Cohen-Tannoudji Ch. II & III, Preskill 2.1 & 2.3

Note: Everyone is assumed to be familiar with grad level QM

Quick review focused on 2-level systems, **Tensor Product spaces and Density Matrix** formalism

State vectors

("Rays" in Preskill)

14>€ € State Space

Scalar product

complex number —

(**&** is a Hilbert Space)

Linear Operators

Projectors $P_{y} = |4 \times 4|$ Projector on $|4\rangle$

$$P_{\mathcal{E}_{q}} = \sum_{i=1}^{q} |\mathcal{P}_{q}^{i} \times \mathcal{P}_{q}^{i}| \leftarrow \text{projector on subspace } \mathcal{E}_{q}$$

$$\text{Basis in } Q \text{ dimensional } \mathcal{E}_{Q}$$

Hermitian Operators $A^+ = A$

$$A^+ = A$$

Adjoint $|u'\rangle = A|u\rangle \longleftrightarrow \langle u'| = \langle u|A^+$

Physical (measurable) quantities!

Linear Operators

Projectors
$$P_{4} = |4 \times 4|$$
 Projector on $|4\rangle$

$$P_{\mathcal{E}_{q}} = \sum_{i=1}^{q} |P_{q}^{i} \times P_{q}^{i}| \quad \text{projector on subspace } \mathcal{E}_{q}$$
Basis in 4 dimensional \mathcal{E}_{q}

Hermitian Operators $A^+ = A$

Adjoint
$$|\chi'\rangle = A|\chi\rangle \longleftrightarrow \langle \psi'| = \langle \chi|A^+|$$

Physical (measurable) quantities!

Eigenvalue Equation

- **A** Hermitian
- * Eigenvalues of A are real-valued
- * Eigenvectors $A(\varphi) = \lambda | \psi \rangle$ are orthogonal $A(\varphi) = \mu | \varphi \rangle$ if $\lambda \neq \mu$
- * Eigenvectors of A form orthonormal basis in &

Commuting Observables

 \exists orthonormal basis in \mathcal{E} of common eigenvectors of \mathcal{A}, \mathcal{B}

Eigenvalue Equation

A Hermitian

- ***** Eigenvalues of *A* are real-valued
- * Eigenvectors $A(\varphi) = \lambda | \psi \rangle$ are orthogonal $A(\varphi) = \mu | \varphi \rangle$ if $\lambda \neq \mu$
- * Eigenvectors of A form orthonormal basis in $\mathcal E$

Commuting Observables

 \exists orthonormal basis in \mathcal{E} of common eigenvectors of $A_{i}B$

C.S.C.O (Complete set of commuting observables)

Set A, B, C... such that basis \exists in \mathcal{E} of eigenvectors $[A_m, b_m, C_n...$ uniquely labeled by the set of eigenvalues A_m, b_m, C_n Example H, L^2, L_2 for the Hydrogen atom

Unitary Operators

U is unitary \bigcirc $U^{-1} = U^{\dagger} \longleftrightarrow U^{\dagger}U = UU^{\dagger} = 1$

Scalar product invariant: 〈ャレク〉 = 〈チレウ・ひしの〉

$$U(v) = \lambda(v) \Rightarrow \lambda = e^{i\theta}$$

eigenvecs for $\lambda \neq \lambda^{\ell}$ are orthogonal

C.S.C.O (Complete set of commuting observables)

Set A, B, c... such that basis \exists in \mathcal{E} of eigenvectors $[A_m, b_m, C_m]$ uniquely labeled the set of eigenvalues a_m, b_m, C_m

Example H, L^2, L_2 for the Hydrogen atom

Representation and bases

The set $\{\mu, \gamma\}$ forms a basis in \mathcal{E} if the expansion

$$|\psi\rangle = \sum_{i} \langle u_{i} | \psi \rangle | u_{i} \rangle$$
 is unique and exists $\forall \psi \rangle \in \mathcal{E}$

