Introduction and Overview (Preskills Notes)

Quantum Hardware

Physical Implementation is
Extremely demanding !

Requirements

1

2.

. Storage: Quantum memory.

Gates: We put computation U; together
from 1 and 2-qubit operations.

Readout: Method to measure qubits.

No coupling to environment
to avoid decoherence & errors

. Isolation:

Precision: Gates, readouts must be
highly accurate

Inherent Contradictions

2. Gates VS 4. Isolation

1 1

coupling between no coupling to
qubits environment

To build a Quantum Computer
-

Choose, find or invent a system
with acceptable tradeoffs



Review of Quantum Mechanics
Cohen-Tannoudji Ch. Il & lll, Preskill 2.1 & 2.3



Review of Quantum Mechanics

Note: Everyone is assumed to be
familiar with grad level QM

P

Quick review focused on 2-level systems,
Tensor Product spaces and Density Matrix
formalism

Linear Operators

VigvegL: Aly) =iyxHeg

State vectors (“Rays” in Preskill)

Unique quantum state <=» unique state vector

[Y> & £ «— State Space

Projectors F.L = (% X% | «— Projector on ly>

B
Pg; 'Zc_il%x‘-&[ <— projector on subspace ggL
Basis in aq_ dimensional €9

Scalar product LPlyy = dy [ S
complex number —f
( £ is a Hilbert Space )

Hermitian Operators At=4

Adjoint |y'Y = Aly) e <y'[ =<y (A*

Physical (measurable) quantities!
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Linear Operators

Yigvel: Aly)=lyHeg

Projectors F?u = [% XY | <= Projector on ly>

% .
Pg; é‘J%XCPQI <— projector on subspace 59/.
Basis in aq_ dimensional €9

Eigenvalue Equation Alyd= Ay

A Hermitian

% Eigenvalues of A are real-valued

A%y =Xly>  are orthogonal
Alps=pmlgy  if Az pm

% Eigenvectors ol A form orthonormal basis in £

* Eigenvectors

Hermitian Operators At=4

Adjoint [3'Y = Alyd e <y =< (A*

Physical (measurable) quantities!

Commuting Observables

(ag]=48-BA=0 B

3 orthonormal basis in £ of common
eigenvectors of A [
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Eigenvalue Equation Aly>= Alyy
A Hermitian

% Eigenvalues of A are real-valued

A%y =xly>  are orthogonal
Alr{?)://\)l()7 if z\*/"

% Eigenvectors of A form orthonormal basis in £

% Eigenvectors

C.S.C.0 (Complete set of commuting observables)

Set A, B,C... such that basis 3in £ of
eigenvectors [o\m.b,.,,c,,”,,& uniquely labeled

by the set of eigenvalues a,,, bm ,Cm

Example | L'Lj Ly for the Hydrogen atom

Commuting Observables

(ag]=48-BA=0 ®

3 orthonormal basis in £ of common
eigenvectors of A [

Unitary Operators

U isunitary B 0U-1:-pTe vtu=vvf=1
Scalar product invariant: <y[@) = <y [vTvlp>

B U isachange of basisin £

DIUS =MD B A=ei®

eigenvecs for A%\’ are orthogonal
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C.5.C.0 (Complete set of commuting observables)
Set A, B,C... such that basis 3 in £ of
eigenvectors [a\m.b,.,)cm,,& uniquely labeled

the set of eigenvalues a,,, b,,.’Cm

Example 1_°~J L, for the Hydrogen atom

Representation and bases

The set §1u,d} forms a basisin £ if the
expansion

is unique and exists

1> = 24 1% 4, VigSes

Unitary Operators

U isunitary @ 0-1:-pte 0Tu=00:1
Scalar product invariant: <y[() = <¢[vTvip>
B U isachange of basisin £

DIUS> =Av> B Acei®

eigenvecs for A%\’ are orthogonal

States 12> 4mh | uilud

Operators A 4= 3 T,
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Postulates of Quantum Mechanics

(1) At a fixed time % the state of a physical system

(2)

(3)

(4)

is defined by specifying a ket Iy(¢)) belonging
to the state space & .

Every measurable physical quantity ¢4 is
described by an operator A actingin & ;
this operator is an observable.

The only possible result of a measurement of

A physical quantity ¢4 is one of the eigenvalues
of the corresponding observable A.

