Introduction and Overview (Preskills Notes)

Quantum Advantage

David Deutsch: Toy problem that shows Quantum Advantage

Classical Box: Need 2 queries $f(0) \& f(1)$

Introduction and Overview (Preskills Notes)

Quantum Advantage

David Deutsch:
Toy problem that shows
Quantum Advantage

$\begin{aligned} & x \\ & y \end{aligned}$	Oracle		Is the function
	lack Box)	$-x$	$\begin{aligned} & \text { constant } f(0)=f(1) \\ & \text { balanced } f(0) \neq f(1) \end{aligned}$

Quantum Computation:

Input $|x\rangle|y\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

$$
U_{f}: \frac{1}{2}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right)(|0\rangle-|1\rangle)
$$

Measure $1^{\text {st }}$ qubit in basis $\quad| \pm\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)$
$\rightarrow|+\rangle$ if constant, $|-\rangle$ if balanced
Quantum Speedup: can solve w/1 query

Quantum Advantage

David Deutsch:
Toy problem that shows
Quantum Advantage

Quantum Computation:

$$
\begin{gathered}
\text { Input }|x\rangle|y\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\
\quad U_{f}: \frac{1}{2}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right)(|0\rangle-|1\rangle)
\end{gathered}
$$

Measure $1^{\text {st }}$ qubit in basis $\quad| \pm\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)$
$\rightarrow|+\rangle$ if constant, $|-\rangle$ if balanced

Quantum Speedup: can solve w/1 query

Introduction and Overview (Preskills Notes)

Quantum Advantage

David Deutsch:
Toy problem that shows
Quantum Advantage

Quantum Computation:

Input $|x\rangle|y\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

$$
U_{f}: \frac{1}{2}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right)(|0\rangle-|1\rangle)
$$

Measure $1^{\text {st }}$ qubit in basis $\quad| \pm\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)$
$\rightarrow|+\rangle$ if constant, $|-\rangle$ if balanced
Quantum Speedup: can solve w/1 query

Key aspect of Deutsch's algorithm: We are looking for a global property of the function f
bit binary number
Generally: $U_{f}:|x\rangle|0\rangle \rightarrow|x\rangle|f(x)\rangle$
Input $\quad\left|\psi_{i n}\right\rangle=\left[\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right]^{\otimes N}|0\rangle$

$$
=\frac{1}{2^{N / 2}} \sum_{n=0}^{2^{N}-1}|x\rangle|0\rangle
$$

compute once
Output $\left.\left|4_{00 t}\right\rangle=\frac{1}{2^{N / 2}} \sum_{x=0}^{2^{N}-1}|x\rangle \right\rvert\, f(x| \rangle$

Global properties encoded in state, trick is to extract desired information

Introduction and Overview (Preskills Notes)

Quantum Advantage

David Deutsch:
Toy problem that shows
Quantum Advantage

Quantum Computation:

Input $|x\rangle|y\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

$$
U_{f}: \frac{1}{2}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right)(|0\rangle-|1\rangle)
$$

Measure $1^{\text {st }}$ qubit in basis $\quad| \pm\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)$
$\rightarrow|+\rangle$ if constant, $|-\rangle$ if balanced
Quantum Speedup: can solve w/1 query

Key aspect of Deutsch's algorithm: We are looking for a global property of the function f
N bit binary number
Generally: $U_{f}:|x\rangle|0\rangle \rightarrow|x\rangle|f(x)\rangle$
Input $\quad\left|\psi_{i n}\right\rangle=\left[\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right]^{\otimes N}|0\rangle$

$$
=\frac{1}{2^{N / 2}} \sum_{x=0}^{2^{N}-1}|x\rangle|0\rangle
$$

compute once
Output $\left.\left|4_{00 t}\right\rangle=\frac{1}{2^{N / 2}} \sum_{x=0}^{2^{N}-1}|x\rangle \right\rvert\, f(x| \rangle$

Peter Shor: Period finding, QFT, Factoring

Introduction and Overview (Preskills Notes)

