can the system evolve so as to be successively in a pure state and a statistical mixture?
- (d) The Von Neumann entropy of a quantum system in state $\hat{\rho}$ is defined as $S = -k_{\rm B} \text{Tr}(\hat{\rho} \ln \hat{\rho})$. From this definition and the definition of a pure state, show that a pure state always has zero entropy, and that a mixed state has entropy ≥ 0 .