Cohen-Tannoudji Ch. II & III, Preskill 2.1 & 2.3 **Note:** Everyone is assumed to be familiar with grad level QM Quick review focused on 2-level systems, **Tensor Product spaces and Density Matrix** formalism State vectors ("Rays" in Preskill) 14>€ € State Space **Scalar product** complex number — (**&** is a Hilbert Space) **Linear Operators** Projectors $P_{y} = |4 \times 4|$ Projector on $|4\rangle$ $$P_{\mathcal{E}_{q}} = \sum_{i=1}^{q} |\mathcal{P}_{q}^{i} \times \mathcal{P}_{q}^{i}| \leftarrow \text{projector on subspace } \mathcal{E}_{q}$$ $$\text{Basis in } Q \text{ dimensional } \mathcal{E}_{Q}$$ Hermitian Operators $A^+ = A$ $$A^+ = A$$ Adjoint $|u'\rangle = A|u\rangle \longleftrightarrow \langle u'| = \langle u|A^+$ Physical (measurable) quantities! #### **Linear Operators** Projectors $$P_{4} = |4 \times 4|$$ Projector on $|4\rangle$ $$P_{\mathcal{E}_{q}} = \sum_{i=1}^{q} |P_{q}^{i} \times P_{q}^{i}| \quad \text{projector on subspace } \mathcal{E}_{q}$$ Basis in 4 dimensional \mathcal{E}_{q} ### **Hermitian Operators** $A^+ = A$ Adjoint $$|\chi'\rangle = A|\chi\rangle \longleftrightarrow \langle \psi'| = \langle \chi|A^+|$$ Physical (measurable) quantities! #### **Eigenvalue Equation** - **A** Hermitian - * Eigenvalues of A are real-valued - * Eigenvectors $A(\varphi) = \lambda | \psi \rangle$ are orthogonal $A(\varphi) = \mu | \varphi \rangle$ if $\lambda \neq \mu$ - * Eigenvectors of A form orthonormal basis in & #### **Commuting Observables** \exists orthonormal basis in \mathcal{E} of common eigenvectors of \mathcal{A}, \mathcal{B} #### **Eigenvalue Equation** A Hermitian - ***** Eigenvalues of *A* are real-valued - * Eigenvectors $A(\varphi) = \lambda | \psi \rangle$ are orthogonal $A(\varphi) = \mu | \varphi \rangle$ if $\lambda \neq \mu$ - * Eigenvectors of A form orthonormal basis in $\mathcal E$ ### **Commuting Observables** \exists orthonormal basis in \mathcal{E} of common eigenvectors of $A_{i}B$ C.S.C.O (Complete set of commuting observables) Set A, B, C... such that basis \exists in \mathcal{E} of eigenvectors $[A_m, b_m, C_n...$ uniquely labeled by the set of eigenvalues A_m, b_m, C_n Example H, L^2, L_2 for the Hydrogen atom #### **Unitary Operators** U is unitary \bigcirc $U^{-1} = U^{\dagger} \longleftrightarrow U^{\dagger}U = UU^{\dagger} = 1$ Scalar product invariant: 〈ャレク〉 = 〈チレウ・ひしの〉 $$U(v) = \lambda(v) \Rightarrow \lambda = e^{i\theta}$$ eigenvecs for $\lambda \neq \lambda^{\ell}$ are orthogonal **C.S.C.O** (Complete set of commuting observables) Set A, B, c... such that basis \exists in \mathcal{E} of eigenvectors $[A_m, b_m, C_m]$ uniquely labeled the set of eigenvalues a_m, b_m, C_m Example H, L^2, L_2 for the Hydrogen atom #### **Representation and bases** The set $\{\mu, \gamma\}$ forms a basis in \mathcal{E} if the expansion $$|\psi\rangle = \sum_{i} \langle u_{i} | \psi \rangle | u_{i} \rangle$$ is unique and exists $\forall \psi \rangle \in \mathcal{E}$ #### **Unitary Operators** U is unitary $$\bigcirc U^{-1} = U^{+} \longleftrightarrow U^{+} U^{+} = 1$$ Scalar product invariant: $\langle \psi | \varphi \rangle = \langle \psi | \psi^{\dagger} \psi | \varphi \rangle$ $$U|U\rangle = \lambda |U\rangle \Rightarrow \lambda = e^{i\theta}$$ eigenvecs for $\lambda \neq \lambda^{\ell}$ are orthogonal States $$|24\rangle \iff \begin{cases} A_{11} & \cdots & A_{1n} \\ A_{n1} & \cdots & A_{nn} \end{cases}$$ #### **Postulates of Quantum Mechanics** - (1) At a fixed time t the state of a physical system is defined by specifying a ket $|\psi(t)\rangle$ belonging to the state space ℓ . - (2) Every measurable physical quantity ₼ is described by an operator A acting in ¿; this operator is an observable. - (3) The only possible result of a measurement of A physical quantity *A* is one of the eigenvalues of the corresponding observable *A*. - (4) (Discrete non-degenerate spectrum) When the physical quantity \mathcal{A} is measured on A system in the normalized state $\{\psi\}$, the probability $\mathcal{P}(a_n)$ of obtaining the non-degenerate eigenvalue a_n of the observable A is: $\mathcal{P}(a_n) = |\langle a_n | \psi \rangle|^2 = \langle \psi | P_n | \psi \rangle$ where $|a_n\rangle$ is the normalized eigenvector of A associated with the eigenvalue A_n , and $P = |a_n \times a_n|$ is the projector onto $|a_n\rangle$. #### **Postulates of Quantum Mechanics** (5) If the measurement of the physical quantity A on the system in state μ gives the result A, then the state immediately after the measurement