Unitary Operators

U is unitary
$$\bigcirc U^{-1} = U^{+} \longleftrightarrow U^{+} U^{+} = 1$$

Scalar product invariant: $\langle \psi | \varphi \rangle = \langle \psi | \psi^{\dagger} \psi | \varphi \rangle$

$$U|U\rangle = \lambda |U\rangle \Rightarrow \lambda = e^{i\theta}$$

eigenvecs for $\lambda \neq \lambda^{\ell}$ are orthogonal

States
$$|24\rangle \iff \begin{cases} A_{11} & \cdots & A_{1n} \\ A_{n1} & \cdots & A_{nn} \end{cases}$$

Postulates of Quantum Mechanics

- (1) At a fixed time t the state of a physical system is defined by specifying a ket $|\psi(t)\rangle$ belonging to the state space ℓ .
- (2) Every measurable physical quantity ₼ is described by an operator A acting in ¿; this operator is an observable.
- (3) The only possible result of a measurement of A physical quantity *A* is one of the eigenvalues of the corresponding observable *A*.
- (4) (Discrete non-degenerate spectrum)

 When the physical quantity \mathcal{A} is measured on A system in the normalized state $\{\psi\}$, the probability $\mathcal{P}(a_n)$ of obtaining the non-degenerate eigenvalue a_n of the observable A is: $\mathcal{P}(a_n) = |\langle a_n | \psi \rangle|^2 = \langle \psi | P_n | \psi \rangle$

where $|a_n\rangle$ is the normalized eigenvector of A associated with the eigenvalue A_n , and $P = |a_n \times a_n|$ is the projector onto $|a_n\rangle$.

Postulates of Quantum Mechanics

(5) If the measurement of the physical quantity A on the system in state μ gives the result A, then the state immediately after the measurement is the normalized projection of μ onto A.

$$|Y_{after}\rangle = \frac{P_n |Y\rangle}{\langle Y|P_n |Y\rangle}$$

Degenerate case: use projector onto the Subspace associated with A_n .

(6) The time evolution of the state vector | 4(6) | Is governed by the Schrödinger equation:

$$i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$$

where H(-{) is the observable associated with the total energy of the system.

See also Note on the Bayesian Update Rule for "classical" probability distributions

Postulates of Quantum Mechanics

(5) If the measurement of the physical quantity A on the system in state μ gives the result A_{μ} , then the state immediately after the measurement is the normalized projection of μ onto μ :

$$|Y_{after}\rangle = \frac{P_n |Y\rangle}{\langle y|P_n|Y\rangle}$$

Degenerate case: use projector onto the Subspace associated with A_{μ} .

(6) The time evolution of the state vector | 4(4) | Is governed by the Schrödinger equation:

$$i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$$

where H(4) is the observable associated with the total energy of the system.

See also Note on the Bayesian Update Rule for "classical" probability distributions

Quantum Mechanics of systems that consist of multiple parts

<u>Def</u>: Let \mathcal{E}_{1} , \mathcal{E}_{2} be vector spaces of dimension \mathcal{N}_{1} , \mathcal{N}_{2}

The vector space $\mathcal{E} = \mathcal{E}_1 \otimes \mathcal{E}_2$ is called the Tensor Product of \mathcal{E}_1 and \mathcal{E}_2 iff

$$\forall$$
 pairs $|\varphi(i)\rangle \in \mathcal{E}_1, |\chi(i)\rangle \in \mathcal{E}_2, \exists \text{ vector } \in \mathcal{E}$

such that

1. The association is linear with respect to multiplication with complex numbers

$$\lambda |\phi(1)\rangle \otimes \mu |\chi(2)\rangle = \lambda \mu [i\phi(1)\rangle \otimes |\chi(2)\rangle$$

Quantum Mechanics of systems that consist of multiple parts

<u>Def</u>: Let \mathcal{E}_{ℓ} , \mathcal{E}_{2} be vector spaces of dimension \mathcal{N}_{ℓ} , \mathcal{N}_{2}