(Discrete non-degenerate spectrum)
When the physical quantity ¢4 is measured on
A system in the normalized state [y, the
probability P/, | of obtaining the non-
degenerate eigenvalue a, of the observable
A is:

Pa,) = Ka, )% =<% 1R, 1%>
where 14,5 is the normalized eigenvector of
A associated with the eigenvalue o, , and
P=la,%4,, isthe projector onto [q,>.

Postulates of Quantum Mechanics

(5) If the measurement of the physical quantity
cA on the system in state [y ) gives the result
Ay then the state immediately after the
measurement is the normalized projection
of [4) onto!Q,) :

O Ly
Lyle,le)

Degenerate case: use projector onto the
Subspace associated with ., .

(Fotier? =

(6) The time evolution of the state vector Iy::)
Is governed by the Schrodinger equation:

o i
25 57 ¥ = Heg)[ye)

where H(£) is the observable associated
with the total energy of the system.

See also Note on the Bayesian Update Rule
for “classical” probability distributions




Tensor Products of State Spaces

Postulates of Quantum Mechanics Quantum Mechanics of systems that
consist of multiple parts

(5) If the measurement of the physical quantity
ch on the system in state [y ) gives the result
Ay then the state immediately after the
measurement is the normalized projection ®
of [4) onto!aQ,> :

o, [y
—_— System 1 System 2
{yle,l¢) Y y Joint system

Degenerate case: use projector onto the
Subspace associated with &, .

(Yofier? =

Def: Let 51 R 29_ be vector spaces of dimension »_, Ny
(6) The time evolution of the state vector Iy/:)

=5 & i
Is governed by the Schrodinger equation: The vector space £ £" ZZ Is called the

Tensor Product of £, and 82 iff

id %M&)) = Het)[yes))
Y pairs [@(1)€6€, IS e 82\ Jvector £ £

where H(-L) is the observable associated
with the total energy of the system. such that

1. The association is linear with respect to

. multiplication with complex numbers
See also Note on the Bayesian Update Rule P P

for “classical” probability distributions

Mgy 15y = M [iptore x>
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Postulates of Quantum Mechanics Quantum Mechanics of systems that
consist of multiple parts

(5) If the measurement of the physical quantity
ch on the system in state [y ) gives the result
Ay then the state immediately after the
measurement is the normalized projection ®
of [4) onto!aQ,> :

o, [y
—_— System 1 System 2
{yle,l¢) Y y Joint system

Degenerate case: use projector onto the
Subspace associated with &, .

(Yofier? =

Def: Let £, &, be vector spaces of dimension ¥, Uy
(6) The time evolution of the state vector Iy/:)

=5 & i
Is governed by the Schrodinger equation: The vector space £ £" ZZ Is called the

Tensor Product of £, and 82 iff

id %M&)) = Het)[yes))
Y pairs [@(1)€6€, IS e 82\ Jvector £ £

where H(-L) is the observable associated
with the total energy of the system. such that

1. The association is linear with respect to

. multiplication with complex numbers
See also Note on the Bayesian Update Rule P P

for “classical” probability distributions

Mgy 15y = M [iptore x>




Tensor Products of State Spaces

2. Distributive [p(ey> & [ 1%,0)) € bl (3>
= alQuy> @ 1%, (5t blPad & X, 01>
2. Bases fw,-m)? in ﬁ) 2100 [2){ in 32

» fw,«mmlq;ecw] is a basisin £

Iff &, Ly arefinite, then D;m (&)= N, x Ny

1P = D a; la; (1)

Vectors in £ Let
1X(2)) = 2 byl 0y

Then [Prd>elx) = Zz Q; b, 4, (1> [ 21

» The usual linear

These properties algebra works in &

Analogy: Tensor product of 1D 2 2) geometrical space

Note: € =£,8&, + 3D geom. space

/ / P of vectors in £; w/vectors in €,

not defined

Hugely important:

There are vectors in £ that are not
tensor products of vetors from £,,&,

General vector ¢ £ can be written as

o= > cp lm()r810,(2)>
ie

How to see? There are N, & Ny prob. ampl’s Co

These cannot all be written as (;<bp where the
sets Sa;], fbe’{ are valid probability amplitudes.

10




Tensor Products of State Spaces

IPla)) = Z Q; UA;C‘”)
1X(2)) = 2 by Lo, (7

Vectors in & Let

Then [P @IX)D = % Q; b, 4. (1> [ (D

Hugely important:

There are vectors in £ that are not
tensor products of vetors from &,,&,

General vector ¢ £ can be written as

2= > cpln(0)819,(0)>
iR

How to see? There are NyA N,y prob. ampl’s C:e_

These cannot all be written as g;<bp where the

sets fa;], fbe] are valid probability amplitudes.