is the normalized projection of μ onto A. $$|\mathcal{L}_{after}\rangle = \frac{P_n |\mathcal{L}_{after}\rangle}{\langle \mathcal{L}_{after}|\mathcal{L}_{after}\rangle}$$ Degenerate case: use projector onto the Subspace associated with A_n . (6) The time evolution of the state vector | 4(6) | Is governed by the Schrödinger equation: $$i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$$ where H(-{) is the observable associated with the total energy of the system. See also Note on the Bayesian Update Rule for "classical" probability distributions #### **Postulates of Quantum Mechanics** (5) If the measurement of the physical quantity A on the system in state μ gives the result A_{μ} , then the state immediately after the measurement is the normalized projection of μ onto μ : $$|Y_{after}\rangle = \frac{P_n |Y\rangle}{\langle y|P_n|Y\rangle}$$ Degenerate case: use projector onto the Subspace associated with A_{μ} . (6) The time evolution of the state vector | 4(4) | Is governed by the Schrödinger equation: $$i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$$ where H(4) is the observable associated with the total energy of the system. See also Note on the Bayesian Update Rule for "classical" probability distributions # Quantum Mechanics of systems that consist of multiple parts <u>Def</u>: Let \mathcal{E}_{1} , \mathcal{E}_{2} be vector spaces of dimension \mathcal{N}_{1} , \mathcal{N}_{2} The vector space $\mathcal{E} = \mathcal{E}_1 \otimes \mathcal{E}_2$ is called the Tensor Product of \mathcal{E}_1 and \mathcal{E}_2 iff $$\forall$$ pairs $|\varphi(i)\rangle \in \mathcal{E}_1, |\chi(i)\rangle \in \mathcal{E}_2, \exists \text{ vector } \in \mathcal{E}$ such that 1. The association is linear with respect to multiplication with complex numbers $$\lambda |\phi(1)\rangle \otimes \mu |\chi(2)\rangle = \lambda \mu [i\phi(1)\rangle \otimes |\chi(2)\rangle$$ # Quantum Mechanics of systems that consist of multiple parts <u>Def</u>: Let \mathcal{E}_{ℓ} , \mathcal{E}_{2} be vector spaces of dimension \mathcal{N}_{ℓ} , \mathcal{N}_{2} The vector space $\xi = \xi_1 \otimes \xi_2$ is called the Tensor Product of ξ_1 and ξ_2 iff \forall pairs $|\varphi(i)\rangle \in \mathcal{E}_1, |\chi(i)\rangle \in \mathcal{E}_2, \exists \text{ vector } \in \mathcal{E}$ such that 1. The association is linear with respect to multiplication with complex numbers $$\lambda |\varphi(1)\rangle \otimes \mu |\chi(2)\rangle = \lambda \mu [\iota \varphi(1)\rangle \otimes |\chi(2)\rangle$$ - 2. Distributive $|\phi(t)\rangle \otimes [\alpha|\chi_1(t)\rangle + b|\chi_2(t)\rangle$ = $\alpha|\phi(t)\rangle \otimes |\chi_1(t)\rangle + b|\phi(t)\rangle \otimes |\chi_2(t)\rangle$ - 3. Bases $\{14, (4)\}$ in ξ , $\{10e(2)\}$ in ξ_2 - | (וא;(וֹ)>@ | עפרצו) is a basis in צ Iff N_1, N_2 are finite, then $Dim(2) = N_1 \times N_2$ These properties The usual linear algebra works in \mathcal{E} Analogy: Tensor product of 102 20 geometrical space Note: $\xi = \xi_1 \otimes \xi_2 \neq 30$ geom. space SP of vectors in \mathcal{E}_1 w/vectors in \mathcal{E}_2 not defined - 2. Distributive $|\varphi(a)\rangle \otimes [\alpha|\chi_1(a)\rangle + b|\chi_2(a)\rangle$ = $\alpha|\varphi(a)\rangle \otimes |\chi_1(a)\rangle + b|\varphi(a)\rangle \otimes |\chi_2(a)\rangle$ - 3. Bases $\{14, (4)\}$ in ξ , $\{10e(2)\}$ in ξ_2 - \$ [เม;(บ๋)>@ เขะ(ย)>] is a basis in £ Iff N_1, N_2 are finite, then $Dim(\mathcal{E}) = N_1 \times N_2$ These properties The usual linear algebra works in \mathcal{E} Analogy: Tensor product of 10 & 20 geometrical space Note: $\xi = \xi_1 \otimes \xi_0 \neq 30$ geom. space SP of vectors in \mathcal{E}_1 w/vectors in \mathcal{E}_2 not defined Vectors in $$\mathcal{E}$$ Let $$\frac{|Q(1)\rangle = \sum \alpha_i |u_i(1)\rangle}{|X(2)\rangle = \sum b_{\ell} |v_{\ell}(2)\rangle}$$ Then $$|\phi(1)\rangle\otimes|\chi(2)\rangle = \sum_{i,\ell} a_i b_{\ell} |u_i(1)\rangle\otimes|v_{\ell}(2)\rangle$$ #### **Hugely important:** There are vectors in \mathcal{E} that <u>are not</u> tensor products of vectors from $\mathcal{E}_1, \mathcal{E}_2$ General vector $e \mathcal{E}$ can be written as How to see? There are $N_1 \times N_2$ prob. ampl's C_{ie} These cannot all be written as $a_i * b_\ell$ where the sets $\{a_i\}$, $\{b_\ell\}$ are valid probability amplitudes. Vectors in $$\mathcal{E}$$ Let $$\frac{|\psi(1)\rangle = \sum \alpha_i |u_i(1)\rangle}{|\chi(2)\rangle = \sum b_i |\psi_i(2)\rangle}$$ Then $$|\phi(1)\rangle\otimes|\chi(2)\rangle = \sum_{i,\ell} a_i