The vector space $\xi = \xi_1 \otimes \xi_2$ is called the Tensor Product of ξ_1 and ξ_2 iff

 \forall pairs $|\varphi(i)\rangle \in \mathcal{E}_1, |\chi(i)\rangle \in \mathcal{E}_2, \exists \text{ vector } \in \mathcal{E}$

such that

1. The association is linear with respect to multiplication with complex numbers

$$\lambda |\varphi(1)\rangle \otimes \mu |\chi(2)\rangle = \lambda \mu [\iota \varphi(1)\rangle \otimes |\chi(2)\rangle$$

- 2. Distributive $|\phi(t)\rangle \otimes [\alpha|\chi_1(t)\rangle + b|\chi_2(t)\rangle$ = $\alpha|\phi(t)\rangle \otimes |\chi_1(t)\rangle + b|\phi(t)\rangle \otimes |\chi_2(t)\rangle$
- 3. Bases $\{14, (4)\}$ in ξ , $\{10e(2)\}$ in ξ_2
 - | (וא;(וֹ)>@ | עפרצו) is a basis in צ

Iff N_1, N_2 are finite, then $Dim(2) = N_1 \times N_2$

These properties

The usual linear algebra works in \mathcal{E}

Analogy: Tensor product of 102 20 geometrical space

Note: $\xi = \xi_1 \otimes \xi_2 \neq 30$ geom. space

SP of vectors in \mathcal{E}_1 w/vectors in \mathcal{E}_2 not defined

- 2. Distributive $|\varphi(a)\rangle \otimes [\alpha|\chi_1(a)\rangle + b|\chi_2(a)\rangle$ = $\alpha|\varphi(a)\rangle \otimes |\chi_1(a)\rangle + b|\varphi(a)\rangle \otimes |\chi_2(a)\rangle$
- 3. Bases $\{14, (4)\}$ in ξ , $\{10e(2)\}$ in ξ_2
 - \$ [เม;(บ๋)>@ เขะ(ย)>] is a basis in £

Iff N_1, N_2 are finite, then $Dim(2) = N_1 \times N_2$

These properties

The usual linear algebra works in \mathcal{E}

Analogy: Tensor product of 10 & 20 geometrical space

Note: $\xi = \xi_1 \otimes \xi_0 \neq 30$ geom. space

SP of vectors in \mathcal{E}_1 w/vectors in \mathcal{E}_2 not defined

Vectors in
$$\mathcal{E}$$
 Let
$$\frac{|Q(1)\rangle = \sum \alpha_i |u_i(1)\rangle}{|X(2)\rangle = \sum b_{\ell} |v_{\ell}(2)\rangle}$$

Then
$$|\phi(1)\rangle\otimes|\chi(2)\rangle = \sum_{i,\ell} a_i b_{\ell} |u_i(1)\rangle\otimes|v_{\ell}(2)\rangle$$

Hugely important:

There are vectors in \mathcal{E} that <u>are not</u> tensor products of vectors from $\mathcal{E}_1, \mathcal{E}_2$

General vector $e \mathcal{E}$ can be written as

How to see? There are $N_1 \times N_2$ prob. ampl's C_{ie}

These cannot all be written as $a_i * b_\ell$ where the sets $\{a_i\}$, $\{b_\ell\}$ are valid probability amplitudes.

Vectors in
$$\mathcal{E}$$
 Let
$$\frac{|\psi(1)\rangle = \sum \alpha_i |u_i(1)\rangle}{|\chi(2)\rangle = \sum b_i |\psi_i(2)\rangle}$$

Then
$$|\phi(1)\rangle\otimes|\chi(2)\rangle = \sum_{i,\ell} a_i b_{\ell} |a_i(1)\rangle\otimes|a_{\ell}(2)\rangle$$

Hugely important:

There are vectors in \mathcal{E} that <u>are not</u> tensor products of vectors from $\mathcal{E}_1, \mathcal{E}_2$

General vector $\boldsymbol{\epsilon} \boldsymbol{\xi}$ can be written as

How to see? There are $N_1 \times N_2$ prob. ampl's C_{ie}

These cannot all be written as $a_i * b_\ell$ where the sets $\{a_i\}$, $\{b_\ell\}$ are valid probability amplitudes.

