

To build a Quantum Computer

Choose, find or invent a system with acceptable tradeoffs

Ion Trap Quantum Computing

First to demonstrate a Quantum Gate

 Qubit is encoded in the electronic ground state of an atomic ion

* Early design with a few ions in trap

- * Major challenges today same as in 1998!
- * "Clock speed" set by vibrational freqs microfabricated traps do better
- More ions -> harder to cool motion, harder to individually address ions in linear trap.
- * Scaling up to 1000's of ions is an enormous challenge

Scalable Ion Trap Quantum Processor – one vision

D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002).

To appear in the 2003 International Symposium on Microarchitecture (MICRO 30) A Quantum Logic Array Microarchitecture: Scalable Quantum Data Movement and Computation

Tzvetan S. Metodi[†], Darshan D. Thaker[†], Andrew W. Cross[‡] Frederic T. Chong[‡] and Isaac L. Chuang[‡]

Operation	Time	Peirres	Performed
Single Gate Double Gate Measure Movement Split Cooling Memory time	1µs 10µs 100µs 10vs/µm 10µs 1µs	0.0001 0.03 0.01 0.005/pm	10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁸ 10 ⁻⁶ /cem

NIST Group, Current as of 2023

Status: Many important milestones achieved

- ***** Entanglement of ≥ 20 ions (2018)
- Highest gate & readout fidelities, longest coherence times
- * Error Correction, Fault Tolerance proof of principle demonstrations
- * Complex algorithms on few ions, quantum simulations with ≥ 50
- Research groups in academia, National Labs, Industry

Some leading groups

NIST	Quantinuum	IonQ
Sandia NL	Duke U	
Many, man	y others	

Some links to get started

- Amazon Braket (IonQ, other Technologies) https://aws.amazon.com/braket/
- **Quantinuum** (Ion Trap Quantum Computing https://www.quantinuum.com
- **lonQ** https://ionq.com
- **NIST** https://www.nist.gov/pml/time-and-frequency-division/ion-storage

Challenge: Do a web search and look for the largest GHZ state made in the lab

$$|GH_{2}\rangle = \frac{1}{\sqrt{N}} (100...007 + |11...11\rangle)$$

Note: What is the fidelity of the state ?

Neutral Atom based Quantum Processors

- * Large numbers of non-interacting qubits, (≥ 100) trapped in 2D or 3D arrays.
- Qubits interact when excited into Rydberg states with large dipole moments
- Major advantage: Weak coupling to the environment when not doing gates
 excellent quantum memory
- Favorite platform for quantum simulation of quantum manybody physics
- BEC's in optical lattices as analog simulators of superconductivity, quantum magnetism and more.

Sorted into groups of $n \Rightarrow \sqrt{n}$ enhancement

Neutral Atom based Quantum Processors

- * Large numbers of non-interacting qubits, (≥ 100) trapped in 2D or 3D arrays.
- Qubits interact when excited into Rydberg states with large dipole moments
- Major advantage: Weak coupling to the environment when not doing gates
 excellent quantum memory
- Favorite platform for quantum simulation of quantum manybody physics
- BEC's in optical lattices as analog simulators of superconductivity, quantum magnetism and more

Sorted into groups of $n \Rightarrow \sqrt{n}$ enhancement

If we have *n* uniformly driven atoms in a group and only one of them can be excited into the Rydberg state at any time, the Rabi frequency is

$$n = 1 \quad \langle r | H_{int} | 1 \rangle = h \mathcal{L}$$

$$n = 2 \quad \langle r | H_{int} \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) = \sqrt{2} h \mathcal{L}$$

$$n = 3 \quad \langle r | H_{int} \frac{1}{\sqrt{2}} (|00r\rangle + |010\rangle + |100\rangle) \sqrt{3} h \mathcal{L}$$

$$\vdots$$

$$n \quad \langle r | H_{int} \frac{1}{\sqrt{n}} (|0...01\rangle + |1...0\rangle) = \sqrt{n} h \mathcal{L}$$

$$n \text{ ways to excite one atom}$$

Neutral Atom based Quantum Processors

- * Large numbers of non-interacting qubits, (≥ 100) trapped in 2D or 3D arrays.
- Qubits interact when excited into Rydberg states with large dipole moments
- Major advantage: Weak coupling to the environment when not doing gates
 excellent quantum memory
- Favorite platform for quantum simulation of quantum manybody physics
- BEC's in optical lattices as analog simulators of superconductivity, quantum magnetism and more

