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Review of Quantum Mechanics

Note: Everyone is assumed to be
familiar with grad level QM

P

Quick review focused on 2-level systems,
Tensor Product spaces and Density Matrix
formalism

Linear Operators

VigvegL: Aly) =iyxHeg

State vectors (“Rays” in Preskill)

Unique quantum state <=» unique state vector

[Y> & £ «— State Space

Projectors F.L = (% X% | «— Projector on ly>

:
Pg; '_Zc_il%fx‘-&[ <— projector on subspace ggL

Basis in  dimensional £,

Scalar product LPlyy = dy [ S
complex number —f
( £ is a Hilbert Space )

Hermitian Operators At=4

Adjoint |y'Y = Aly) e <y'[ =<y (A*

Physical (measurable) quantities!
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Linear Operators

Yigvel: Aly)=lyHeg

Projectors % = [3 X% | «— Projector on [y >

S
Pg; ,_Z:QI‘PQXC&I <— projector on subspace EQI_

Basis in @ dimensional &,

Eigenvalue Equation Alyd= Ay

A Hermitian

% Eigenvalues of A are real-valued

A%y =Xly>  are orthogonal
Alps=pmlgy  if Az pm

% Eigenvectors ol A form orthonormal basis in £

* Eigenvectors

Hermitian Operators At=4

Adjoint [3'Y = Alyd e <y =< (A*

Physical (measurable) quantities!

Commuting Observables

(ag]=48-BA=0 B

3 orthonormal basis in £ of common
eigenvectors of A [
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Eigenvalue Equation Aly>= Alyy
A Hermitian

% Eigenvalues of A are real-valued

A%y =xly>  are orthogonal
Alr{?)://\)l()7 if z\*/"

% Eigenvectors of A form orthonormal basis in £

% Eigenvectors

C.S.C.0 (Complete set of commuting observables)

Set A, B,C... such that basis 3in £ of
eigenvectors [o\m.b,.,,c,,”,,& uniquely labeled

by the set of eigenvalues a,,, bm ,Cm

Example | L'Lj Ly for the Hydrogen atom

Commuting Observables

(ag]=48-BA=0 ®

3 orthonormal basis in £ of common
eigenvectors of A [

Unitary Operators

U isunitary B 0U-1:-pTe vtu=vvf=1
Scalar product invariant: <y[@) = <y [vTvlp>

B U isachange of basisin £

DIUS =MD B A=ei®

eigenvecs for A%\’ are orthogonal
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C.5.C.0 (Complete set of commuting observables)
Set A, B,C... such that basis 3 in £ of
eigenvectors [a\m.b,.,)cm,,& uniquely labeled

the set of eigenvalues a,,, b,,.’Cm

Example 1_°~J L, for the Hydrogen atom

Representation and bases

The set §1u,d} forms a basisin £ if the
expansion

is unique and exists

1> = 24 1% 4, VigSes

Unitary Operators

U isunitary @ 0-1:-pte 0Tu=00:1
Scalar product invariant: <y[() = <¢[vTvip>
B U isachange of basisin £

DIUS> =Av> B Acei®

eigenvecs for A%\’ are orthogonal

States 12> 4mh | uilud

Operators A 4= 3 T,
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Postulates of Quantum Mechanics

(1) At a fixed time % the state of a physical system

(2)

(3)

(4)

is defined by specifying a ket Iy(¢)) belonging
to the state space & .

Every measurable physical quantity ¢4 is
described by an operator A actingin & ;
this operator is an observable.

The only possible result of a measurement of

A physical quantity ¢4 is one of the eigenvalues
of the corresponding observable A.

(Discrete non-degenerate spectrum)
When the physical quantity ¢4 is measured on
A system in the normalized state [y, the
probability P/, | of obtaining the non-
degenerate eigenvalue a, of the observable
A is:

Pa,) = Ka, )% =<% 1R, 1%>
where 14,5 is the normalized eigenvector of
A associated with the eigenvalue o, , and
P=la,%4,, isthe projector onto [q,>.