b_{\ell} |a_i(1)\rangle\otimes|a_{\ell}(2)\rangle$$ #### **Hugely important:** There are vectors in \mathcal{E} that <u>are not</u> tensor products of vectors from $\mathcal{E}_1, \mathcal{E}_2$ General vector $\boldsymbol{\epsilon} \boldsymbol{\xi}$ can be written as How to see? There are $N_1 \times N_2$ prob. ampl's C_{ie} These cannot all be written as $a_i * b_\ell$ where the sets $\{a_i\}$, $\{b_\ell\}$ are valid probability amplitudes. Example: \mathcal{E}_1 , \mathcal{E}_2 are qubits, $\mathcal{N}_1 = \mathcal{N}_2 = 2$ $|\varphi(1)\rangle = \partial_1 |u_1(1)\rangle + \partial_2 |u_2(1)\rangle$ $|\chi(2)\rangle = b_1 |\psi_1(2)\rangle + b_2 |\psi_2(2)\rangle$ 2 real-valued variables each Product $$\begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_4 \\ a_3 & b_2 \end{bmatrix}$$ General $\begin{bmatrix} C_{11} \\ C_{12} \\ C_{21} \\ C_{22} \end{bmatrix}$ 4 real-valued variables 6 real-valued variables N qubits $$\Rightarrow$$ { product state $\rightarrow 2N$ real variables general state $\rightarrow 2^{N+1}-2$ real var's Example: \mathcal{E}_1 , \mathcal{E}_2 are qubits, $\mathcal{N}_1 = \mathcal{N}_2 = 2$ $$|\langle p(1)\rangle = a_1 |u_1(1)\rangle + a_2 |u_2(1)\rangle$$ $$|\langle (2)\rangle = b_4 |v_1(2)\rangle + b_2 |v_2(2)\rangle$$ 2 real-valued variables each In basis { | M; (1) > | (2) > } $$\mathbb{N}$$ qubits \Rightarrow $$\begin{cases} \text{product state} \rightarrow 2\mathbb{N} \text{ real variables} \\ \text{general state} \rightarrow 2^{\mathbb{N}+1} - 2 \text{ real var's} \end{cases}$$ Note: States **E** that are not product states are known as **Entangled States** or **Correlated States** End 09-20-2023 Example: \mathcal{E}_1 , \mathcal{E}_2 are qubits, $\mathcal{N}_1 = \mathcal{N}_2 = 2$ $$|\varphi(1)\rangle = Q_1 |u_1(1)\rangle + Q_2 |u_2(1)\rangle$$ $$|\chi(2)\rangle = b_1 |v_1(2)\rangle + b_2 |v_2(2)\rangle$$ 2 real-valued variables each In basis { | Mi(1) > | Ne(2) > } $$\mathbb{N}$$ qubits \Rightarrow $$\begin{cases} \text{product state} \rightarrow \mathbb{2}\mathbb{N} \text{ real variables} \\ \text{general state} \rightarrow \mathbb{2}^{\mathbb{N}+1} - \mathbb{2} \text{ real var's} \end{cases}$$ Note: States *e €* that are not product states are known as **Entangled States** or **Correlated States** Begin 09-25-2023 Back to the Linear Algebra engine of QM Scalar product: $$(\langle \varphi'(1)| \otimes \langle \chi'(2)|) (| \varphi(1) \rangle \otimes | \chi(2) \rangle)$$ = $\langle \varphi'(1)| \varphi(1) \rangle \langle \chi'(2)| \chi(2) \rangle$ Operators: Let A(1) act in $\mathcal{E}(1)$ The Extension $\tilde{A}(1)$ acting in \mathcal{E} is defined by $$\widetilde{A}(1)\left[|\varphi(1)\rangle\otimes|\chi(2)\rangle\right]=\left(A(1)|\varphi(1)\rangle)\otimes|\chi(2)\rangle$$ Extension 3(2) of B(2) into \mathcal{E} is similar Note: States **E** that are not product states are known as **Entangled States** or **Correlated States** Begin 09-25-2023 #### **Back to the Linear Algebra engine of QM** Scalar product: $$(\langle \varphi'(1)| \otimes \langle \chi'(2)|) (| \varphi(1) \rangle \otimes | \chi(2) \rangle)$$ = $\langle \varphi'(1)| \varphi(1) \rangle \langle \chi'(2)| \chi(2) \rangle$ Operators: Let A(1) act in £(1) The Extension $\widetilde{A}(q)$ acting in \mathcal{E} is defined by $$\widetilde{A}(1)\left[1\varphi(1)>\otimes |\chi(2)>\right] = \left(A(1)|\varphi(1)>\right)\otimes |\chi(2)>$$ Extension $\mathfrak{F}(2)$ of $\mathfrak{F}(2)$ into $\boldsymbol{\mathcal{E}}$ is similar #### **Tensor Product of Operators** $$[A(1) \otimes B(2)][I\varphi(1) \otimes I\chi(2)\rangle] = [A(1)I\varphi(1)\rangle] \otimes [B(2)I\chi(2)\rangle]$$ $$\Rightarrow A(1) \otimes B(2) = \widetilde{A}(1) \widetilde{B}(2)$$ #### **Commutator** $$[\hat{A}(1), \hat{B}(2)] = 0$$ because $[A(1), 1(1)] = [B(2), 1(2)] = 0$ #### **Notation:** Obvious from context $$|Q(1)\rangle \otimes |\chi(2)\rangle \longrightarrow |Q(1)\rangle |\chi(2)\rangle \longrightarrow |Q(1)\chi(2)\rangle$$ $$A(1)\otimes B(2) \longrightarrow A(1)B(2)$$ $$\tilde{A}(1) \longrightarrow A(1)$$ #### **Tensor Product of Operators** $$[A(1) \otimes B(2)][Ip(1) \otimes IX(2) \rangle] = [A(1)Ip(1) \rangle] \otimes [B(2)IX(2) \rangle$$ $$\Rightarrow$$ $A(1) \otimes B(2) = \widetilde{A}(1) \widetilde{B}(2)$ #### **Commutator** $$[\hat{A}(1), \hat{B}(2)] = 0$$ because $[A(1), 1(1)] = [B(2), 1(2)] = 0$ #### **Notation:** Obvious from context $$|Q(1)\rangle \otimes |\chi(2)\rangle \longrightarrow |Q(1)\rangle |\chi(2)\rangle \longrightarrow |Q(1)\chi(2)\rangle$$ $$A(1) \otimes B(2) \longrightarrow A(1)B(2)$$ $$\widetilde{A}(1) \longrightarrow A(1)$$ #### Eigenvalue problem in & Let $$A(1)|\phi_n'(1)\rangle = \alpha_n|\phi_n'(1)\rangle$$, $i=1,...,g_n$ \Rightarrow $$A(1)|\phi_n'(1)\chi(2)\rangle = \alpha_n|\phi_n'(1)\chi(2)\rangle \forall |\chi(2)\rangle \in \mathcal{E}_2$$ Can choose $|\chi(z)\rangle \mathcal{E}$ orthonormal basis in \mathcal{E}_2 \Rightarrow 9; $\times N_2$ - fold degeneracy of a_n in \ge Furthermore $$\begin{cases} A(1)|\varphi_{n}'(1)\rangle = \alpha_{n}|\varphi_{n}'(1)\rangle \\ B(2)|\chi_{e}'(2)\rangle = b_{e}|\chi_{e}'(2)\rangle \end{cases}$$ Postulates of QM apply in \mathcal{E}_1 , \mathcal{E}_2 and \mathcal{E}_3 We are Done! Cohen-Tannoudji Ch. III, Complement D_{III} # Quantum Measurement on Bipartite Systems ### **Consider the following:** Bipartite System $\mathcal{E} = \mathcal{E}_{1} \otimes \mathcal{E}_{2}$ $\widetilde{A}(\iota) = A(\iota) \otimes \mathcal{I}(2)$ Observable on System 1 Possible outcomes when measuring $\tilde{A}(1)$? { Eigenvalues of $$\tilde{A}(1)$$ } = { Eigenvalues of $A(1)$ } $$\tilde{g}_n = g_n \times N_2$$ $$g_n$$ Same possible outcomes a_n indep of \Rightarrow Degeneracy in \mathcal{E} increases by a factor \mathcal{N}_2 Projector: $$P_{n}(t) = \sum_{i=1}^{9n} |a_{n}^{i}(t)\rangle\langle a_{n}^{i}(t)|$$ for eigenvalue a_{n} Using the recipe to extend an operator into & $$\tilde{P}_{n}(1) = P_{n}(1) \otimes 1(2)$$ $$= \sum_{i=1}^{9k} \sum_{k} |a_{n}^{i}(1)v_{k}(2)\rangle \langle a_{n}^{i}(1)v_{k}(2)|$$ Probability of outcome $\mathcal{O}_{\mathcal{N}}$, $|\psi\rangle$ general state $e\mathcal{E}$ $$p(\alpha_n) = \langle \phi - | \widetilde{P}_n(i) | \psi \rangle$$ $$= \sum_{i=1}^{9n} \sum_{k} \langle \phi | \alpha_n^i(i) \sigma_k(2) \rangle \langle \alpha_n(i) \sigma_k(2) | \phi \rangle$$ Posterior state $$|\psi\rangle = \frac{1}{\sqrt{p(a_n)}} \stackrel{\sim}{P}(a) |\psi\rangle$$ #### **Some Observations:** - 1. Basis (2) arbitrary, no phys. significance - 2. Product States Let $|\psi\rangle = |\varphi(\iota)\rangle \otimes |\chi(2)\rangle$ If we measure $A(\iota)$ and observe $|q_n(\iota)\rangle$ then $|\psi'\rangle \propto P_n(\iota) |\varphi(i)\rangle \otimes |\chi(2)\rangle |\chi(2)\rangle \propto |\varphi'(1)\rangle \otimes |\chi(2)\rangle$ still a product state #### 3. Entangled States Consider a pair of states where n and i labels the eigenvalues and degeneracies within the subspace g_n $$|\varphi(1)\rangle = \sum_{n} \sum_{i=1}^{g_n} a_{ni} |u_{ni}(1)\rangle, |\chi(2)\rangle = \sum_{k} b_{k} |\chi_{k}(2)\rangle$$ The corresponding product state is of the form $$| \psi \rangle = \sum_{n} \sum_{i=1}^{q_n} \sum_{k} a_n : b_k | u_n : (1) \rangle | \chi_{\ell}(2) \rangle$$ By comparison, the most general state in € has the form $$| \psi \rangle = \sum_{n} \sum_{i=1}^{q_n} \sum_{k} C_{nik} |u_{ni}(2)\rangle | \langle k(2)\rangle$$ If the $C_{n,k}$ are all products of the type O_n ; D_k then $|\psi\rangle$ is a product state. Otherwise, $|\psi\rangle$ is entangled. #### **Some Observations: (Continued)** #### 3. Entangled States If we measure A(1) and observe the outcome a_N then the posterior state is $$[\psi']$$ $\propto [P_N(1) \otimes 1(2)] [\psi] \propto \sum_{i=1}^{9n} \sum_{k} C_{Nik} [|u_{Ni}(1)\rangle \otimes |\chi_k(2)\rangle]$ Now, if $g_N = 1$ then the state $|u_N(1)|$ occurs exactly once in the sum above, and therefore $$|\psi\rangle \propto |u_{N}(1)\rangle \otimes \sum_{k} |\chi_{k}(2)\rangle \propto \left(|u_{N}(1)\rangle \otimes |\chi(2)\rangle\right)$$ Conceptually, once the measurement tells us that system 1 is in the exact state $|u_N(t)\rangle$, then it factors out in the global state. The case $g_N > 1$ is more subtle. Once we measure a_N , we know system 1 resides in the degenerate subspace associated with the outcome a_N . Repeat measurements do not generate further information about which of the exact $|u_N(t)|$ our system is in. Thus, the measurement removes some, but not all of the entanglement present in $|\psi\rangle$. To completely factorize the state we would need to measure a C.S.C.O. This will identify not only the degenerate subspace but also the specific state vector $|u_N(t)\rangle$. See Cohen-Tannoudji Chapter III, Complement D_{III} #### **Some Observations:** (Continued) #### 3. Entangled States If we measure A(4) and observe the outcome A_{AA} then the posterior state is $$[\phi']$$ $\propto [P_N(1) \otimes 1(2)] [\phi'] \propto \sum_{i=1}^{q_N} \sum_{k} C_{Nik} [|u_{Ni}(1)\rangle \otimes |\chi_k(2)\rangle]$ Now, if $g_{N} = 1$ then the state $|u_{N}(1)\rangle$ occurs exactly once in the sum above, and therefore $$|\psi\rangle\propto|u_{N}(1)\rangle\otimes\sum_{k}|\chi_{k}(2)\rangle\propto\left(|u_{N}(1)\rangle\otimes|\chi(2)\rangle\right)$$ Conceptually, once the measurement tells us that system 1 is in the exact state $|u_{A}(t)\rangle$, then it factors out in the global state. The case $9_{\text{A}} > 1$ is more subtle. Once we measure (A), we know system 1 resides in the degenerate subspace associated with the outcome Q_{A} . Repeat measurements do not generate further information about which of the exact $|\mathcal{U}_{n}(t)\rangle$ our system is in. Thus, the measurement removes some, but not all of the entanglement present in \(\psi \rangle \). To completely factorize the state we would need to measure a C.S.C.O. This will identify not only the degenerate subspace but also the specific state vector $|\mathcal{M}_{\mathbf{a}|}(1)\rangle$. See Cohen-Tannoudji Chapter III, Complement D_{III} #### Physical Interpretation of T.P. States From (2) above, measuring $A(\iota)$, B(2) $$\mathcal{P}(a_n,b_n) = \langle \mathcal{Q}(\iota)|\mathcal{P}_n(\iota)|\mathcal{Q}(\iota)\rangle \langle \chi(2)|\mathcal{P}_n(\iota)|\chi(2)\rangle$$ \diamond Outcomes $O_{n_1} O_n$ are Independent Random Var's **L** Uncorrelated #### **Physical Interpretation of Entangled States** From (3) above, measuring $A(\iota)$, B(2) Global (ひ) cannot be written as (のい) ⊗ (以の) $$P(\alpha_n, b_k) = \langle \psi | P_n(1) P_k(2) | \psi \rangle$$ In general, $a_n \ge b_k$ will be correlated random variables Conclusion: We cannot assign state vectors to the individual subsystems! #### **Physical Interpretation of T.P. States** From (2) above, measuring $A(\iota)$, B(2) $$\mathcal{P}(a_n,b_k) = \langle \mathcal{Q}(\iota)|\mathcal{P}_n(\iota)|\mathcal{Q}(\iota)\rangle \langle \chi(2)|\mathcal{P}_n(\iota)|\chi(2)\rangle$$ \diamond Outcomes $O_{n_1} b_n$ are Independent Random Var's **L** Uncorrelated #### **Physical Interpretation of Entangled States** From (3) above, measuring $A(\iota)$, B(2) Global (ひ) cannot be written as (のい) @ (以い) $$P(a_n, b_k) = \langle \psi | P_n(1) P_k(2) | \psi \rangle$$ { In general, $a_n \ge b_k$ will be correlated random variables Conclusion: We cannot assign state vectors to the individual subsystems! #### Note: Even though we cannot assign |φ(1)>, |χ(2)>, it is still possible to have a local description of each subsystem on its own. It must be consistent with tensor product states, yet it must reduce the information that is locally available when the global |ψ> is entangled ### **Density Matrix Formalism** Definition: A system for which we know only the probabilities $\{1,4,6\}$ of finding the system in state $\{1,4,6\}$ is said to be in a statistical mixture of states. Shorthand: mixed state. Shorthand for non-mixed state: pure state #### Note: Even though we cannot assign |φ(1)>, |χ(2)>, it is still possible to have a local description of each subsystem on its own. It must be consistent with tensor product states, yet it must reduce the information that is locally available when the global |ψ> is entangled #### **Density Matrix Formalism** Definition: A system for which we know only the probabilities $\{1, 4, 6\}$ of finding the system in state $\{1, 4, 6\}$ is said to be in a statistical mixture of states. Shorthand: mixed state. Shorthand for non-mixed state: pure state **<u>Definition</u>**: Density Operator for pure states **<u>Definition</u>**: Density Matrix $$|4(t)\rangle = \sum_{n} C_{n}(t)|u_{n}\rangle \Rightarrow$$ $Q_{pn}(t) = \langle u_{p}|Q(t)|u_{n}\rangle = C_{p}(t)C_{n}^{*}(t)$ **<u>Definition</u>**: Density Operator for mixed states $$g(t) = \sum_{k} n_k g_k(t), g_k = [4_k(t) \times 4_k(t)]$$ Note: A pure state is just a mixed state for which one 15 and the rest are zero. The terms Density Operator and Density Matrix are used interchangeably **<u>Definition</u>**: Density Operator for pure states **Definition: Density Matrix** $$|4(t)\rangle = \sum_{n} C_{n}(t)|u_{n}\rangle \Rightarrow$$ $Q_{pn}(t) = \langle u_{p}|Q(t)|u_{n}\rangle = C_{p}(t)C_{n}^{*}(t)$ **Definition: Density Operator for mixed states** $$g(t) = \sum_{k} n_{k} g_{k}(t), g_{k} = [4_{k}(t) \times 4_{k}(t)]$$ Note: A pure state is just a mixed state for which one 1 = 1 and the rest are zero. The terms Density Operator and Density Matrix are used interchangeably Let \bigcap be an observable w/eigenvalues \bigcap _n Let \bigcap be the