Sorted into groups of $n \Rightarrow \sqrt{n}$ enhancement

Sorted into groups of $n \Rightarrow \sqrt{n}$ enhancement

Rydberg Blockade

Principle of the Rydberg blockade. (a) A resonant laser couples, with strength Ω , the Rydberg state |r and the ground state |g of an atom. (b) For two nearby atoms, interactions U vdW shift the doubly excited state |rr, preventing the double excitation of the atom pair when U vdW Ω .

$\pi\,$ phase shift of Target conditioned on Control

Principle of the Rydberg blockade. (a) A resonant laser couples, with strength Ω , the Rydberg state |r and the ground state |g of an atom. (b) For two nearby atoms, interactions U vdW shift the doubly excited state |rr, preventing the double excitation of the atom pair when U vdW Ω .

 $\pi\,$ phase shift of Target conditioned on Control

Some links to get started

QuErahttps://www.quera.com/aquilaCold Quantahttps://coldquanta.com

Sandia, Los Alamos National Labs

Individual PI's – Quantum Simulation

Lukin, Vuletic, Greiner, Endres, Bloch, Saffman, Biederman, Browaeys, Weiss, and many others...

Superconducting Qubits

- * The basic building block is the so-called Transmon Qubit
- A Transmon is a nonlinear oscillator made from a Josephson Junction and other circuit elements

Jaynes-Cummings Hamiltonian

Superconducting Qubits

IBM 4–Transmon device (2017)

A device consisting of four transmon qubits, four <u>quantum busses</u>, and four readout <u>resonators</u> fabricated by <u>IBM</u> and published in <u>npj</u> Quantum Information in January 2017.[4]

Google 54–Transmon device (2019)

Superconducting Qubits

IBM 4–Transmon device (2017)

A device consisting of four transmon qubits, four <u>quantum busses</u>, and four readout <u>resonators</u> fabricated by <u>IBM</u> and published in <u>npj</u> Quantum Information in January 2017.^[4]

Google 54–Transmon device (2019)

Advantages

- Solid State platform, looks like electronics
- * Clearer path to scale up to many qubits?

Challenges

- Gates, coherence times not as good as atomic platforms, but gap is closing
- * Requires dilution refrigerator

Industry Favorite

- * Large efforts at IBM, Google, Rigetti
 Cloud Quantum Computing
- Amazon Braket (IonQ, other Technology) https://aws.amazon.com/braket/

Spins in Silicon Quantum Dots

- * Si is highly scalable
- * Qubits and Quantum Gates demonstrated
- ***** Fidelities below State-of-the-Art
- * HRL Laboratories, UNSW (Australia) group, Princeton Group, many others...

Comparing Physical Platforms: Status as of 2022

Table 1. Comparison of the achievable performances between three types of systems regarding QC. Numbers shown above are representative data. For the number *N* of qubits that can be prepared in one register, other notable results include N = 40 for trapped ions [44], and $N \sim 50$ in references [45, 46, 47], $N \sim 150$ in reference [48], N = 184 in reference [49], and N = 200 in reference [50] for neutral atoms; for fidelities $\mathcal{F}_{1(2)}$ of single(two)-qubit gates, other notable results include $\mathcal{F}_2 = 0.991$ [51] and 0.9944 [52] for SC, and $\mathcal{F}_1 = 0.998$ [72, 77] and $\mathcal{F}_2 = 0.974$ [53] for neutral atoms. Here, results with larger fidelities are shown. Faster gates based on a similar mechanism can have smaller fidelities as studied in reference [54]; take trapped ions as example, reference [38] studied single-qubit gates of duration 2 μ s and fidelity 0.999 96, and reference [55] studied an entangling gate of duration 1.6 μ s and fidelity 0.9982.