Postulates of Quantum Mechanics

(5) If the measurement of the physical quantity
cA on the system in state [y ) gives the result
Ay then the state immediately after the
measurement is the normalized projection
of [4) onto!Q,) :

O Ly
Lyle,le)

Degenerate case: use projector onto the
Subspace associated with ., .

(Fotier? =

(6) The time evolution of the state vector Iy::)
Is governed by the Schrodinger equation:

o i
25 57 ¥ = Heg)[ye)

where H(£) is the observable associated
with the total energy of the system.




Tensor Products of State Spaces

Postulates of Quantum Mechanics Quantum Mechanics of systems that
consist of multiple parts

(5) If the measurement of the physical quantity
ch on the system in state [y ) gives the result
Ay then the state immediately after the
measurement is the normalized projection @
of [4) onto!aQ,> :

24
(Yofier? = I System 1 System 2

Lyle,le) Joint system
Degenerate case: use projector onto the

Subspace associated with a__ .
) Def: Let £, &, be vector spaces of dimension ¥, Uy

(6) The time evolution of the state vector Iy/:)

=5 & i
Is governed by the Schrodinger equation: The vector space £=Z, ZZ is called the

> Tensor Product of £, and &, iff
ifr 5 1NN = Hee) fge))
Y pairs [((1)) ¢ £1 Jx@ye 82\ Jvector £ £

where H(-L) is the observable associated
with the total energy of the system. such that

1. The association is linear with respect to
multiplication with complex numbers

Mgy 15y = M [iptore x>




Tensor Products of State Spaces

Quantum Mechanics of systems that
consist of multiple parts

&

System 1 System 2

Joint system

Def: Let £ , &, be vector spaces of dimension ¥, Uy

The vector space £ = £4@£2 is called the

Tensor Product of £, and £, iff
Y pairs [9(1)yE6 €, Jde 82) Jvector £ £

such that

1. The association is linear with respect to
multiplication with complex numbers

ARy o plsm)y = Aﬂ[t@(«\>elx(zl>:(

2. Distributive () & [a.b(,a)) +b)?€1m>]
= al@ya1X,005 + blpmd e X,0)>

3.Bases {lu:(adinZ flq)ea’_))f in &,
r Sw;mmlvecw] is a basisin £

Iff M, Ny are finite, then Dim 123 =N, xNy

[> The usual linear

These properties algebra works in &

Analogy: Tensor product of 1D 2 20 geometrical space

Note: £ =¢,8€, +3D geom. space

/ / &P of vectors in &; w/vectors in f

not defined




Tensor Products of State Spaces

2. Distributive [p(ey> & [ 1%,0)) € bl (3>
= alQuy> @ 1%, (5t blPad & X, 01>

3.Bases {1 (Dfing | Slycen{in &,
» fw,«mmlq;ecw] is a basisin £

Iff &, Ly arefinite, then D;m (&)= N, x Ny

1P = D a; la; (1)

Vectors in £ Let
1X(2)) = 2 byl 0y

Then [Prd>elx) = Zz Q; b, 4, (1> [ 21

» The usual linear

These properties algebra works in &

Analogy: Tensor product of 1D 2 2) geometrical space

Note: € =£,8&, + 3D geom. space

/ / P of vectors in £; w/vectors in €,

not defined

Hugely important:

There are vectors in £ that are not
tensor products of vectors from &,,&,

General vector ¢ £ can be written as

o= > cp lm()r810,(2)>
ie

How to see? There are N, & Ny prob. ampl’s Co

These cannot all be written as (;<bp where the
sets Sa;], fbe’{ are valid probability amplitudes.




Tensor Products of State Spaces

IPla)) = Z Q; UA;C‘”)
1X(2)) = 2 by Lo, (7

Vectors in & Let

Then [P @IX)D = % Q; b, 4. (1> [ (D

Hugely important:

There are vectors in £ that are not
tensor products of vectors from &,,&,

General vector ¢ £ can be written as

2= > cpln(0)819,(0)>
iR

How to see? There are NyA N,y prob. ampl’s C:e_

These cannot all be written as (;<bp where the

sets fa;], fbe] are valid probability amplitudes.

