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Review of Quantum Mechanics

Note: Everyone is assumed to be
familiar with grad level QM

P

Quick review focused on 2-level systems,
Tensor Product spaces and Density Matrix
formalism

Linear Operators

VigvegL: Aly) =iyxHeg

State vectors (“Rays” in Preskill)

Unique quantum state <=» unique state vector

[Y> & £ «— State Space

Projectors F.L = (% X% | «— Projector on ly>

:
Pg; '_Zc_il%fx‘-&[ <— projector on subspace ggL

Basis in  dimensional £,

Scalar product LPlyy = dy [ S
complex number —f
( £ is a Hilbert Space )

Hermitian Operators At=4

Adjoint |y'Y = Aly) e <y'[ =<y (A*

Physical (measurable) quantities!
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Linear Operators

Yigvel: Aly)=lyHeg

Projectors % = [3 X% | «— Projector on [y >

S
Pg; ,_Z:QI‘PQXC&I <— projector on subspace EQI_

Basis in @ dimensional &,

Eigenvalue Equation Alyd= Ay

A Hermitian

% Eigenvalues of A are real-valued

A%y =Xly>  are orthogonal
Alps=pmlgy  if Az pm

% Eigenvectors ol A form orthonormal basis in £

* Eigenvectors

Hermitian Operators At=4

Adjoint [3'Y = Alyd e <y =< (A*

Physical (measurable) quantities!

Commuting Observables

(ag]=48-BA=0 B

3 orthonormal basis in £ of common
eigenvectors of A [
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Eigenvalue Equation Aly>= Alyy
A Hermitian

% Eigenvalues of A are real-valued

A%y =xly>  are orthogonal
Alr{?)://\)l()7 if z\*/"

% Eigenvectors of A form orthonormal basis in £

% Eigenvectors

C.S.C.0 (Complete set of commuting observables)

Set A, B,C... such that basis 3in £ of
eigenvectors [o\m.b,.,,c,,”,,& uniquely labeled

by the set of eigenvalues a,,, bm ,Cm

Example | L'Lj Ly for the Hydrogen atom

Commuting Observables

(ag]=48-BA=0 ®

3 orthonormal basis in £ of common
eigenvectors of A [

Unitary Operators

U isunitary B 0U-1:-pTe vtu=vvf=1
Scalar product invariant: <y[@) = <y [vTvlp>

B U isachange of basisin £

DIUS =MD B A=ei®

eigenvecs for A%\’ are orthogonal
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C.5.C.0 (Complete set of commuting observables)
Set A, B,C... such that basis 3 in £ of
eigenvectors [a\m.b,.,)cm,,& uniquely labeled

the set of eigenvalues a,,, b,,.’Cm

Example 1_°~J L, for the Hydrogen atom

Representation and bases

The set §1u,d} forms a basisin £ if the
expansion

is unique and exists

1> = 24 1% 4, VigSes

Unitary Operators

U isunitary @ 0-1:-pte 0Tu=00:1
Scalar product invariant: <y[() = <¢[vTvip>
B U isachange of basisin £

DIUS> =Av> B Acei®

eigenvecs for A%\’ are orthogonal

States 12> 4mh | uilud

Operators A 4= 3 T,
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Postulates of Quantum Mechanics

(1) At a fixed time % the state of a physical system

(2)

(3)

(4)

is defined by specifying a ket Iy(¢)) belonging
to the state space & .

Every measurable physical quantity ¢4 is
described by an operator A actingin & ;
this operator is an observable.

The only possible result of a measurement of

A physical quantity ¢4 is one of the eigenvalues
of the corresponding observable A.

(Discrete non-degenerate spectrum)
When the physical quantity ¢4 is measured on
A system in the normalized state [y, the
probability P/, | of obtaining the non-
degenerate eigenvalue a, of the observable
A is:

Pa,) = Ka, )% =<% 1R, 1%>
where 14,5 is the normalized eigenvector of
A associated with the eigenvalue o, , and
P=la,%4,, isthe projector onto [q,>.

Postulates of Quantum Mechanics

(5) If the measurement of the physical quantity
cA on the system in state [y ) gives the result
Ay then the state immediately after the
measurement is the normalized projection
of [4) onto!Q,) :

O Ly
Lyle,le)

Degenerate case: use projector onto the
Subspace associated with ., .