Example: &,, g_?_ are qubits, v, =, = 2

PO = 8y g (005 + Oy Ly 2 real-valued
[X(\D = by [0, (L)) + by [W,(2)D variables each

In basis §lu.(0)e I.uQCﬂ)]

101, by | Cys

Product | b, General |Cjy

state | Q, by state | Cyy

%2 by | o
4 real-valued 6 real-valued
variables variables
product state =» 2A) real variables
N qubits ®» Nt

general state =» 2" "'~ 9 real var’s

11



Tensor Products of State Spaces

Example: &,, EQ_ are qubits, v, =, = 2 Note: States &£ that are not product states

are known as
1Pl = a4, g, (45 + o'lm?-[ﬂ> 2 real-valued

XS = by 1,03 + b [0, (2)> variables each Entangled States or Correlated States

In basis §lu(0)e wecm]

_ - Back to the Linear Algebra engine of QM

o, by Cys
Product |0 b, General | Cjy Scalar : ,
product: (<@'t11® x'ey] )| 191> B [X(1)
state  [Q4 by state | Coy [@niec l)(e >)

oy by | LC”‘ = L@@ X' Q) [ X

t t
4 real-valued 6 real-valued .
variables variables Operators:  Let A(1) actin £(1)

The Extension /:T('l) acting in £ is defined by

product state —=» 2N real variables Z(ﬂ IWU’)) 8 h((q_\)] = (A(dlhp@l)))& 1X(2)S
N qubits ) {

general state —» 2.”'“-2 real var’s

Extension 3[9) of R(2) into £ is similar

12




Tensor Products of State Spaces

Note: States ¢ £ that are not product states Tensor Product of Operators
are known as

LAt 880 J[lpny o )xd] = [ Al 19y ] & [ BE) X))
Entangled States or Correlated States

» alNagE) = Al)BWR)

Al = &) e10)
2 = (1) @ B()

special case:

Back to the Linear Algebra engine of QM

Scalar product: ((cp'm[@ <x‘(2\1)( \d?(ﬂ)@l)(m)) Commutator
= QMNP 1)) ) [ XY

[AW) B@)] =0 because [AW,401)]= [BR), 4] =

Operators: Let A(1) actin £(1)

Notation: Obvious from context

The Extension 5(1) acting in £ is defined by

N Q1)) &18Q)) = [AUIX(Q)> <+ [PUYXW\ D
A\ [igm0> B = (AlWlgt))@ 1K)

A1) & B) « A()B(L)
Extension 3(9) of R(2) into £ is similar Al) = A@)

13




Tensor Products of State Spaces

Tensor Product of Operators

et 8B [Ipeye )] = [AIguyy] @[ BO) X))

D anerl) = AlBY)

Al = &) e40)

special case:
R(1) = 4(1) @ B

Commutator

[ﬁ (4) ,ﬁlzﬂ 20 because [A(),1(1)]= [BR) (2] =o

Notation: Obvious from context

[Q(0)) @ 1KY = [ PUNDIX(2)> > | PL) X\ D
A1) & B) « A()B(L)
,3;(4) - A1)

Eigenvalue problem in £

Let AL)IG (1D = Op QL U)>, P21, ,9, B
AP XQ)Y = 0, 10N XD VKD EE,

Can choose [ ¥ (2)> € orthonormal basis in £

B 9;xN, -fold degeneracy of a,in £

Furthermore

A[«)l({?ﬂi “)» =0, lcpjca»

B) /XD =b, | XE()>

(A0 + B2 Ig X5 0>
AR (@3 )

(0g+0g) 1@10) X @)Y
Onbe 141K @)Y
£ (A, 602) (RO @Y = Flan,b,) 19/0) Ky @)Y

Postulates of QM apply in &, £9_and g
» We are Done!

14
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Postulates of Quantum Mechanics

(1) At a fixed time % the state of a physical system

(2)

(3)

(4)

is defined by specifying a ket Iy(¢)) belonging
to the state space & .

Every measurable physical quantity ¢4 is
described by an operator A actingin & ;
this operator is an observable.

The only possible result of a measurement of

A physical quantity ¢4 is one of the eigenvalues
of the corresponding observable A.

(Discrete non-degenerate spectrum)
When the physical quantity ¢4 is measured on
A system in the normalized state [y, the
probability P/, | of obtaining the non-
degenerate eigenvalue a, of the observable
A is:

Pa,) = Ka, )% =<% 1R, 1%>
where 14,5 is the normalized eigenvector of
A associated with the eigenvalue o, , and
P=la,%4,, isthe projector onto [q,>.