Example: \mathcal{E}_1 , \mathcal{E}_2 are qubits, $\mathcal{N}_1 = \mathcal{N}_2 = 2$ $|\mathcal{Q}(1)\rangle = \partial_1 |\mathcal{U}_1(1)\rangle + \partial_2 |\mathcal{U}_2(1)\rangle$ $|\chi(2)\rangle = b_1 |\mathcal{V}_1(2)\rangle + b_2 |\mathcal{V}_2(2)\rangle$ 2 real-valued variables each

Product
$$\begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_4 \\ a_3 & b_2 \end{bmatrix}$$
 General $\begin{bmatrix} C_{11} \\ C_{12} \\ C_{21} \\ C_{22} \end{bmatrix}$

4 real-valued variables 6 real-valued variables

N qubits
$$\Rightarrow$$
 { product state $\rightarrow 2N$ real variables general state $\rightarrow 2^{N+1}-2$ real var's

Example: \mathcal{E}_1 , \mathcal{E}_2 are qubits, $\mathcal{N}_1 = \mathcal{N}_2 = 2$

$$|\langle p(1)\rangle = a_1 |u_1(1)\rangle + a_2 |u_2(1)\rangle$$

$$|\langle (2)\rangle = b_4 |v_1(2)\rangle + b_2 |v_2(2)\rangle$$
2 real-valued variables each

In basis { | M; (1) > | (2) > }

$$\mathbb{N}$$
 qubits \Rightarrow
$$\begin{cases} \text{product state} \rightarrow 2\mathbb{N} \text{ real variables} \\ \text{general state} \rightarrow 2^{\mathbb{N}+1} - 2 \text{ real var's} \end{cases}$$

Note: States **E** that are not product states are known as

Entangled States or **Correlated States**

End 09-20-2023

Example: \mathcal{E}_1 , \mathcal{E}_2 are qubits, $\mathcal{N}_1 = \mathcal{N}_2 = 2$

$$|\varphi(1)\rangle = Q_1 |u_1(1)\rangle + Q_2 |u_2(1)\rangle$$

$$|\chi(2)\rangle = b_1 |v_1(2)\rangle + b_2 |v_2(2)\rangle$$
2 real-valued variables each

In basis { | Mi(1) > | Ne(2) > }

$$\mathbb{N}$$
 qubits \Rightarrow
$$\begin{cases} \text{product state} \rightarrow \mathbb{2}\mathbb{N} \text{ real variables} \\ \text{general state} \rightarrow \mathbb{2}^{\mathbb{N}+1} - \mathbb{2} \text{ real var's} \end{cases}$$

Note: States *e €* that are not product states are known as

Entangled States or **Correlated States**

Begin 09-25-2023

Back to the Linear Algebra engine of QM

Scalar product:
$$(\langle \varphi'(1)| \otimes \langle \chi'(2)|) (| \varphi(1) \rangle \otimes | \chi(2) \rangle)$$

= $\langle \varphi'(1)| \varphi(1) \rangle \langle \chi'(2)| \chi(2) \rangle$

Operators: Let A(1) act in $\mathcal{E}(1)$

The Extension $\tilde{A}(1)$ acting in \mathcal{E} is defined by

$$\widetilde{A}(1)\left[|\varphi(1)\rangle\otimes|\chi(2)\rangle\right]=\left(A(1)|\varphi(1)\rangle)\otimes|\chi(2)\rangle$$

Extension 3(2) of B(2) into \mathcal{E} is similar

Note: States **E** that are not product states are known as

Entangled States or Correlated States

Begin 09-25-2023

Back to the Linear Algebra engine of QM

Scalar product:
$$(\langle \varphi'(1)| \otimes \langle \chi'(2)|) (| \varphi(1) \rangle \otimes | \chi(2) \rangle)$$