Example: &,, g_?_ are qubits, v, =, = 2

PO = 8y g (005 + Oy Ly 2 real-valued
[X(\D = by [0, (L)) + by [W,(2)D variables each

In basis §lu.(0)e I.uQCﬂ)]

101, by | Cys

Product | b, General |Cjy

state | Q, by state | Cyy

%2 by | o
4 real-valued 6 real-valued
variables variables
product state =» 2A) real variables
N qubits ®» Nt

general state =» 2" "'~ 9 real var’s

10



Tensor Products of State Spaces

Example: &,, EQ_ are qubits, n), =Ny =2

00> = Oy by e 0!,_[44,_[’1’)} 2 real-valued
[X(2\> = by l0,(0)) + by [wy(2)D variables each

In basis § Lu,(0) 8 [g,(1)>]

10, by (Cy
Product |0 b, General | Cjy
state  [Q4 by state | Coy
’a.l bz_‘ i C’Z‘L_
4 real-fvalued 6 real-talued
variables variables

product state =» 2AN) real variables
N qubits £)

general state —» 2.”'“-2 real var’s

Note: States &£ that are not product states
are known as

Entangled States or Correlated States

End 09-20-2023

11



Tensor Products of State Spaces

Example: &,, EQ_ are qubits, v, =, = 2 Note: States &£ that are not product states

are known as
1Pl = a4, g, (45 + o'lm?-[ﬂ> 2 real-valued

XS = by 1,03 + b [0, (2)> variables each Entangled States or Correlated States

Begin 09-25-2023

In basis §lu(0)e wecm]

_ - Back to the Linear Algebra engine of QM

o, by Cys
Product |0 b, General | Cjy Scalar : ,
product: (<@'t11® x'ey] )| 191> B [X(1)
state  [Q4 by state | Coy [@niec l)(e >)

oy by | LC”‘ = L@@ X' Q) [ X

t t
4 real-valued 6 real-valued .
variables variables Operators:  Let A(1) actin £(1)

The Extension /:T('l) acting in £ is defined by

product state —=» 2N real variables Z(ﬂ IWU’)) 8 h((q_\)] = (A(dlhp@l)))& 1X(2)S
N qubits ) {

general state —» 2.”'“-2 real var’s

Extension 3[9) of R(2) into £ is similar

12




Tensor Products of State Spaces

Note: States € £ that are not product states
are known as

Entangled States or Correlated States

Begin 09-25-2023

Back to the Linear Algebra engine of QM

Tensor Product of Operators

LAt 880 J[lpny o )xd] = [ Al 19y ] & [ BE) X))

» alNagE) = Al)BWR)

Al = &) e10)

special case:
R(1) = 4(1) @ B(Y)

Scalar product: ((cp'm!@(x‘(z\[)(\c?[ﬂ)@lﬂﬂ))
= QMNP 1)) ) [ XY

Commutator

[A) ,ﬁ(z)] 20 because [A(),4(1)]= | BR), ﬂmY: 0

Operators: Let A(1) actin £(1)

The Extension 4 (1) acting in £ is defined by
A\ [igm0> B = (AlWlgt))@ 1K)

Extension 3(9) of R(2) into £ is similar

Notation: Obvious from context

[0(1)) @15)) == [P (2)>+= |PLY X\ D
A1) ® B < A)B(L)
Alg) = AG)

13




Tensor Products of State Spaces

Tensor Product of Operators

et 8B [Ipeye )] = [AIguyy] @[ BO) X))

D anerl) = AlBY)

Al = &) e40)

special case:
R(1) = 4(1) @ B

Commutator

[ﬁ (4) ,ﬁ&ﬂ 20 because [A(), 4(1)]: [BR) ,ﬂ.(‘).)?: 0

Notation: Obvious from context

[Q(0)) @ 1KY = [ PUNDIX(2)> > | PL) X\ D
A1) & B) « A()B(L)
,3;(4) - A1)