			Fidelity and duration of quantum operations	
	Number of qubits	Coherence time	One-qubit gate ^a	Two-qubit gate or Bell state ^b
SC Trapped ions Neutral atoms	53 [56]; 54 [57] 53 [60] 209 [63]; 219 [64]; 256 [65]	70 µs [58] ^c 50 s [61, 62] 7 s [66]; 48 s [67] ^d	0.9992; 10 ns [52] ^c 0.999 999; 12 μs [61] 0.999 86; 31 μs [66]	0.997; 60 ns [59] (C _Z gates) 0.9992; 30 μs [38] (Bell states) 0.991; 59 ns [67] ^e (Bell states)

^aThe duration for single-qubit gates refers to that of a Clifford gate such as a $\pi/2$ rotation between the two states of a qubit. ^bThe time here refers to the duration of either implementing a controlled-Z (C_Z) gate or creating a Bell state from a product state. ^cThe coherence time for superconducting qubits refers to the smaller one among the relaxation time (T_1) and the decoherence time (T_2^*) of reference [51]; the single-qubit gate data are taken from table S2 of the supplementary information of reference [52]. ^dUnlike that in reference [72] which studied qubits defined by ground states, the coherence time in reference [73] refers to that of the optical clock state (5s5p)³ P_0 of ⁸⁸Sr. Reference [73] reported an atomic coherence time up to 48 s. ^eA Rabi frequency $\Omega = 2\pi \times 6-7$ MHz was used in reference [67] so that a π pulse for exciting the ground to Rydberg states has a duration $\pi/(\sqrt{2}\Omega) \sim 51 - 59$ ns with $\sqrt{2}$ a many-body enhancement factor.

Other Platforms

Nuclear Magnetic Resonance

- Qubits encoded in spin-1/2 nuclei in a single molecule.
- Mature technology, many early proof of principle demonstrations
- Fundamentally not scalable, many early demonstrations, largely abandoned

Photonics

- Photons can carry QI in, e. g., their polarization state.
- * Great for transmitting quantum info
- * Easy to make, transmit and detect
- Difficult to store Quantum Memories
- Photon-photon gates in cavities, mediated By Rydberg polaritons, One-Way Q.C., Measurement based Quantum Computing

Haroche (ENS), Rempe (MPQ), Schoelkopf (Yale), others

Other Platforms

Nuclear Magnetic Resonance

- Qubits encoded in spin-1/2 nuclei in a single molecule.
- Mature technology, many early proof of principle demonstrations
- Fundamentally not scalable, many early demonstrations, largely abandoned

Photonics

- Photons can carry QI in, e. g., their polarization state.
- * Great for transmitting quantum info
- * Easy to make, transmit and detect
- Difficult to store work on photon Quantum Memories
- Photon-photon gates in cavities, mediated By Rydberg polaritons, One-Way Q.C., Measurement based Quantum Computing

Haroche (ENS), Rempe (MPQ), Schoelkopf (Yale), others

Other Platforms

- NV Centers in Diamond Good for Quantum Sensing
- ***** Electrons floating on liquid Helium

- •
- •
- •
- •

ARTICLE

https://doi.org/10.1038/s41467-019-13335-7

OPEN

Coupling a single electron on superfluid helium to a superconducting resonator

Gerwin Koolstra 1, Ge Yang¹ & David I. Schuster^{1*}

Fig. 1 An electron-on-helium dot a Optical micrograph and b schematic of the device. The resonator (red) can be probed with microwaves via coplanar waveguides

Other Platforms

Nuclear Magnetic Resonance

- Qubits encoded in spin-1/2 nuclei in a single molecule.
- Mature technology, many early proof of principle demonstrations
- Fundamentally not scalable, many early demonstrations, largely abandoned

Photonics

- Photons can carry QI in, e. g., their polarization state.
- * Great for transmitting quantum info
- * Easy to make, transmit and detect
- Difficult to store Quantum Memories
- Photon-photon gates in cavities, mediated By Rydberg polaritons, One-Way Q.C., Measurement based Quantum Computing

Haroche (ENS), Rempe (MPQ), Schoelkopf (Yale), others

Other Platforms

17

- NV Centers in Diamond Good for Quantum Sensing
- * Electrons floating on liquid Helium

Let's go look at some websites...