Key aspect of Deutsch's algorithm:
We are looking for a global property of the function f
N bit binary number
Generally: $U_{f}:|x\rangle|0\rangle \rightarrow|x\rangle|f(x)\rangle$ Input $\left.\left.\quad\left|\psi_{\text {in }}\right\rangle=\left[\frac{1}{\sqrt{2}}(10\rangle+\mid 1\right)\right\rangle\right]^{\otimes N}|0\rangle$

$$
=\frac{1}{2^{N / 2}} \sum_{x=0}^{2^{N}-1}|x\rangle|0\rangle
$$

compute once
Output $\left.\left|भ_{00 t}\right\rangle=\frac{1}{2^{N / 2}} \sum_{x=0}^{2^{N}-1}|x\rangle \right\rvert\, f(x| \rangle$

Peter Shor: Period finding, QFT, Factoring

Next: Will this work with real-world Quantum Hardware ?

Faulty gates, decoherence!

Introduction and Overview (Preskills Notes)

Quantum Error Correction

Fundamental
Problem

Quantum States are fragile, especially when entangled

Classical Computation?

Dissipation helps

No dissipation
\Rightarrow Errors build up

Quantum Computation

* Cannot tolerate dissipation
* Destroys superposition and entanglement

What to do? Error Correction!

Classical Error Correction:
Simple example: Redundancy protects
Encode: $\begin{aligned} & 0 \rightarrow(000) \\ & 1 \rightarrow(111)\end{aligned}$
Errors: $\quad \begin{gathered}(000) \rightarrow(100) \\ (111) \rightarrow(011)\end{gathered} \quad \begin{gathered}\text { correct by } \\ \text { majority vote }\end{gathered}$

Introduction and Overview (Preskills Notes)

Quantum Computation

* Cannot tolerate dissipation
* Destroys superposition and entanglement

What to do? Error Correction!

Classical Error Correction:

Simple example:
Redundancy protects against bit flips

Encode:

$$
\begin{aligned}
& 0 \rightarrow(000) \\
& 1 \rightarrow(111)
\end{aligned}
$$

Errors:

$$
\begin{aligned}
& (000) \rightarrow(100) \quad \begin{array}{c}
\text { correct by } \\
\text { majority vote }
\end{array} \\
& (111) \rightarrow(011) \quad
\end{aligned}
$$

Von Neumann:

* A classical computer w/faulty components can work, given enough redundancy
* Classical error correction is well developed and highly sophisticated...
* Quantum Errors

1) Bit Flip $\begin{aligned} & |0\rangle \rightarrow|\underline{ }|, \\ & |1\rangle \rightarrow|0\rangle\end{aligned}$, phase flip $\begin{aligned} & |0\rangle \rightarrow|0\rangle \\ & |1\rangle \rightarrow-|1\rangle\end{aligned}$
2) Small errors $a|0\rangle+b|2\rangle$
a, b can change by ε errors accumulate
3) Measurement disturbs collapse of quantum states
4) No cloning

Cannot protect by making copies

Introduction and Overview (Preskills Notes)

Von Neumann:

* A classical computer w/faulty components can work, given enough redundancy
* Classical error correction is well developed and highly sophisticated...
* Quantum Errors

2) Small errors $a|0\rangle+b(2\rangle$
a, b can change by ε errors accumulate
3) Measurement disturbs

collapse of quantum states
4) No cloning
d Cannot protect by making copies

Example: Peter Shor's code for bit flip error when P (error) << 1

Encode: $\begin{aligned} & |0\rangle \rightarrow|\bar{O}\rangle \equiv|000\rangle \\ & |1\rangle \rightarrow|\overline{\mid}\rangle \equiv|111\rangle\end{aligned} \quad$ (3 bit code)

$$
a|0\rangle+b|1\rangle \rightarrow a|000\rangle+b[111\rangle
$$

Single-qubit measurement
collapse of state, destroys info, no majority voting!