Eigenvalue problem in £

Let AP (1D = Op 001>, P21, 9, B
AP XQ)Y = 0, 10N XD VKD EE,

Can choose [ ¥ (2)> € orthonormal basis in £

B 9;xN, -fold degeneracy of a,in £

Furthermore

A[«)l({?ﬂi “)» =0, lcpjca»

B) /XD =b, | XE()>

(A0 + B2 Ig X5 0>
AR (@3 )

(0g+0g) 1@10) X @)Y
Onbe 141K @)Y
£ (A, 602) (RO @Y = Flan,b,) 19/0) Ky @)Y

Postulates of QM apply in &, £9_and g
» We are Done!

14




Measurement on One Part of a System

Cohen-Tannoudji Ch. Ill, Complement D,

15



Begin 09-27-2023

Quantum Measurement on
Bipartite Systems

&

System 1 System 2

Joint system

Consider the following:

E=-¢8,®E
All) = Aﬁ') &4p)

Observable on System 1

Bipartite System

~N/
Possible outcomes when measuring A(¢)?

Measurement on One Part of a System

{ Same possible outcomes @,, indep of Ig->

Degeneracy in & increases by a factor A,

A
D) = > lab))a, ()]

T
for eigenvalue 2,

Projector:

Using the recipe to extend an operator into £

/

Pl)= RiN& 1(2)

3 : .
=5 D i o) i) Yl

izl k

{Eigenvalues of Al1)} = { Eigenvalues of A1) }
) )

gn:(ﬂv-”ul 9)"

Probability of outcome 0, I7) general state £

Pl =<3 B.0) 1T
= i > vl o (1)) ol o) [

FETE 3

Posterior state [g') = 1 15;[4) 1O
TR

16




Measurement on One Part of a System

Some Observations: Some Observations: (Continued)

3. Entangled States

1. Basis [y, (1)) arbitrary, no phys. significance

If we measure A(1) and observe the outcome a,,
then the posterior state is

2. Product States Let ) =1p0))&1X(%)>

If we measure 4(1) and observe [anm) then

1D Yol P (111001 > @4 (o) IX(2) > X IcP'm)? %)

still a product state

. Entangled States

Consider a pair of states where n and i labels the
eigenvalues and degeneracies within the subspace g,,

9w
[@O>=3 D O ta, (1Y o XY= % be [Xa (0>

n iz

The corresponding product state is of the form

I'(P? = %% %Qutb‘&lﬁq;(l))‘?(&[?.»
03]

By comparison, the most general state in £ has the form
Q.
¥ 2 > Cuik [ ¥ a3
n oz

If the C,,;p, are all products of the type Q,: b&

then [¢>? is a product state. Otherwise, [ is entangled.

An
1"y [PA)({)@ 1[9_\] [tp-)wzl %CN.'L [ln;00ye] Xa(‘)f»}

Now, if 9,0 = { then the state IMMU)) occurs exactly
once in the sum above, and therefore

[e>ec wnma%zmw < [lagln>® 1¥@)]

Conceptually, once the measurement tells us that
system 1 is in the exact state WI\)U»’ then it factors
out in the global state.

The case 9, > 1 is more subtle. Once we measure
Q, » We know system 1 resides in the degenerate
subspace associated with the outcome @, . Repeat
measurements do not generate further information
about which of the exact |i4,,,(1)) our system is in.
Thus, the measurement removes some, but not all of
the entanglement present in [¢>) . To completely
factorize the state we would need to measure a
C.S.C.0. This will identify not only the degenerate
subspace but also the specific state vector [#,;(1)).
See Cohen-Tannoudji Chapter Ill, Complement Dy,

17




Measurement on One Part of a System

Some Observations: (Continued)

3. Entangled States

If we measure A(1) and observe the outcome a,,
then the posterior state is

B
193 BN 40 [t[r)wzl E;CN;&[WN;U)M YON|

Now, if 9’0 = { then the state W,\)U)) occurs exactly
once in the sum above, and therefore

(> LUy a%zmm < [lagln> @ x> ]

Conceptually, once the measurement tells us that
system 1 is in the exact state [MMU)), then it factors
out in the global state.

