Quantum Advantage

David Deutsch: Toy problem that shows Quantum Advantage

Classical Box: Need 2 queries for & f(1)

Quantum Advantage

David Deutsch: Toy problem that shows Quantum Advantage

Quantum Computation:

Input
$$|x\rangle|y\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\frac{1}{\sqrt{2}}(|0\rangle - |4\rangle)$$

$$U_{f}: \frac{1}{2}((-1)^{f(0)})0>+(-1)^{f(1)})(0>-11>)$$

Measure 1st qubit in basis $|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |4\rangle)$

→ |+> if constant, |-> if balanced

Quantum Speedup: can solve w/1 query

Quantum Advantage

David Deutsch: Toy problem that shows Quantum Advantage

Quantum Computation:

Input
$$|x\rangle|\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

$$U_{f}: \frac{1}{2}((-1)^{f(0)}|0>+(-1)^{f(1)}|1>)(|0>-|1>)$$

Measure 1st qubit in basis $|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |4\rangle)$

→ |+> if constant, |-> if balanced

Quantum Speedup: can solve w/1 query

Quantum Advantage

David Deutsch: Toy problem that shows Quantum Advantage

Quantum Computation:

Input
$$|\times\rangle|\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

$$U_{f}: \frac{1}{2}(|-1\rangle^{f(0)}|0\rangle + |-1\rangle^{f(1)}|1\rangle)(|0\rangle - |1\rangle)$$

Measure 1st qubit in basis
$$|\pm\rangle = \frac{1}{\sqrt{6}} (|0\rangle \pm |4\rangle)$$

→ |+> if constant, |-> if balanced

Quantum Speedup: can solve w/1 query

Key aspect of Deutsch's algorithm:
We are looking for a global property
of the function f

Generally:
$$U_{+}: [x>[0> \rightarrow]x>[+(x)]>$$

Input $[\Psi_{in}> = \left[\frac{1}{\sqrt{2}}(10>+(1))\right]^{\otimes N}[0>$
 $=\frac{1}{2^{N-1}}\sum_{x=0}^{2^{N}-1}|x>10>$

compute once

Output $[\Psi_{00+}> = \frac{1}{2^{N/2}}\sum_{x=0}^{2^{N}-1}|x>[+(x)]$

Global properties encoded in state, trick is to extract desired information

Quantum Advantage

David Deutsch: Toy problem that shows Quantum Advantage

Quantum Computation:

Input
$$|x\rangle|y\rangle = \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\frac{1}{\sqrt{2}}(|0\rangle-|4\rangle)$$

$$U_{+}: \frac{1}{2}((-1)^{f(0)})0>+(-1)^{f(1)})(0>-11>)$$

Measure 1st qubit in basis $|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle)$

→ |+> if constant, |-> if balanced

Quantum Speedup: can solve w/1 query

Key aspect of Deutsch's algorithm:
We are looking for a global property
of the function *f*

Generally:
$$U_{+}$$
 $|x| > |x| > |x|$

Peter Shor: Period finding, QFT, Factoring

Key aspect of Deutsch's algorithm:
We are looking for a global property
of the function *f*

Generally:
$$U_{f}: \{x > \{o > \rightarrow \} | x > | f(x) > \}$$

Input $| \mathcal{A}_{in} > = \left[\frac{1}{\sqrt{2}}(1o > + |f(x))\right]^{\bigotimes N} | o > \}$

$$= \frac{1}{2^{N/2}} \sum_{x=0}^{2^{N}-1} |x > 1o > \}$$

compute once

$$| \mathcal{A}_{in} > = \frac{1}{2^{N/2}} \sum_{x=0}^{2^{N}-1} |x > 1f(x) > \}$$

Output $| \mathcal{A}_{ooe} > = \frac{1}{2^{N/2}} \sum_{x=0}^{2^{N}-1} |x > |f(x) > \}$

Peter Shor: Period finding, QFT, Factoring

Next: Will this work with real-world Quantum Hardware?

Faulty gates, decoherence!

Quantum Error Correction

Fundamental Problem

Quantum States are fragile, especially when entangled

Classical Computation

Dissipation helps

No dissipation

Errors build up

Quantum Computation

- * Cannot tolerate dissipation
- Destroys superposition and entanglement

What to do?

Error Correction!

Classical Error Correction:

Simple example:

Redundancy protects against bit flips

Encode:
$$0 \rightarrow (000)$$

 $1 \rightarrow (111)$

Errors:
$$(000) \rightarrow (100)$$
 correct by majority vote

Quantum Computation |

- * Cannot tolerate dissipation
- * Destroys superposition and entanglement

What to do? Error Correction!