(Fotier? =

(6) The time evolution of the state vector Iy::)
Is governed by the Schrodinger equation:

o i
25 57 ¥ = Heg)[ye)

where H(£) is the observable associated
with the total energy of the system.




Tensor Products of State Spaces

Postulates of Quantum Mechanics Quantum Mechanics of systems that
consist of multiple parts

(5) If the measurement of the physical quantity
ch on the system in state [y ) gives the result
Ay then the state immediately after the
measurement is the normalized projection @
of [4) onto!aQ,> :

24
(Yofier? = I System 1 System 2

Lyle,le) Joint system
Degenerate case: use projector onto the

Subspace associated with a__ .
) Def: Let £, &, be vector spaces of dimension ¥, Uy

(6) The time evolution of the state vector Iy/:)

=5 & i
Is governed by the Schrodinger equation: The vector space £=Z, ZZ is called the

> Tensor Product of £, and &, iff
ifr 5 1NN = Hee) fge))
Y pairs [((1)) ¢ £1 Jx@ye 82\ Jvector £ £

where H(-L) is the observable associated
with the total energy of the system. such that

1. The association is linear with respect to
multiplication with complex numbers

Mgy 15y = M [iptore x>




Tensor Products of State Spaces

Quantum Mechanics of systems that
consist of multiple parts

&

System 1 System 2

Joint system

Def: Let £ , &, be vector spaces of dimension ¥, Uy

The vector space £ = £4@£2 is called the

Tensor Product of £, and £, iff
Y pairs [9(1)yE6 €, Jde 82) Jvector £ £

such that

1. The association is linear with respect to
multiplication with complex numbers

ARy o plsm)y = Aﬂ[t@(«\>elx(zl>:(

2. Distributive () & [a.b(,a)) +b)?€1m>]
= al@ya1X,005 + blpmd e X,0)>

3.Bases {lu:(adinZ flq)ea’_))f in &,
r Sw;mmlvecw] is a basisin £

Iff M, Ny are finite, then Dim 123 =N, xNy

[> The usual linear

These properties algebra works in &

Analogy: Tensor product of 1D 2 20 geometrical space

Note: £ =¢,8€, +3D geom. space

/ / &P of vectors in &; w/vectors in f

not defined
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2. Distributive [p(ey> & [ 1%,0)) € bl (3>
= alQuy> @ 1%, (5t blPad & X, 01>

3.Bases {1 (Dfing | Slycen{in &,
» fw,«mmlq;ecw] is a basisin £

Iff &, Ly arefinite, then D;m (&)= N, x Ny

1P = D a; la; (1)

Vectors in £ Let
1X(2)) = 2 byl 0y

Then [Prd>elx) = Zz Q; b, 4, (1> [ 21

» The usual linear

These properties algebra works in &

Analogy: Tensor product of 1D 2 2) geometrical space

Note: € =£,8&, + 3D geom. space

/ / P of vectors in £; w/vectors in €,

not defined

Hugely important:

There are vectors in £ that are not
tensor products of vectors from &,,&,

General vector ¢ £ can be written as

o= > cp lm()r810,(2)>
ie

How to see? There are N, & Ny prob. ampl’s Co

These cannot all be written as (;<bp where the
sets Sa;], fbe’{ are valid probability amplitudes.
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IPla)) = Z Q; UA;C‘”)
1X(2)) = 2 by Lo, (7

Vectors in & Let

Then [P @IX)D = % Q; b, 4. (1> [ (D

Hugely important:

There are vectors in £ that are not
tensor products of vectors from &,,&,

General vector ¢ £ can be written as

2= > cpln(0)819,(0)>
iR

How to see? There are NyA N,y prob. ampl’s C:e_

These cannot all be written as (;<bp where the

sets fa;], fbe] are valid probability amplitudes.