The case 9, > 1 is more subtle. Once we measure
., » we know system 1 resides in the degenerate
subspace associated with the outcome a,,. Repeat
measurements do not generate further information
about which of the exact [#,,(1)) our system is in.
Thus, the measurement removes some, but not all of
the entanglement present in [¢>) . To completely
factorize the state we would need to measure a
C.S.C.O. This will identify not only the degenerate
subspace but also the specific state vector [#4,;(1)}.
See Cohen-Tannoudji Chapter Ill, Complement Dy,

Physical Interpretation of T.P. States

From (2) above, measuring A() B(2)

Plon,by,) = LO0)) 8,010 X B,e)X(2) >

Independent
Random Var’s

% Outcomes 0, b, are

t Uncorrelated

Physical Interpretation of Entangled States

From (3) above, measuring A(:) B()
Global |t)r> cannot be written as [Pl ) &[X())

In general, 4,2 by,

(P(a,,}bb) = (| P,0) %(2)[ o> { will be correlated

random variables

Conclusion: We cannot assign state vectors to
the individual subsystems !

18




Measurement on One Part of a System

Physical Interpretation of T.P. States

From (2) above, measuring A() B(2)

Plow,b,) = L0W)) R0 Q0> X B,)lX(2)>

Independent
Random Var’s

% Outcomes 0, b, are

t Uncorrelated

Physical Interpretation of Entangled States

From (3) above, measuring A(:) B(2)
Global [t)r> cannot be written as [Pl ) &[X())

In general, a,,2 by,

(/3(0\,,,}[9&) = (| P,0) %m[c{y) { will be correlated

random variables

Conclusion: We cannot assign state vectors to
the individual subsystems !

Note:

Even though we cannot assign /9017, 1X(2)5 ,
it is still possible to have a local description
of each subsystem on its own. It must be
consistent with tensor product states, yet it
must reduce the information that is locally
available when the global [t is entangled

— -

Density Matrix Formalism

Definition: A system for which we know only
the probabilities 4! % of finding the system in
state (Yg is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

19




Measurement on One Part of a System

Note:

Even though we cannot assign /901>, 1X(2)5 ,
it is still possible to have a local description
of each subsystem on its own. It must be
consistent with tensor product states, yet it
must reduce the information that is locally
available when the global > is entangled

-

Density Matrix Formalism

Definition: Density Operator for pure states

Q) = 1) X (L)

Definition: Density Matrix
Iy () = g.cnu)wn »
Con [4) = <Ml OB [ M, = Col) Cf H)

Definition: A system for which we know only
the probabilities 4l % of finding the system in
state [%¢ 7 is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

Definition: Density Operator for mixed states

QW) =2y @), G =1, () Ky )|
%

Note: A pure state is just a mixed state for
which one 4l = 1L and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably

20




Measurement on One Part of a System

Definition: Density Operator for pure states

Q) = 1Ht ) X u(L)|

Definition: Density Matrix
B = 26,814, »
Con [4) = <Ml OLH | M, > = Col) Cf 1)

Let A be an observable w/eigenvalues 0,

Let £, be the projector on the eigen-subspace of On

For a pure state, O(¢)= I{t) X u(L)|, we have

Definition: Density Operator for mixed states

QW) =2 Ay Q) , € =1, () Xy i)
T

Note: A pure state is just a mixed state for
which one 4lp =1L and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably

(%) Tr Q&)= 2 Q&)= Ic"=1
(%) {Ad= ('l[—[{) [A26£)) =E<QH'£) [A] MPX Mp‘%»
)
=2 Ol = oygroaluyy
P

=TrlgwA]  (Imp> basisin & )

