## Posted October 6, 2023, Due October 20, 2023

## I

A system is composed of two qubits labeled (1) and (2). The single-qubit basis states are $\left|x_{1}\right\rangle$ and $\left|y_{2}\right\rangle$, and the two-qubit basis states are $\left|x_{1}, y_{2}\right\rangle$, where $(x, y)=(0,1)$.

Consider a measurement of the single-qubit observables $\hat{X}(1)=\left|1_{1}\right\rangle\left\langle 1_{1}\right|$ and $\hat{Y}(2)=\left|1_{2}\right\rangle\left\langle 1_{2}\right|$.
(a) Find the eigenvalues, eigenvectors, and corresponding projectors for $\hat{X}(1)$ and $\hat{Y}(2)$
(b) For a product state $|\psi\rangle=\left(a_{0}\left|0_{1}\right\rangle+a_{1}\left|1_{1}\right\rangle\right)\left(b_{0}\left|0_{2}\right\rangle+b_{1}\left|1_{2}\right\rangle\right)$, compute the probabilities for the outcomes of measuring $\hat{X}(1)$. Repeat for $\hat{Y}(2)$. Then compute the same probabilities for the entangled state $|\chi\rangle=\alpha\left|0_{1}, 0_{2}\right\rangle+\beta\left|1_{1}, 1_{2}\right\rangle$.

Next, consider a measurement of the two-qubit observable $\hat{C}=\left|0_{1}, 0_{2}\right\rangle\left\langle 0_{1}, 0_{2}\right|+\left|1_{1}, 1_{2}\right\rangle\left\langle 1_{1}, 1_{2}\right|$.
(c) Find the eigenvalues, eigenvectors, and corresponding projectors for $\hat{C}$. What do the measurement outcomes indicate about the correlations between the qubits?
(d) Find the reduced density matrix $\hat{\rho}(1)$, for the product state $|\psi\rangle$ and the entangled state $|\chi\rangle$. Use the result to compute the probabilities for the outcomes of measuring $\hat{X}(1)$, for the product and entangled states.

## II

Consider a system of two identical spin-1/2 particles. Let $\hat{\mathbf{S}}_{1}, \hat{\mathbf{S}}_{2}$ be the individual spins and $\hat{\mathbf{J}}=\hat{\mathbf{S}}_{1}+\hat{\mathbf{S}}_{2}$ the total spin of the system. We know from our basic quantum mechanics that the eigenstates $\left|j, m_{j}\right\rangle$ of $\hat{J}^{2}, \hat{J}_{z}$ can be written in terms of the eigenstates $\left|m_{1 s}, m_{2 s}\right\rangle$ of $\hat{S}_{1 z}, \hat{S}_{2 z}$ as

$$
\begin{gathered}
|1,1\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle, \quad|1,0\rangle=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2},-\frac{1}{2}\right\rangle+\left|-\frac{1}{2}, \frac{1}{2}\right\rangle\right), \quad|1,-1\rangle=\left|-\frac{1}{2},-\frac{1}{2}\right\rangle, \\
|0,0\rangle=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\left|-\frac{1}{2}, \frac{1}{2}\right\rangle\right) .
\end{gathered}
$$

We now measure $\hat{J}^{2}, \hat{J}_{z}$ for each member of an ensemble of $N$ two-spin systems. The outcome is

$$
\begin{array}{ll}
j=1, m_{j}=1 & 40 \% \text { of the time } \\
j=1, m_{j}=0 & 30 \% \text { of the time } \\
j=1, m_{j}=-1 & 20 \% \text { of the time } \\
j=0, m_{j}=0 & 10 \% \text { of the time }
\end{array}
$$

The above tells us exactly what states $\left|j, m_{j}\right\rangle$ are present and with what probability.
(a) Find the density matrix for the ensemble in the $\left|j, m_{j}\right\rangle$ representation. Use one of the tests to determine if the state is pure or mixed.

## III

Let $\hat{\rho}$ be the density operator of an arbitrary system.
(a) Explain why $\hat{\rho}$ must have eigenvalues $\pi_{i}$ and corresponding eigenstates $\left|\chi_{i}\right\rangle$ that form an orthonormal basis in state space. Write $\hat{\rho}$ and $\hat{\rho}^{2}$ in terms of the $\pi_{i}$ 's and the $\left|\chi_{i}\right\rangle\left\langle\chi_{i}\right|$ 's.

Consider now the representation of $\hat{\rho}$ and $\rho^{2}$ in the basis $\left\{\left|\chi_{i}\right\rangle\right\}$
(b) Find the general form of the matrices representing $\hat{\rho}$ and $\rho^{2}$ in the basis $\left\{\left|\chi_{i}\right\rangle\right\}$. Begin by showing that in a pure case, $\hat{\rho}$ has only one non-zero diagonal element with a value of 1 . Then show that for a statistical mixture, $\hat{\rho}$ has at least two non-zero diagonal elements. Finally, show that $\hat{\rho}$ corresponds to a pure case if and only if $\operatorname{Tr} \hat{\rho}^{2}=1$.

Consider now a system whose density operator is $\rho(t)$, evolving under the influence of the Hamiltonian $H(t)$.
(c) Show that $\operatorname{Tr} \hat{\rho}^{2}$ is a conserved quantity. Can the system evolve so as to be successively in a pure state and a statistical mixture?
(d) The Von Neumann entropy of a quantum system in state $\hat{\rho}$ is defined as $S=-k_{\mathrm{B}} \operatorname{Tr}(\hat{\rho} \ln \hat{\rho})$. From this definition and the definition of a pure state, show that a pure state always has zero entropy, and that a mixed state has entropy $\geq 0$.