Example: &,, g_?_ are qubits, v, =, = 2

PO = 8y g (005 + Oy Ly 2 real-valued
[X(\D = by [0, (L)) + by [W,(2)D variables each

In basis §lu.(0)e I.uQCﬂ)]

101, by | Cys

Product | b, General |Cjy

state | Q, by state | Cyy

%2 by | o
4 real-valued 6 real-valued
variables variables
product state =» 2A) real variables
N qubits ®» Nt

general state =» 2" "'~ 9 real var’s

10



Tensor Products of State Spaces

Example: &,, EQ_ are qubits, n), =Ny =2

00> = Oy by e 0!,_[44,_[’1’)} 2 real-valued
[X(2\> = by l0,(0)) + by [wy(2)D variables each

In basis § Lu,(0) 8 [g,(1)>]

10, by (Cy
Product |0 b, General | Cjy
state  [Q4 by state | Coy
’a.l bz_‘ i C’Z‘L_
4 real-fvalued 6 real-talued
variables variables

product state =» 2AN) real variables
N qubits £)

general state —» 2.”'“-2 real var’s

Note: States &£ that are not product states
are known as

Entangled States or Correlated States

End 09-20-2023
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Tensor Products of State Spaces

Example: &,, EQ_ are qubits, v, =, = 2 Note: States &£ that are not product states

are known as
1Pl = a4, g, (45 + o'lm?-[ﬂ> 2 real-valued

XS = by 1,03 + b [0, (2)> variables each Entangled States or Correlated States

Begin 09-25-2023

In basis §lu(0)e wecm]

_ - Back to the Linear Algebra engine of QM

o, by Cys
Product |0 b, General | Cjy Scalar : ,
product: (<@'t11® x'ey] )| 191> B [X(1)
state  [Q4 by state | Coy [@niec l)(e >)

oy by | LC”‘ = L@@ X' Q) [ X

t t
4 real-valued 6 real-valued .
variables variables Operators:  Let A(1) actin £(1)

The Extension /:T('l) acting in £ is defined by

product state —=» 2N real variables Z(ﬂ IWU’)) 8 h((q_\)] = (A(dlhp@l)))& 1X(2)S
N qubits ) {

general state —» 2.”'“-2 real var’s

Extension 3[9) of R(2) into £ is similar

12




Tensor Products of State Spaces

Note: States € £ that are not product states
are known as

Entangled States or Correlated States

Begin 09-25-2023

Back to the Linear Algebra engine of QM

Tensor Product of Operators

LAt 880 J[lpny o )xd] = [ Al 19y ] & [ BE) X))

» alNagE) = Al)BWR)

Al = &) e10)

special case:
R(1) = 4(1) @ B(Y)

Scalar product: ((cp'm!@(x‘(z\[)(\c?[ﬂ)@lﬂﬂ))
= QMNP 1)) ) [ XY

Commutator

[A) ,ﬁ(z)] 20 because [A(),4(1)]= | BR), ﬂmY: 0

Operators: Let A(1) actin £(1)

The Extension 4 (1) acting in £ is defined by
A\ [igm0> B = (AlWlgt))@ 1K)

Extension 3(9) of R(2) into £ is similar

Notation: Obvious from context

[0(1)) @15)) == [P (2)>+= |PLY X\ D
A1) ® B < A)B(L)
Alg) = AG)

13
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Tensor Product of Operators

et 8B [Ipeye )] = [AIguyy] @[ BO) X))

D anerl) = AlBY)

Al = &) e40)

special case:
R(1) = 4(1) @ B

Commutator

[ﬁ (4) ,ﬁ&ﬂ 20 because [A(), 4(1)]: [BR) ,ﬂ.(‘).)?: 0

Notation: Obvious from context

[Q(0)) @ 1KY = [ PUNDIX(2)> > | PL) X\ D
A1) & B) « A()B(L)
,3;(4) - A1)

Eigenvalue problem in £

Let AL)IG (1D = Op QL U)>, P21, ,9, B
AP XQ)Y = 0, 10N XD VKD EE,

Can choose [ ¥ (2)> € orthonormal basis in £

B 9;xN, -fold degeneracy of a,in £

Furthermore

A[«)l({?ﬂi “)» =0, lcpjca»

B) /XD =b, | XE()>

(A0 + B2 Ig X5 0>
AR (@3 )

(0g+0g) 1@10) X @)Y
Onbe 141K @)Y
£ (A, 602) (RO @Y = Flan,b,) 19/0) Ky @)Y

Postulates of QM apply in &, £9_and g
» We are Done!
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Measurement on One Part of a System

Cohen-Tannoudji Ch. Ill, Complement D,



Measurement on One Part of a System

Quantum Measurement on
Bipartite Systems

&

System 1 System 2

Joint system

Consider the following:

E=-¢8,®E
All) = Aﬁ') &4p)

Observable on System 1

Bipartite System

~N/
Possible outcomes when measuring A(¢)?