Classical Error Correction:

Simple example: Redundancy protects against bit flips

Encode:
$$0 \rightarrow (000)$$
 $1 \rightarrow (111)$

Errors:
$$(000) \rightarrow (100)$$
 correct by majority vote

Von Neumann:

- * A classical computer w/faulty components can work, given enough redundancy
- * Classical error correction is well developed and highly sophisticated...

* Quantum Errors

1) Bit Flip
$$\frac{10>\rightarrow 11>}{11>\rightarrow 10>}$$
, phase flip $\frac{10>\rightarrow 10>}{11>\rightarrow -11>}$

- 2) Small errors (alo)+bli) a, b can change by & errors accumulate
- 3) Measurement disturbs

 collapse of quantum states
- 4) No cloning Cannot protect by making copies

Von Neumann:

- * A classical computer w/faulty components can work, given enough redundancy
- * Classical error correction is well developed and highly sophisticated...

* Quantum Errors

- 1) Bit Flip $\frac{10> \rightarrow 11>}{11> \rightarrow 10>}$, phase flip $\frac{10> \rightarrow 10>}{11> \rightarrow -11>}$
- a, b can change by & 2) Small errors (alo)+bli) errors accumulate
- collapse of 3) Measurement disturbs quantum states
- Cannot protect by 4) No cloning making copies

Example: Peter Shor's code for bit flip error when P(error) << 1

10>→10>=1000> 11>→17>=1111> **Encode:** (3 bit code)

alo>+b11> - alooo>+b1111>

Single-qubit measurement

collapse of state, destroys info, no majority voting!

Collective 2-qubit measurement:

- for $|x,y,2\rangle$ measure $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ (never measure individual bits)
- if 1000>, 1111> these observables = 0
- if one bit-flip, at least one observable = 1
- easy to check that $(902) \times (92) =$ binary address of qubit flip

$$|000\rangle \Rightarrow |010\rangle$$
 $(1,0) = 2nd bit$

Peter Shor's code for bit flip **Example:**

error when P(error) << 1

10>->10>=1000> **Encode:** (3 bit code) 11>-> 17> = 1111>

Single-qubit measurement

collapse of state, destroys info, no majority voting!

Collective 2-qubit measurement:

- for
$$|x,y,2\rangle$$
 measure $\begin{cases} 2\theta & \text{never measure} \\ x & \text{individual bits} \end{cases}$

- if 1000 \, 111 \text{ these observables = 0
- if one bit-flip, at least one observable = 1
- easy to check that $(y \oplus 2) \times (y \oplus 2) = 0$ binary address of qubit flip

$$|000\rangle \Rightarrow |010\rangle \qquad (1.0) = 2nd bit$$

1000> -> 1000>+&1001> **Small errors:** 1111) -> [111) + E | 110>

Quantum mechanics to the rescue!

- mostly no error detected
 - collapse into 1000 > resp. 1111>
- sometime error detected
 - collapse into [001] resp. [110]
 - full bit flip, correct as such

Source: xkcd.com

Peter Shor's code for bit flip **Example:**

error when P(error) << 1

10> -> 10> = 1000> 11> -> 17> = 1111> **Encode:** (3 bit code)

Single-qubit measurement

collapse of state, destroys info, no majority voting!

Collective 2-qubit measurement:

- for
$$|x,y,2\rangle$$
 measure $\begin{cases} y \oplus 2 \\ x \oplus 2 \end{cases}$ (never measure individual bits)

- if 1000 \, 111 \text{ these observables = 0
- if one bit-flip, at least one observable = 1
- easy to check that $(y \oplus 2) \times (y \oplus 2) = 0$ binary address of qubit flip

$$|000\rangle \Rightarrow |010\rangle \qquad (1.0) = 2nd bit$$

1000> -> 1000>+&1001> **Small errors:** 1111) -> [111) + E | 110>

Quantum mechanics to the rescue!

- mostly no error detected
 - collapse into 1000 > resp. 1111>
- sometime error detected
 - collapse into [001] resp. [110]
 - full bit flip, correct as such

How to implement?

Quantum circuit + single qubit measurement

Quantum Gates – work on superpositions, and entangled states

Controlled-NOT (CNOT)

Truth Table

С	T	C \oplus T
9	0	0
0	1	1
1	0	1
1	1	0

Quantum Circuit for joint measurement

Measurement in {10>, 11>} basis yields C⊕T

Circuit maps logical basis states as

Full circuit to obtain Error Syndrome

* iff qubit flip, binary address = (y €2,×⊕2)

Circuit maps logical basis states as

Full circuit to obtain Error Syndrome

* iif qubit flip, binary address = (y €2,×€2)

End 08-30-2023

Circuit maps logical basis states as

Full circuit to obtain Error Syndrome

* iif qubit flip, binary address = (y €2,×€2)

Quantum Phase Error