(%) Let £ be the projectcr on eigensubspace of 4,

Pa,)=<y8)18, 11t ="Tr[Q)B, ]

(k) S = IlE XA I X!
= Hma:)xueat?’a e H

= LHgl

21




Measurement on One Part of a System

Let A be an observable w/eigenvalues 0, Let A be an observable w/eigenvalues 0,

Let £ be the projector on the eigen-subspace of 0, Let £, be the projector on the eigen-subspace of On

For a pure state, o) = I{(+) X u(£)[, we have For a mixed state, Q(+) =Z’{‘x‘ Gult) , €p =1, [t)XYg (£)]
%
(%) T Q)= D Quult)=D I, =1 #) Tegle) = S, Tguu) =1

(%) <AY={pl)A lz,cce3>=pz<'4mm X o |4EE)) (%) <A>=% P @AY= 1y TGy LOA]
b

=PZ<MPu;m><4ze)mrup> =) Lulealu,d = TrlQ®A]
P

=71_'[§(-[=)A] (lnp2 basis in X )

(%) Let ), be the projector on eigensubspace of 4,
(%) Let £ be the projectcr on eigensubspace of 4,

P@,) = <18, 144> =T [, ] Pl)=2 usolR ) = T LQUIE
(k) Q)= 1K+ 1% Xy LA (%) Qi) =%/{\&(h{[-é)x1&[-é\[+hp[ﬂé\x?{—(-&m
= # H luH:)X"-f&ﬁ)["-'—% ["{(‘é)X#fH:“H :hZJp& ,—%( Hh[{ﬂm{)]_ (33X | H)

-1
:i—'lé[_p[‘g] —'}’.E[H.?] Density Operator
formalism is general !

22



Measurement on One Part of a System

Let A be an observable w/eigenvalues 0,

Let £ be the projector on the eigen-subspace of 0,

For a mixed state, Q(¢) =%’({l& Qult) » €=, (£ XYg (£)]

(%) Tro(t) = %m%g&m =4

(%) <A g e AIYE ]y = % TR TFLQUOA]
=Tr{oe)A]

(%) Let £, be the projector on eigensubspace of a,

P, =%¥’k<’6fﬂ' D Iy, =Tr[o)R,]

(%) QW =%n(1v{fé)xué\f+np[é\)<ﬁﬂl§
=th& -7 (HIEA X)) - e et | H)

|
—T'E[H'?] Dengity (?perator
formalism is general !

Important properties of the Density Operator

(1) QisHermitian, Q"=€ W © is an observable

® 3 basis in which © is diagonal

In this basis a pure state has one
diagonal element = 1 , therest =@
(2) Test for purity.
Pure: Gg'=Q ® Tre: =1
1

e
Mixed: Q*+Q B T g«

(3) Schrodinger evolution does not change the Ay

‘T?'g" is conserved
= pure states stay pure

mixed states stay mixed

Changing pure ® mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D,; & E;,

23



Measurement on One Part of a System

Important properties of the Density Operator

(1) QisHermitian, Q"=€ ® & is an observable

® J basis in which © is diagonal

In this basis a pure state has one
diagonal element = 1 , therest =

(2) Test for purity.
Pure: Gg':=Q ®» Trel =1
1

e
Mixed: Q-9 ®» Tr g*<

(3) Schrodinger evolution does not change the A

Tr g‘“ is conserved
E pure states stay pure

mixed states stay mixed

Changing pure ® mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D, & E;;,

Summary So Far

Density Operator: Qlt) = %_ Te /%2 X%, |

. . pure
Terminology: (%> known — i~
ixed

/mlﬁ\le} known —» r;‘tlgfe

Properties

(1) Te-1

(2) <A> =TrleA]

(3) Pw,) = 77‘[9”..?r P : projector onto &
(4) 0%? = ‘.;'E[H,g] Schrodinger Eq.