projector on the eigen-subspace of \bigcap _n For a <u>pure</u> state, $g(t) = |\psi(t) \times \psi(t)|$, we have (*) Tr $$g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{2} = 1$$ (*) $$\langle A \rangle = \langle \chi(t) | A | 2 \langle t \rangle \rangle = \sum_{p} \langle \chi(t) | A | \mu_{p} \times \mu_{p} | 2 \langle t \rangle \rangle$$ $$= \sum_{p} \langle \mu_{p} | \chi(t) \times \chi(t) | A | \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \langle t \rangle A | \mu_{p} \rangle$$ $$= Tr[2 \langle t \rangle A] \quad (|\mu_{p}\rangle \text{ basis in } \mathcal{X})$$ (*) Let \mathcal{P}_n be the projector on eigensubspace of α_n $\mathcal{P}(\alpha_n) = \langle \psi(t) | \mathcal{P}_n | \psi(t) \rangle = \text{Tr}[g(t) \mathcal{P}_n]$ (*) $$g(t) = [x(t) \times x(t)] + [x(t) \times x(t)]$$ $$= \frac{1}{18} [x(t) \times x(t)] - \frac{1}{18} [x(t) \times x(t)] + [x(t) \times x(t)]$$ $$= \frac{1}{18} [x(t) \times x(t)] + [x(t) \times x(t)]$$ Let A be an observable w/eigenvalues O_n Let \mathbb{Q} be the projector on the eigen-subspace of $\mathcal{O}_{\mathbf{n}}$ For a <u>pure</u> state, $g(\ell) = |\psi(\ell) \times \psi(\ell)|$, we have (*) Tr $$g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{2} = 1$$ (*) $$\langle A \rangle = \langle \psi(t) | A | \psi(t) \rangle = \sum_{p} \langle \psi(t) | A | \mu_{p} \times \mu_{p} | \psi(t) \rangle$$ $$= \sum_{p} \langle \mu_{p} | \psi(t) \times \psi(t) | A | \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \psi(t) | A | \mu_{p} \rangle$$ $$= Tr[g(t)A] \quad (|\mu_{p}\rangle \text{ basis in } \mathcal{X})$$ - (*) Let \mathcal{P}_n be the projector on eigensubspace of a_n $\mathcal{P}(a_n) = \langle \psi(t) | \mathcal{P}_n | \psi(t) \rangle = \text{Tr}[g(t) \mathcal{P}_n]$ - (*) $g(t) = |\chi(t) \times \chi(t)| + |\chi(t) \times \chi(t)|$ $= \frac{1}{18} |\chi(t) \times \chi(t)| \frac{1}{18} |\chi(t) \times \chi(t)| + +$ Let A be an observable w/eigenvalues O_n Let \mathbb{Q} be the projector on the eigen-subspace of $\mathcal{O}_{\mathbf{n}}$ For a <u>mixed</u> state, $g(t) = \sum_{k} \gamma_{k} g_{k}(t)$, $g_{k} = [4_{k}(t) \times 4_{k}(t)]$ (*) $$Trg(t) = \sum_{k} \eta_{k} Trg_{k}(t) = 1$$ (*) $$\langle A \rangle = \sum_{k} \eta_{k} \langle \psi_{k}(t) | A | \psi_{k}(t) \rangle = \sum_{k} \gamma_{k} Tr[g_{k}(t) A]$$ $$= Tr[g(t) A]$$ (*) Let \mathbb{Q} be the projector on eigensubspace of \mathfrak{a}_{n} $$P(a_n) = \sum_{k} \gamma_k \langle \psi_k(t) | P_n | \psi_k(t) \rangle = \text{Tr}[g(t)P_n]$$ (*) $$g(t) = \sum_{k} \gamma_{k} (|\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$ $$= \sum_{k} \gamma_{k} \frac{1}{2} (|\psi(t) \times \psi(t)| - |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$ $$= \frac{1}{2} [H, g] \qquad Density O$$ Density Operator formalism is general! Let A be an observable w/eigenvalues O_n Let \mathbb{Q} be the projector on the eigen-subspace of \mathcal{O}_n For a <u>mixed</u> state, $g(t) = \sum_{k} \gamma_{k} g_{k}(t)$, $g_{k} = [4_{k}(t) \times 4_{k}(t)]$ (*) $$Trg(t) = \sum_{k} \eta_{k} Trg_{k}(t) = 1$$ (*) $$\langle A \rangle = \sum_{k} \eta_{k} \langle \psi_{k}(k) | A | \psi_{k}(k) \rangle = \sum_{k} \gamma_{k} \operatorname{Tr}[g_{k}(k) A]$$ $$= \operatorname{Tr}[g(k) A]$$ (*) Let \mathbb{Q} be the projector on eigensubspace of \mathfrak{a}_{N} formalism is general $$\mathcal{P}(a_n) = \sum_{k} \gamma_k \langle \psi_k(t) | P_n | \psi_k(t) \rangle = \text{Tr}[g(t) P_n]$$ (*) $$g(t) = \sum_{k} \gamma_{k} (|\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$ $$= \sum_{k} \gamma_{k} \frac{1}{2} (|\psi(t) \times \psi(t)| - |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$ $$= \frac{1}{2} [|\psi(t) \times \psi(t)| - |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$ Density Operator Important properties of the Density Operator - (1) g is Hermitian, $g^+ = g \Rightarrow g$ is an observable g basis in which g is diagonal In this basis a pure state has one diagonal element g the rest g - (2) Test for purity. Pure: $g^2 = g \Rightarrow \forall r g^2 = 1$ Mixed: $g^1 \neq g \Rightarrow \text{Tr } g^1 < 1$ (3) Schrödinger evolution does not change the Mg Tr g² is conserved pure states stay pure mixed states stay mixed Changing pure mixed requires non-Hamiltonian evolution − see Cohen Tannoudji D_{III} & E_{III} #### Important properties of the Density Operator - (1) ς is Hermitian, $\varsigma^+ = \varsigma$ φ is an observable 🏓 🖥 basis in which 🥥 is diagonal In this basis a pure state has one diagonal element = 1, the