Collective 2-qubit measurement:

- for $|x, y, z\rangle$ measure $\begin{aligned} & Y \oplus Z \\ & x \oplus Z\end{aligned} \quad\binom{$ never measure }{ individual bits }
- if $|000\rangle,|111\rangle$ these observables $=0$
- if one bit-flip, at least one observable $=1$
- easy to check that $(y \in z, \times \oplus \mathcal{Z})=\begin{gathered}\text { binary address } \\ \text { of qubit flip }\end{gathered}$

$$
|000\rangle \rightarrow|010\rangle \quad(1.0)=2 \text { nd bit }
$$

Introduction and Overview (Preskills Notes)

Example: Peter Shor's code for bit flip error when P (error) << 1

Encode:

$$
|0\rangle \rightarrow|\overline{0}\rangle \equiv|000\rangle
$$

(3 bit code)

$$
a|0\rangle+b|1\rangle \rightarrow a|000\rangle+b[111\rangle
$$

Single-qubit measurement
collapse of state, destroys info, no majority voting !

Collective 2-qubit measurement:

- for $|x, y, z\rangle$ measure $\left.\begin{array}{l}Y \oplus z \\ x \oplus z\end{array} \quad \begin{array}{l}\text { never measure } \\ \text { individual bits }\end{array}\right)$
-if $|000\rangle,|111\rangle$ these observables $=0$
- if one bit-flip, at least one observable $=1$
- easy to check that $(y \oplus z, x \oplus z)=\begin{gathered}\text { binary address } \\ \text { of qubit flip }\end{gathered}$

$$
|000\rangle \rightarrow|010\rangle \quad(1,0)=2 \text { nd bit }
$$

$|000\rangle \rightarrow|000\rangle+\varepsilon|001\rangle$
Small errors:

$$
|111\rangle \rightarrow|111\rangle+\varepsilon|110\rangle
$$

Quantum mechanics to the rescue!

- mostly no error detected
\Rightarrow collapse into 1000\rangle resp. $|111\rangle$
- sometime error detected
\Rightarrow collapse into $\langle 001\rangle$ resp. $|110\rangle$
\Rightarrow full bit flip, correct as such

Source: xkcd.com

Introduction and Overview (Preskills Notes)

Example: Peter Shor's code for bit flip error when P (error) << 1

Encode:

$$
|0\rangle \rightarrow|\overline{0}\rangle \equiv|000\rangle
$$

(3 bit code)

$$
a|0\rangle+b|1\rangle \rightarrow a|000\rangle+b[111\rangle
$$

Single-qubit

 measurementcollapse of state, destroys info, no majority voting !

- for $|x, y, z\rangle$ measure $\begin{gathered}y \oplus z \\ x \oplus Z\end{gathered} \quad\binom{$ never measure }{ individual bits }
- if $|000\rangle,|111\rangle$ these observables $=0$
- if one bit-flip, at least one observable $=1$
- easy to check that $(y \oplus \mathcal{Z}, x \oplus z)=\begin{gathered}\text { binary address } \\ \text { of qubit flip }\end{gathered}$

$$
|000\rangle \rightarrow|010\rangle \quad(1,0)=2 \text { nd bit }
$$

$|000\rangle \rightarrow|000\rangle+\varepsilon|001\rangle$
Small errors:

$$
|111\rangle \rightarrow|111\rangle+\varepsilon|110\rangle
$$

Quantum mechanics to the rescue!

- mostly no error detected
\Rightarrow collapse into 1000\rangle resp. |111>
- sometime error detected
\Rightarrow collapse into $[001\rangle$ resp. $|110\rangle$
\Rightarrow full bit flip, correct as such

How to implement ?
Quantum circuit + single qubit measurement
Quantum Gates - work on superpositions, and entangled states

Introduction and Overview (Preskills Notes)

Quantum Circuit for joint measurement

Circuit maps logical basis states as

Full circuit to obtain Error Syndrome

* iff qubit flip, binary address $=(y \oplus z, x \oplus z)$

Introduction and Overview (Preskills Notes)

Full circuit to obtain Error Syndrome

* iif qubit flip, binary address $=(y \oplus z, x \oplus z)$

End
08-30-2023

Introduction and Overview (Preskills Notes)

Full circuit to obtain Error Syndrome

* iif qubit flip, binary address $=(y \oplus z, x \oplus z)$

Quantum Phase Error