Postulates of Quantum Mechanics

(5) If the measurement of the physical quantity
cA on the system in state [y ) gives the result
Ay then the state immediately after the
measurement is the normalized projection
of [4) onto!Q,) :

O Ly
Lyle,le)

Degenerate case: use projector onto the
Subspace associated with ., .

(Fotier? =

(6) The time evolution of the state vector Iy::)
Is governed by the Schrodinger equation:

o i
25 57 ¥ = Heg)[ye)

where H(£) is the observable associated
with the total energy of the system.

See also Note on the Bayesian Update Rule
for “classical” probability distributions
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See also Note on the Bayesian Update Rule
for “classical” probability distributions

16



Bayes rule and the updating of probabilities

Consider two stochastic variables X and Y.
We have

P(x,Y) = P(x[v)PLY)= PLY|x)P(x)

Assume we measure the position of the particle
without disturbing it. The measurement has
finite resolution, quantified by the conditional
probability of observing X = given P(a)

P(x,Y)P(X) Py = PO Ply)

V)=
PExtY) PLY) " D(x)

Consider a classical particle located somewhere
on the x—axis. The Bayesian interpretation holds
that a probability distribution quantifies prior
knowledge, in this example about the position of
the particle.

Let P(a) be the probability of finding the particle
at X=A

lp-aYe PRIA)
prpia) < —L— ¢+, §
Jamre;t s

Dt - - -

9 120
peA) = —2— 5 4o :
\l:zm;’- |
A

O

Bayes Rule: P(A p)- p[Alﬂ)P[P) = PpIA)A(R) B

. PIpla) P(A)
PR

where p(p) = F{pm PAYIA

-

P[AI/&)

Note: P[A), PplA) & P(2) are known beforehand
and independent of the measurement outcome.

17




Bayes rule and the updating of probabilities

Assume we measure the position of the particle In our example

without disturbing it. The measurement has 2
finite resolution, quantified by the conditional p(@acf - (A~/2’)‘L/?_G"(; -A /?_W " 44 o e..p%.(q;},%z)
probability of observing X = given P(a) »

and therefore 91 9

P[(H A)

~(p- PR1A
et | —
b /o A (A P pthalegy)

ML
PLAI) = Const = © A28, % e

D

Interpretation: (‘Sk %4 WA (sharp measurement)

Bayes Rule: P(A p)- P[AI/!.')P[P) = PIBIA)A(R) ®)

© 93~ constant over range where ¢, %0 ®»

P[Alﬁ P (P’A};[M where P(/;) = ﬁrpmpmma

-

P(Al/z\

, prag === & P
Note: P(A), PplA) & P(/3) are known beforehand & zm&
and independent of the measurement outcome.

P(A)

18



Bayes rule and the updating of probabilities

In our example

* L a2/l ]
) f °" (A-R)%/29, e a*/s5, ey e.p /z(v},%z)

~od

and therefore 9 92

Interpretation: Gﬁ» G, (unsharp measurement)

® a,s é(A-l‘me‘lw LA here 6o 20 B

: !

-A\L fal Ly (e
P(AIF)= Congs Q-[A ) /20-{3 ‘e 2 /’-(ﬂ;‘ fw(‘z)

Interpretation: Gi_,‘ « T, (sharp measurement)

© 93 ~ constant over range where §,%0 &)

P(Alp)

1 e
PUHIE) < [y ek ﬂ3
—| B

g o

P(Al/s\

. E g
P(ALE) = WZ ora)

Note: the posterior distribution changes very little,
meaning we learn little from the measurement

% The above are the Bayesian Update Rules when
new information becomes available

19




Bayes rule and the updating of probabilities

In our example

) f - (Rl ey M ia o P eRY)

~cd

and therefore 9 92

Interpretation: Gﬁ» G, (unsharp measurement)

: !

L 2 2 )
oLl F)= conse o4 /a0, P /2 (g )

Interpretation: Gi_,‘ « T, (sharp measurement)

© 93 ~ constant over range where §,%0 &)

® a,s é(A-l‘me‘lw LA here 6o 20 B
PRlp)
- Y5l LN\ Pl
i e |\
—| B
g o

P(Al/s\

L S
P(ALE) = WZ ora)

Note: the posterior distribution changes very little,
meaning we learn little from the measurement

% The above are the Bayesian Update Rules when
new information becomes available

% This is a strict analogy to the collapse of the
guantum state following measurement
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