= $\langle \varphi'(1)| \varphi(1) \rangle \langle \chi'(2)| \chi(2) \rangle$

Operators: Let A(1) act in £(1)

The Extension $\widetilde{A}(q)$ acting in \mathcal{E} is defined by

$$\widetilde{A}(1)\left[1\varphi(1)>\otimes |\chi(2)>\right] = \left(A(1)|\varphi(1)>\right)\otimes |\chi(2)>$$

Extension $\mathfrak{F}(2)$ of $\mathfrak{F}(2)$ into $\boldsymbol{\mathcal{E}}$ is similar

Tensor Product of Operators

$$[A(1) \otimes B(2)][I\varphi(1) \rangle \otimes [X(2) \rangle] = [A(1) I\varphi(1) \rangle] \otimes [B(2) IX(2) \rangle]$$

$$\Rightarrow$$
 $A(1) \otimes B(2) = \widetilde{A}(1) \widetilde{B}(2)$

Commutator

$$[\hat{A}(1), \hat{B}(2)] = 0$$
 because $[A(1), 1(1)] = [B(2), 1(2)] = 0$

Notation: Obvious from context

$$|\varphi(1)\rangle \otimes |\chi(2)\rangle \longrightarrow |\varphi(1)\rangle |\chi(2)\rangle \longrightarrow |\varphi(1)\rangle |\chi(2)\rangle$$

$$A(1)\otimes B(2) \longrightarrow A(1)B(2)$$

$$\tilde{A}(1) \longrightarrow A(1)$$

Tensor Product of Operators

$$[A(1) \otimes B(2)][Ip(1) \otimes IX(2) \rangle] = [A(1)Ip(1) \rangle] \otimes [B(2)IX(2) \rangle$$

$$\Rightarrow A(1) \otimes B(2) = \widetilde{A}(1) \widetilde{B}(2)$$

Commutator

$$[\hat{A}(1), \hat{B}(2)] = 0$$
 because $[A(1), 1(1)] = [B(2), 1(2)] = 0$

Notation: Obvious from context

$$|Q(1)\rangle \otimes |\chi(2)\rangle \longrightarrow |Q(1)\rangle |\chi(2)\rangle \longrightarrow |Q(1)\chi(2)\rangle$$

$$A(1) \otimes B(2) \longrightarrow A(1)B(2)$$

$$\widetilde{A}(1) \longrightarrow A(1)$$

Eigenvalue problem in &

Let
$$A(1)|\phi_n'(1)\rangle = \alpha_n|\phi_n'(1)\rangle$$
, $i=1,...,g_n \Rightarrow$

$$A(1)|\phi_n'(1)\chi(2)\rangle = \alpha_n|\phi_n'(1)\chi(2)\rangle \forall |\chi(2)\rangle \in \mathcal{E}_2$$

Can choose $|\chi(z)\rangle \epsilon$ orthonormal basis in ϵ_2

Furthermore
$$\begin{cases}
A(1)|\varphi_{n}'(1)\rangle = \alpha_{n}|\varphi_{n}'(1)\rangle \\
B(2)|\chi_{e}'(2)\rangle = b_{e}|\chi_{e}'(2)\rangle
\end{cases}$$

$$\begin{aligned} & \left(A(1) + B(2) \right) | \phi_{n}^{i}(1) \times_{e}^{i}(2) \rangle &= (\alpha_{n} + b_{e}) | \phi_{n}^{i}(1) \times_{e}^{i}(2) \rangle \\ & A(1) B(2) | \phi_{n}^{i}(1) \times_{e}^{i}(2) \rangle &= \alpha_{n} b_{e} | \phi_{n}^{i}(1) \times_{e}^{i}(2) \rangle \\ & f \left(A(1), B(2) \right) | \phi_{n}^{i}(1) \times_{e}^{i}(2) \rangle &= f(\alpha_{n}, b_{e}) | \phi_{n}^{i}(1) \times_{e}^{i}(2) \rangle \end{aligned}$$

Postulates of QM apply in \mathcal{E}_1 , \mathcal{E}_2 and \mathcal{E}_3

Cohen-Tannoudji Ch. III, Complement D_{III}

Quantum Measurement on Bipartite Systems

Consider the following:

Possible outcomes when measuring $\widetilde{A}(1)$?