(5) © pure —» §*=¢ Troh =4

(6) (%: Trg"‘ =0 = S. E. conserves purity

24




Measurement on One Part of a System

Summary So Far Separate Description of Part of a System
Density Operator: QU= g 1 XY | Let £ = g &® &
Lo
T.P. Basis {lm,—tn\)}®{)vﬂ m)}
Terminology: (%) known —» ?t:;(;
Densitv O in £ < Describes
mixed ensity Operator € In global system
Yo %> known — "o
Goal: To “reverse engineer operators
Properties o) in & and @) in &, such that
describe the systems independently
(1) Tro-=1
(2) <A> = T?[QA] Our starting point is the global density operator

(3) Pa,\= Tr[¢pr,7, R: projectoronto £
g = Z gf"é\w'e) lu;«u-Xu&‘uel

Dl - —L o — ——
(4) EZ B [H¢gj M;i) H\ /
5 ure = gt=¢ Trot= L :
(5) ¢p § =€, ¢ i,k € System (1) T.P. basis states

j,1 € System (2)

(6) %_— Trg‘l =0 =» S. E. conserves purity

End 09-27-2023
25




Measurement on One Part of a System

Separate Description of Part of a System

Let € = £ e &

T.P. Basis {lu,- m>]&{)v,. m)}

_ . Describes
Density Operator ¢ in E + global system

Goal: To “reverse engineer operators
o1 in & and o) in &, such that

describe the systems independently

Our starting point is the global density operator

. 3%0,) Gy %% g %)
\_.v__/

1 \

i,k €System (1) ¢ p pasis states
j,1 € System (2)

Definition: Partial Trace

Orthonormal basis in EL

o '=Tl‘lg = %4%'91"};
Sj0.Oyl 4 X4y
i ;Z(M,p_) Cegue) Ol Xug 0y 10y

1— i,k € System (1), j,I| € System (2)

=% % gfig\c&q\ [u; X4y | <= operatorin £,

Check properties of o)
c.c. numbers,
l l H.C. swap kets & bras

+ _ *
(1) g(ﬂ Z E 9(;&“&@) [«M;XM&’

=ZZQ | g X 4 | €= Relabel e
g lhgdig) T & —

E E Q(;Q\C&Q\ [M;XM&’ = 9(4)
9

5‘

(2) ©W) Hermitian > we can choose a basis {iw, (1))}
So ©[1) is diagonal =» Qcmwm £ 0:8
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Measurement on One Part of a System

Definition: Partial Trace

g{ﬂ = I, g = _5_ <UQ|_IQ](D€|_>
2 S0, 0pyl 4 Xag |
Jq, Za_ i

B g‘;d%’@) Supuse) 10X g 0 lug)

1— i,k € System (1), j,I € System (2)

"-'% % g(,'g‘\[_&m [w; X4y | < operatorin £,

Orthonormal basis in Ez

Check properties of o)
c.c. numbers,
l l H.C. swap kets & bras

+ o *
(1) gl Z& % Siiaq) M X g |

LugX 4] < Relabel - &
- :hq-gmama\ g X U; | €= Relabe «

—_—

=§ 2 g(ig\c&g\ [ XM&’ = g[")
9

R

(2) ©W) Hermitian <> we can choose a basis {iw, (1))}
So ©[4) is diagonal =» gUml&Q\ £ 0:8

Thus 8w = % %_ Sthe)itg) !”&X"‘U

e
a 1; Az, 19 Xy, |

Note:
(1) 9,%\(&%\ = population of W) ® 11,10, i.e.
prob. of finding the global system in this state.

(2) {e * % Sttty 152 marginal probability,

i.e., the prob. of finding system 1in jw,),
found by adding the probs Sttig ks of
finding the global system in the states |4, V>

Visualization - Marginal Probability

Tk—»
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Measurement on One Part of a System

Thus QlL) = % %_ &&\(&Q\ h\)&XW&]
= gy
% &4
Note:
Srteg\(g) [We (1)) ® v (43

prob. of finding the global system in this state.