{ Same possible outcomes @,, indep of Ig->

Degeneracy in & increases by a factor A,

A
D) = > lab))a, ()]

T
for eigenvalue 2,

Projector:

Using the recipe to extend an operator into £

/

Pl)= RiN& 1(2)

3 : .
=5 D i o) i) Yl

izl k

{Eigenvalues of Al1)} = { Eigenvalues of A1) }
) )

gn:(ﬂv-”ul 9)"

Probability of outcome 0, I7) general state £

Pl =<3 B.0) 1T
= i > vl o (1)) ol o) [

FETE 3

Posterior state [g') = 1 15;[4) 1O
TR




Measurement on One Part of a System

» { Same possible outcomes @,, indep of Igr>

Degeneracy in & increases by a factor ),

L
R0 = > laln))ai, (]

tef
for eigenvalue 4,

Projector:

Using the recipe to extend an operator into I3

(%4

Pl)= RiN& 1(2)

D : .
=5 D it o) i) Yl

izl k

Probability of outcome 0;,,, I7>) general state £
plon) =<3 B 1T

= 5 Bl 00,4 (2)) a0y 0 o
k

3

1 o~
Posterior state [gp'y = ——— P ()| T
Vpioy

Some Observations:

1. Basis [u,(2)) arbitrary, no phys. significance

2. Product States. Iff [{5> =) &@[X(2)) then

D' 5ol (0106Y> &AL o) | X(2y> X P (1)) & [X())

3. Entangled States. Let all 0,=1

7y = 2.0 )] 19« Finetn) S0,

« ’“n“»@%%a'%@ = 10,058 XS
. 9n ‘
951 » W)rZ&ZCM [an () 0y (2)Y
nk (=
still entangled

Measure C.5.C.O ® [91) = (1) @[ %'(2)D
4

product state




Measurement on One Part of a System

Some Observations:

1. Basis [y, (1)) arbitrary, no phys. significance

2. Product States. Iff lz[s?:}(?[.))&lz((lb then

1D >l R (1196 > @ 4L(2) 1 X12)> LIP(1)) 8 X))

3. Entangled States. Let all 0,=1

7> = [B.ne )] i)« Pnetn) S0,

« Ia'l“»&%cn&lv&m> = 10,058 XS
9n _
951 Iy = Z& 2 C,q )00
Nk ¢={

still entangled

Measure C.5.C.O # [9) = Ig(1) & [X'(9)>
4

product state

Physical Interpretation of T.P. States

From (2) above, measuring A() B(2)

Plow, b,) = PO R0 P0)> LX) B)X(2) >

Independent
Random Var’s

% Outcomes 0, b,, are

t Uncorrelated

Physical Interpretation of Entangled States

From (3) above, measuring A(:) B(@)
Global [tfr> cannot be written as [Pl ) &[X(9))

In general, 4,2 by,

(P(o‘n,b{.) =t P, 1) %(z)] o> { will be correlated

random variables

Conclusion: We cannot assign state vectors to
the individual subsystems !




Measurement on One Part of a System

Physical Interpretation of T.P. States

From (2) above, measuring A() B(2)

Plow,b,) = L0W)) R0 Q0> X B,)lX(2)>

Independent
Random Var’s

% Outcomes 0, b, are

t Uncorrelated

Physical Interpretation of Entangled States

From (3) above, measuring A(:) B(2)
Global [t)r> cannot be written as [Pl ) &[X())

In general, a,,2 by,

(/3(0\,,,}[9&) = (| P,0) %m[c{y) { will be correlated

random variables

Conclusion: We cannot assign state vectors to
the individual subsystems !

Note:

Even though we cannot assign /9017, 1X(2)5 ,
it is still possible to have a local description
of each subsystem on its own. It must be
consistent with tensor product states, yet it
must reduce the information that is locally
available when the global [t is entangled

-

Density Matrix Formalism