{ Eigenvalues of
$$\tilde{A}(1)$$
 } = { Eigenvalues of $A(1)$ }
$$\tilde{g}_n = g_n \times N_2$$

$$g_n$$

Projector:
$$P_{n}(t) = \sum_{i=1}^{9n} |a_{n}^{i}(t)\rangle\langle a_{n}^{i}(t)|$$
 for eigenvalue a_{n}

Using the recipe to extend an operator into $\boldsymbol{\varepsilon}$

$$\widetilde{P}_{n}(1) = P_{n}(1) \otimes 1 (2)$$

$$= \sum_{i=1}^{9k} \sum_{k} |a_{n}^{i}(1)v_{k}(2)\rangle \langle a_{n}^{i}(1)v_{k}(2)|$$

Probability of outcome \mathcal{O}_{N} , $|\psi\rangle$ general state $e\mathcal{E}$

$$p(\alpha_n) = \langle \mathcal{P}_n(i) | \mathcal{P}_n \rangle$$

$$= \sum_{i=1}^{n} \sum_{k} \langle \mathcal{P}_i | \alpha_n(i) \mathcal{P}_k(2) \rangle \langle \alpha_n(i) \mathcal{P}_k(2) | \mathcal{P}_n \rangle$$

Posterior state
$$|\psi\rangle = \frac{1}{\sqrt{p(a_n)}} \stackrel{\sim}{P}(a) |\psi\rangle$$

Same possible outcomes Q_n indep of $| \varphi \rangle$ Degeneracy in \mathcal{E} increases by a factor N_2

Projector:
$$P_{n}(t) = \sum_{i=1}^{g_{n}} |a_{n}^{i}(t)\rangle\langle a_{n}^{i}(t)|$$
for eigenvalue a_{n}

Using the recipe to extend an operator into $\boldsymbol{\mathcal{E}}$

$$\widetilde{P}_{n}(1) = P_{n}(1) \otimes 1 (2)$$

$$= \sum_{i=1}^{9k} \sum_{k} |a_{n}^{i}(1)v_{k}(2)\rangle \langle a_{n}^{i}(1)v_{k}(2)|$$

Probability of outcome O_N , $| \uparrow \rangle$ general state $\in \mathcal{E}$

$$p(a_n) = \langle \phi | \widetilde{P}_n(i) | \psi \rangle$$

$$= \sum_{i=1}^{2n} \sum_{k} \langle \phi | \alpha_n^i(i) \sigma_k(2) \rangle \langle \alpha_n(i) \sigma_k(2) | \phi \rangle$$

Posterior state
$$|\psi\rangle = \frac{1}{\sqrt{p(a_n)}} \stackrel{\sim}{P}(a) |\psi\rangle$$

Some Observations:

- 1. Basis (2) arbitrary, no phys. significance
- 2. Product States. Iff $|\psi\rangle = |\varphi(\iota)\rangle \otimes |\chi(2)\rangle$ then |ゆ'> ~ P_(1) 1 P(1) > & 社(2) | X(2) > ~ | ゆ'(1) > ® | X(2) >
- 3. Entangled States. Let all $g_n = 1$

$$|\psi\rangle = \left[P_{n}(1) \otimes 1(0)\right] |\psi\rangle \propto \left[P_{n}(1) \otimes 1(0)\right] \sum_{n,k} C_{nk} |a_{n}(1) v_{k}(2)\rangle$$

$$\propto |a_{n}(1)\rangle \otimes \sum_{k} C_{nk} |v_{k}(2)\rangle = |a_{n}(1)\rangle \otimes |\chi'(2)\rangle$$

$$g_n > 1 \Rightarrow |\psi'\rangle = \sum_{n \neq k} \sum_{i=1}^{g_n} C_{nik} |\alpha_n^i(i) \nu_k(2)\rangle$$
still entangled