rest = 0 - Test for purity. **(2)** Pure: $g^2 = g \Rightarrow \forall r g^2 = 1$ Mixed: $g^1 \neq g \Rightarrow \text{Tr } g^1 < 1$ Schrödinger evolution does not change the Mg Changing pure in mixed requires non-Hamiltonian evolution – see Cohen Tannoudji D_{III} & E_{III} #### **Summary So Far** **Density Operator:** **Terminology:** Me, 14, known #### **Properties** - (2) $\langle H \rangle = IrLyrd$ (3) $P(a_m) = Tr[gP_n]$, P_n : projector onto \mathcal{E} (4) $\frac{d}{dt}g = \frac{1}{it}[H_ig]$ Schrödinger Eq. (5) g pure $\rightarrow g^2 = g_1 Tr g^2 = 1$ (6) $\frac{d}{dt} Tr g^2 = 0 \rightarrow S$. E. conserves purity #### **Summary So Far** ### **Density Operator:** Terminology: #### **Properties** - (1) Tr g = 1 - (2) $\langle A \rangle = Tr[QA]$ - (3) $P(a_m) = Tr[gP_n], P_n: projector onto g$ - (4) $\frac{\partial}{\partial t}g = \frac{1}{2} [H_1g]$ - (5) $g \text{ pure } \to g^2 = g_1 \text{ Tr } g^2 = 1$ - (6) $\frac{d}{dt} \operatorname{Tr} g^2 = 0 \longrightarrow S$. E. conserves purity #### **Separate Description of Part of a System** Let $$\mathcal{E} = \mathcal{E}_1 \otimes \mathcal{E}_2$$ T.P. Basis Density Operator g in \mathcal{E} Describes global system **Goal:** To "reverse engineer operators Q(1) in \mathcal{E}_{1} and Q(2) in \mathcal{E}_{2} such that describe the systems independently Our starting point is the global density operator $$S = \sum_{\substack{(i,j)(k\ell)}} S_{(i,j)(k\ell)} | u_i v_j \times u_k v_{\ell}|$$ $$i, k \in \text{System (1)}$$ $$j, l \in \text{System (2)}$$ T.P. basis states End 09-27-2023 #### **Separate Description of Part of a System** Let $$\mathcal{E} = \mathcal{E}_1 \otimes \mathcal{E}_2$$ T.P. Basis $\{|u_i(1)\rangle\} \otimes \{|v_p(2)\rangle\}$ Density Operator g in \mathcal{E} — Describes global system Goal: To "reverse engineer operators g(1) in \mathcal{E}_1 and g(2) in \mathcal{E}_2 such that describe the systems independently Our starting point is the global density operator $$S = \sum_{\{i,j\} \in \mathbb{N}} S_{\{i,j\} \in \mathbb{N}} |u_i v_j \times u_k v_e|$$ $$i, k \in \text{System (1)}$$ $$j, l \in \text{System (2)}$$ T.P. basis states **Definition:** Partial Trace $$g(i) = \text{Tr}_{2} g = \sum_{q} \langle v_{q} | g | v_{q} \rangle$$ $$= \sum_{q} \sum_{(ij)(k\ell)} g_{(ij)(k\ell)} \langle v_{q} | | u_{i} v_{j} \times u_{k} v_{\ell} | | v_{q} \rangle$$ $$= \sum_{i,k} \sum_{q} g_{(iq)(kq)} | u_{i} \times u_{k} | + \text{operator in } \mathcal{E}_{1}$$ #### Check properties of (CA) (1) $$g(a)^{+} = \sum_{i \neq k} \sum_{q} g_{(iq)(kq)}^{*} [u_i \times u_{\ell}]$$ $$= \sum_{i \neq k} \sum_{q} g_{(kq)(iq)} [u_k \times u_i] \longrightarrow \text{Relabel}$$ $$= \sum_{i \neq k} \sum_{q} g_{(iq)(kq)} [u_i \times u_{\ell}] = g(a)$$ (2) $$g(1)$$ Hermitian \rightarrow we can choose a basis $\{|\omega_{k}(1)\rangle\}$ So $g(1)$ is diagonal $\rightarrow g_{(ia)}(ka) \ll \delta_{ik}$ #### **Definition:** Partial Trace #### Check properties of $\varphi(\alpha)$ (1) $$g(1)^{+} = \sum_{i \neq k} \sum_{q} g_{(i \neq k)}^{*} [u_{i} \times u_{k}]$$ $$= \sum_{i \neq k} \sum_{q} g_{(k \neq k)}^{*} [u_{k} \times u_{k}] \longrightarrow \text{Relabel}$$ $$= \sum_{i \neq k} \sum_{q} g_{(k \neq k)}^{*} [u_{k} \times u_{k}] \longrightarrow \text{Relabel}$$ $$= \sum_{i \neq k} \sum_{q} g_{(i \neq k)}^{*} [u_{k} \times u_{k}] = g(1)$$ (2) g(1) Hermitian \rightarrow we can choose a basis $\{|\omega_{k}(1)\rangle\}$ So g(1) is diagonal $\rightarrow g_{(ia)}(ha) \ll \delta_{ik}$ Thus $$S(1) = \sum_{k} \sum_{\underline{q}} S_{(kq)(kq)} |w_{\underline{k}} \times w_{\underline{k}}|$$ $$= \sum_{\underline{k}} \gamma_{\underline{k}} |w_{\underline{k}} \times w_{\underline{k}}|$$ Note: - (1) $S_{(k_q)(k_q)} = \text{population of } |W_k(1)\rangle \otimes |V_q(2)\rangle$, i.e. prob. of finding the global system in this state. - (2) $\gamma_{k} = \sum_{q} S_{(k_{q})(k_{q})}$ is a marginal probability, i.e., the prob. of finding system 1 in $|\omega_{k}\rangle$, found by adding the probs $S_{(k_{q})(k_{q})}$ of finding the global system in the states $|\omega_{k} v_{q}\rangle$ #### **Visualization - Marginal Probability** **Thus** $$g(1) = \sum_{k} \sum_{\underline{q}} g_{(kq)(kq)} | w_{\underline{k}} \times w_{\underline{k}} |$$ $$= \sum_{\underline{k}} \gamma_{\underline{k}} | w_{\underline{k}} \times w_{\underline{k}} |$$ Note: |Wg(1)> @ |Vg(2)> prob. of finding the global system in this state. (2) $\mathcal{N}_{\ell_{\alpha}} = \sum_{q} \mathcal{S}_{(\ell_{l_{\alpha}})(\ell_{l_{\alpha}})}$ is