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Quantum error correction will play an essential role in the realisation of quantum computing.
So understanding quantum error correction codes is basic to understand and be familiar with the
current and future of the quantum information processing and the quantum computation. In this
review paper, we first claim why developing the quantum error correction codes are critical in Sec.
I. Then it’s also necessary to brief the classical error correction theory to better understand the key
points of quantum error correction theory in Sec. II. Starting from the Sec. III, IV, and V, we
provide an introductory guide to the fundamental of the theory by using the simplest but important
example codes. Finally, we discuss the issues that are the big challenges we need to overcome.

I. INTRODUCTION

In the past thirty years, the development of traditional
computers has increased by 100,000 times due to the de-
velopment of silicon chips. This is the so called Moore’s
Law[1], which predicts that the number of transistors on
a microchip doubles every two years. However, experts
agree that computers should reach the physical limits of
Moore’s Law at some point in the 2020s[2]. The second
problem for traditional computers is that, as Feynman
had pointed out, there seemed to be essential difficulties
in simulating quantum mechanical systems on classical
computers. Thus, we need to design quantum computers
urgently.

But noise is always a great bane of information pro-
cessing systems. It’s quite important to protect informa-
tion against the effects of noise, especially the noise has
more influence on quantum computers than the classi-
cal computers. There is already a quite complete theory
of classical error correction[3]. But the existing classi-
cal methods for quantum error correction is not enough.
Due to the no-cloning theorem[4] and the wave function
collapse, quantum information cannot be duplicated in
the same way as classical information. All these difficul-
ties and challenges require us to construct a new theory,
quantum error correction theory.

II. FROM CLASSICAL TO QUANTUM ERROR
CORRECTION

A. Classical error correction

We will start from the theory of classical error correc-
tion. As a complex computing system, the classical com-
puter has inevitable noise during operation, so it faces
problems such as gate operation errors and inaccurate
calculations. But for classical computers, we have devel-
oped and widely used classical error correction theory.
By applying error correction technology, we can obtain
reliable calculation results if the noisy does not exceed
its threshold. The key ideal to protect a message against
noise, we should encode the message by adding some re-

dundant information to the message[5].
The simplest example of an error correction code is the

three-bit repetition code, that is, replace one bit with its
three copies:

0 −→ 000

1 −→ 111
(1)

In this way, if at most one bit has an error, like, 000
becomes 001. Then by observing the value of each bit
and comparing it in pairs , we can find out the third
bit has flipped, then restore the third bit, via a majority
vote[6].

This three-repetition code belongs to linear codes,
which is the most widely used classical error-correcting
codes. Suppose we wish to encode k bits using n bits.
The data can be represented as a k-dimensional binary
vector v. Because we are dealing with binary vectors, all
the arithmetic is mod two. For a linear code, the encoded
data is then Gv for some nk matrix G, which is indepen-
dent of v. G is called the generator matrix for the code.
Its columns form a basis for the k-dimensional coding
subspace of the n-dimensional binary vector space, and
represent basis codewords. The most general possible
codeword is an arbitrary linear combination of the basis
codewords; thus the name “linear code”[7]. So the three-
bit repetition code mapping a single bit to three copied
is specified by the generator matrix:

G =

11
1

 (2)

G[0] = (0, 0, 0), G[1] = (1, 1, 1), so this is a [3, 1] code.
The [n, k] code means a code using n bits to encode k
bits of information.

To make error-correction and recovery, we need the
parity check matrix P ,which is an (n − k) × n matrix
of 0,1 of maximal rank n − k with PG = 0. Since any
codeword x has the form Gv, Px = PGv = 0v = 0, and
P annihilates any codeword. If an error e happens, the
corrupted codeword now is x′ = x+e. It is easy to check
Px′ = Pe, which is called the error syndrome. This tells
what and where the error e is, then we can correct this
error easily.



2

B. Basics of Quantum Error Correction

In the classical systems, bit is the fundamental unit.
A bit can only take a binary number like 0 or 1. But
in the quantum systems, the fundamental unit is qubit,
which can exist in coherent superpositions of |0⟩ and |1⟩
state. The general qubit state form is as follows:

|ψ⟩ = a |0⟩+ b |1⟩ (3)

where a and b are complex numbers that satisfy |a|2 +
|b|2 = 1.

The effect of superposition cause two difference be-
tween classical and quantum information, one is the
quantity. For a classical memory composed of N bits,
it can only store one of 2n binary numbers; however,for
a quantum memory composed of N qubits, it can store
all these 2n binary numbers at the same time. The sec-
ond difference is the error types. In classical information,
the only error-type to be considered is the bit-flip that
takes 0 ↔ 1. But in quantum information, it can happen
phase-flip that takes 1 ↔ −1�which cause the state |ψ⟩
becomes the state |ψ′⟩ = a |0⟩ − b |1⟩.