(2) {e * % g{z@(%\ is a marginal probability,

i.e., the prob. of finding system 1in jw,)>,
found by adding the probs Stteg ks of
finding the global system in the states |4, V>

Visualization - Marginal Probability

Partial Traces
Q) =T, ©
We define or
Q@) =1y ¢ Reduced Density
Operators

Note: We already know these are Hermitian
operators. Also,

Tro = > 2 4, @ |u, U
< " o e 8 M Unit Trace

=Tr, (Tr @) = T7, (g (n) Operators!

=T, (T, €) = T (9(9_3) 2 {

global ©

Expectation Values:
Insert identity here

{BMS = W‘{€[1)3£1\]= Z(ﬂ,%l?(ﬂ"ﬁ(«)lu ¥y

= Z Z <“n%|€f‘5ﬂlu,,.-vq XMnu%«‘A[l\Qﬂ(ﬂ) 2 Up>
qu_ “ql N

gnm (1)

«&.W luy lALY I, >
identity

=2 <L) [y Xty [ALN L, >

nn

=Y Lu,lel > = Trigua))
n —
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Measurement on One Part of a System

Partial Traces
Q) =T, ©
We define or
Q@) =1 ¢ Reduced Density
Operators

Note: We already know these are Hermitian
operators. Also,

Tro = > 2 4, @ |u, U,
$T 4 q St Unit Trace
globalo = Try (T @) = Tr, (¢(n) Operators!

~T7, (T, @) = Ty (9(9_}) 2 1

Expectation Values:
Insert identity here

AW =T (@A) ] = Z(a,«h[g[«)"ﬁwlu,,ap
ng

=> 5 <unmgflet«)/uﬂ.uq,xun.1)q.!Atuwﬂ(ﬂwn«up

wq_ Wy . \ ~—
Cpni (1) éqﬁ' duy ALY I, S
identity
=2 < L@ [ty Xty [ALN LA, >
e
=Y Lu lelu,> = Trigua))
n —

We conclude:

e, gt&_\ are unit trace, Hermitian Operators

ALY = TR (gUNVAM) , LB =Tr(Qw) BG)

are density operators for

QLS B iem (1) and system (2)
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Measurement on One Part of a System

Additional Comments:

(1) If the Global state # T. P. state
®» Cannot assign states 90>, [¥@)> to Sq, S,
Can assign @(),©(1) % Local description

(2) If € is pure, 1r e =4, westill can have

Tretn' £ 4, Tre@ 4.4

(2) If the Global stateisa T. P., Idr7=10)>) % (2)>

T = 1@ NX Q)]

then T(Y) = 1Y @X %]
Q=0 @T()

(3) The Global state can itself be mixed. In
that case a product state will have the
following structure

Tr, [€t0 8 T] = 50)

=TUIRT(
groweTh) ¥ {Tr,tq*m@m)]:ru)

Additional Comments:

(4) However, if QU)=Tr (¢), Q) =T, ()

then in general ©'=QM)B<Q(L) + ©

(5) If the evolution of € is Hamiltonian, é =éfl—l,9] ,
we cannot in general find a Hy) that allows
analogous equations for (), 0(1)

Note:

Hamiltonian evolution conserves the purity of €.
However, if ©(() is initially pure (unentangled S, S, )
the global evolution may entangle S, , S, and cause
©(() to become mixed.

-

Evolution of ©(() is not Hamiltonian
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Measurement on One Part of a System

Important Application: Important Application:
System-Reservoir Theory System-Reservoir Theory

% Reasonable assumptions about the environment

@ » “Master Equation” for &

System Coupling

Environment/Reservoir

és‘ =;—1g [Hg»g]‘i—f{gS)

* We do measurements on the system only
Describe it by s evolve by a non-Hamiltonian

Equation of Motion. % The Liouvillian ée
accounts for relaxation and decoherence

% The environment is too large, with too many
degrees of freedom to keep track of. Coupling
correlates (entangles) the system and environment,
but information transferred to the latter is lost.

* Alternative description in terms of Decohering
Channels.
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What comes next ?