a <u>marginal probability</u>, i.e., the prob. of finding system 1 in $|\omega_{\ell_{\alpha}}\rangle$, found by adding the probs $\mathcal{S}_{(\ell_{l_{\alpha}})(\ell_{l_{\alpha}})}$ of finding the global system in the states $|\omega_{\ell_{\alpha}} v_{l_{\alpha}}\rangle$ **Visualization - Marginal Probability** We <u>define</u> $$Q(1) = Tr_2 Q$$ $$Q(2) = Tr_1 Q$$ Partial Traces or Reduced Density Operators Note: We already know these are Hermitian operators. Also, $$Trg = \sum_{n} \sum_{q} \langle u_{n}v_{q} | g | u_{n}v_{q} \rangle$$ $$global g = Tr_{1}(Tr_{2}g) = Tr_{1}(g(i))$$ $$= Tr_{2}(Tr_{1}g) = Tr_{2}(g(2)) = 1$$ Unit Trace Operators! **Expectation Values:** Insert identity here $$\langle \tilde{A}(1) \rangle = Tr \left[g(1) \tilde{A}(1) \right] = \sum_{n \neq 1} \langle u_n v_{\neq} | g(1) \tilde{A}(1) | u_n v_{\neq} \rangle$$ $$= \sum_{n \neq 1} \sum_{n' \neq 1} \langle u_n v_{\neq} | g(1) | u_{n'} v_{q'} \times u_{n'} v_{q'} | A(1) \otimes \underline{I}(2) | u_n v_{\neq} \rangle$$ $$= \sum_{n \neq 1} \sum_{n' \neq 1} \langle u_n | g(1) | u_{n'} \times u_{n'} | A(1) | u_n \rangle$$ $$= \sum_{n \neq 1} \langle u_n | g(1) | u_{n'} \times u_{n'} | A(1) | u_n \rangle$$ $$= \sum_{n \neq 1} \langle u_n | g(1) | u_n \rangle = Tr \left(g(1) A(1) \right)$$ We define $$g(1) = Tr_1 g$$ $g(2) = Tr_1 g$ Partial Traces or Reduced Density Operators Note: We already know these are Hermitian operators. Also, $$Trg = \sum_{n} \sum_{q} \langle u_{n} v_{q} | g | u_{n} v_{q} \rangle$$ $$global g = Tr_{1}(Tr_{2}g) = Tr_{1}(g(i))$$ $$= Tr_{2}(Tr_{1}g) = Tr_{2}(g(2)) = 1$$ Unit Trace Operators! #### **Expectation Values:** Insert identity here $$\langle \tilde{A}(1) \rangle = Tr \left[g(1) \tilde{A}(1) \right] = \sum_{n \neq 1} \langle u_n v_{\downarrow 1} | g(1) | \tilde{A}(1) | u_n v_{\downarrow 2} \rangle$$ $$= \sum_{n \neq 1} \sum_{n' \neq 1} \langle u_n v_{\downarrow 1} | g(1) | u_{n'} v_{\downarrow 1} | X u_{n'} v_{\downarrow 1} | A(1) \otimes I(2) | u_n v_{\downarrow 2} \rangle$$ $$= \sum_{n \neq 1} \sum_{n' \neq 1} \langle u_n | g(1) | u_{n'} | X u_{n'} | A(1) | u_{n'} \rangle$$ $$= \sum_{n \neq 1} \langle u_n | g(1) | u_{n'} | X u_{n'} | A(1) | u_{n'} \rangle$$ $$= \sum_{n \neq 1} \langle u_n | g(1) | u_{n'} | X u_{n'} | A(1) | u_{n'} \rangle$$ #### We conclude: $$g(\iota)$$, $g(\mathfrak{L})$ are unit trace, Hermitian Operators $\langle \tilde{A}(\iota) \rangle = \text{Tr} \left(g(\iota) A(\iota) \right)$, $\langle \tilde{B}(\mathfrak{L}) \rangle = \text{Tr} \left(g(\iota) B(\mathfrak{L}) \right)$ are density operators for system (1) and system (2) #### **Additional Comments:** - (2) If g is pure, Trg=1, we still can have $Trg(1)^2 \neq 1$, $Trg(2)^2 \neq 1$ - (2) If the Global state is a T. P., 「か>= ログ(い)〉) ※(2)〉 then $$\begin{cases} \sigma(i) = |\varphi(i) \times \varphi(i)| \\ \sigma(i) = |\gamma(i) \times \gamma(i)| \end{cases}$$ (3) The Global state can itself be mixed. In that case a product state will have the following structure $$S = \mathcal{I}(1) \otimes \mathcal{I}(2) \Rightarrow \begin{cases} \mathcal{T}_{2} \left[\mathcal{I}(1) \otimes \mathcal{I}(2) \right] = \mathcal{I}(1) \\ \mathcal{T}_{1} \left[\mathcal{I}(1) \otimes \mathcal{I}(2) \right] = \mathcal{I}(2) \end{cases}$$ #### **Additional Comments:** - (4) However, if $g(1) = T_1(g)$, $g(2) = T_1(g)$ then in general $g' = g(1) \otimes g(2) \neq g$ - (5) If the evolution of g is Hamiltonian, $e^{\frac{1}{2}[H_1g]}$, we cannot in general find a $H(\iota)$ that allows analogous equations for $g(\iota)$, $g(\iota)$ #### Note: Hamiltonian evolution conserves the purity of g. However, if $g(\iota)$ is initially pure (unentangled S_1 , S_2) the global evolution may entangle S_1 , S_2 and cause $g(\iota)$ to become mixed. Evolution of $\phi(\iota)$ is not Hamiltonian # Important Application: System-Reservoir Theory **Environment/Reservoir** - * We do measurements on the system only Describe it by ς_s , evolve by a non-Hamiltonian Equation of Motion. - * The environment is too large, with too many degrees of freedom to keep track of. Coupling correlates (entangles) the system and environment, but information transferred to the latter is lost. # Important Application: System-Reservoir Theory - * Reasonable assumptions about the environment - "Master Equation" for $$\dot{g}_s = \frac{1}{iR} [H_s, g_s] + \mathcal{L}(g_s)$$ - * The Liouvillian \mathscr{L} accounts for relaxation and decoherence - * Alternative description in terms of Decohering Channels. ## What comes next?