Measure C.S.C.O
$$\Rightarrow$$
 $|\psi'\rangle = |\psi'(1) \otimes |\chi'(2)\rangle$

product state

Some Observations:

- 1. Basis (2) arbitrary, no phys. significance
- 2. Product States. Iff $|\psi\rangle = |\varphi(\iota)\rangle \otimes |\chi(2)\rangle$ then $|\psi'\rangle \propto P_{\alpha}(\iota) |\varphi(i)\rangle \otimes |\chi(2)|\chi(2)\rangle \propto |\varphi'(1)\rangle \otimes |\chi(2)\rangle$
- 3. Entangled States. Let all $g_n = 1$

$$|\phi'\rangle = \left[P_{n}(1) \otimes 1/2\right] |\phi\rangle \propto \left[P_{n}(1) \otimes 1/2\right] \sum_{n,k} C_{nk} |a_{n}(1) v_{k}(2)\rangle$$

$$\propto |a_{n}(1)\rangle \otimes \sum_{k} C_{nk} |v_{k}(2)\rangle = |a_{n}(1)\rangle \otimes |\chi'(2)\rangle$$

$$g_n > 1 \Rightarrow |\psi'\rangle = \sum_{n \neq i=1}^{g_n} C_{ni \neq i} |\alpha_n^i(1) \mathcal{N}_{\ell}(2)\rangle$$

still entangled

Measure C.S.C.O
$$\Rightarrow$$
 $|\psi'\rangle = |\psi'(1) \otimes |\chi'(2)\rangle$

product state

Physical Interpretation of T.P. States

From (2) above, measuring $A(\iota)$, B(2)

$$\mathcal{P}(\alpha_n, b_{\mathbf{k}}) = \langle \mathcal{Q}(\iota) | \mathcal{P}_{\mathbf{k}}(\iota) | \mathcal{Q}(\iota) \rangle \langle \chi(2) | \mathcal{P}_{\mathbf{k}}(\iota) | \chi(2) \rangle$$

Outcomes $O_{n_1} b_n$ are Uncorrelated

Independent Random Var's

Physical Interpretation of Entangled States

From (3) above, measuring $A(\iota)$, B(2)

Global $\langle t \rangle$ cannot be written as $\langle \varphi(t) \rangle \otimes \langle \chi(t) \rangle$

$$P(a_n, b_k) = \langle \tau | P_n(1) P_k(2) | \psi \rangle$$
 { In general, $a_n \ge b_k$ will be correlated random variables

Conclusion: We cannot assign state vectors to the individual subsystems!

Physical Interpretation of T.P. States

From (2) above, measuring $A(\iota)$, B(2)

$$\mathcal{P}(\alpha_n, b_{\mathbf{k}}) = \langle \mathcal{Q}(\iota) | \mathcal{P}_{\mathbf{k}}(\iota) | \mathcal{Q}(\iota) \rangle \langle \chi(2) | \mathcal{P}_{\mathbf{k}}(\iota) | \chi(2) \rangle$$

Outcomes $O_{n_1} O_{n_2}$ are Uncorrelated

Independent Random Var's

Physical Interpretation of Entangled States

From (3) above, measuring $A(\iota)$, B(2)

Global (ひ) cannot be written as (のい) @ (以い)

$$P(\alpha_n, b_k) = \langle \psi | P_n(1) P_k(2) | \psi \rangle$$
 { In general, $a_n \ge b_k$ will be correlated random variables

Conclusion: We cannot assign state vectors to the individual subsystems!

Note:

Even though we cannot assign |φ(1)>, |χ(2)>, it is still possible to have a local description of each subsystem on its own. It must be consistent with tensor product states, yet it must reduce the information that is locally available when the global |ψ> is entangled

Density Matrix Formalism