Any error process of a single qubit can be represent by
a sum of the Pauli set {X,Y ,Z,I}, where

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, I =

[
1 0
0 1

]
(4)

Pauli X-type errors can be thought of as quantum bit-
flips that map X |0⟩ = |1⟩, and X |1⟩ = |0⟩; Pauli Z-
type errors can be thought of as quantum phase-flips
that map Z |0⟩ = |0⟩, and Z |1⟩ = − |1⟩; Pauli Y gates
are the combination of X and Z, since Y = iXZ; I gate
means no error since I |0⟩ = |0⟩, and I |1⟩ = |1⟩.

With the help of Pauli gates, we can try to understand
what properties are essential for a more general quantum
error-correcting code. In order to correct two errors Ea

and Eb, it requires we are always able to distinguish the
two different errors in any possible code states |ψ⟩�

⟨ψ|E†
aEb |ψ⟩ = 0 (5)

In fact, this should always be distinguishable for any
different states. And more importantly, we cannot learn
anything about the actual state of the code within the
coding space which is the requirement of the quantum
physics to protect the superposition. Thus, this quantity
must be the same for all the basis codewords:

⟨ψi|E†
aEb |ψj⟩ = Cabδij (6)

where Cab is a Hermitian matrix independent of i and j.
This is a necessary condition for all the codes to correct
the errors which was found by Knill and Laflamme[8] and
Bennett et al[9]. As illustrated in FIG. 1, the left part is
”good” coding space with orthogonal error operators, and
the right part is ”bad” coding space with non-orthogonal
error operators.

FIG. 1. ”Good” and ”bad” coding space.

FIG. 2. Encode stage of the three-qubit error correction code

III. SIMPLE CODE EXAMPLES

A. The three-qubit error correction code

In fact, we should emphasize that the three-qubit error
correction code is not a ”good” code for quantum infor-
mation, but this is a good start for all the reasonable
codes. The general state for three-qubit error correction
code is:

|ψ⟩L = a |0⟩L + b |1⟩L (7)

where |0⟩L and |1⟩L are logical basis states, that means
|0⟩L = |000⟩ and |1⟩L = |111⟩.

FIG. 2 shows how to use a single qubit |ψ⟩ entan-
gled with two ancilla qubits and two CNOT gates to
encode a logical qubit state. After the encoding stage,
we are able to correct errors using this code logical qubit
|ψ⟩L. FIG. 3 shows the correction circuit. Each logical
qubit will first have one kind of error from the error set
E = {X1, X2, X3}, then the syndrome extraction process
by introducing two ancilla qubits and performing CNOT
gatess will be applied. As shown in Table. I, by measur-
ing ancilla qubits, we can find what errors happened in
the logical qubit and then we can correct it.
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FIG. 3. Correction circuit

B. The nine-qubit error correction code

Since the three-qubit code can only correct bit-filp er-
rors, we need a code can correct both bit-flip and phase-
flip error. This was first to be successfully realized by
Shor[10] in 1995 and is based largely on the three-qubit
code. According to Shor’s theory, the logical qubits
states for the code are:

|0⟩L =
1

2
√
2
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)

(8)

|1⟩L =
1

2
√
2
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩)

(9)

Each logical qubit contains three blocks of the same
three-qubit state. The circuit to perform the encoding
is shown in FIG. 4. This redundancy is enough to cor-
rect both bit-flip error and phase-error. Let’s see how
this works.

For bit-filp errors, for example, the state |000⟩±|111⟩ in
the first block changes to the state |010⟩±|101⟩, which is
also the error gate X2. Likely what we did for the three-
qubit code earlier, by performing the correction circuit
shown in FIG. 3, the syndrome on the ancilla qubits will
give 11, we can know the bit-filp error happens in the sec-
ond qubit and then corrected it. For phase-filp error, this
will change the sign in one block,|000⟩ ± |111⟩ becomes
|000⟩ ∓ |111⟩. By comparing the phase in blocks, in-
stead of measuring the relative phase in each block (This
will change the coding information), you can find out the
block whose phase has changed. The result only allows
you to determine which block has a sign different from
the other two, then the unitary phase transformation can
be applied to correct the error.

The nine-qubit code is easy to understand, however it
is not the most effective code, because it cost too much

TABLE I. All bit-flip errors on the three qubit code.

Error Syndrome on ancilla qubits
X1 10
X2 11
X3 01

FIG. 4. Encode stage of the nine-qubit error correction code

to use 9 qubits to protect just 1 qubit information. In
1996, Steane[11] proposed a quantum code that uses 7
qubits to encode 1 qubit. Daniel and Gottesman[12] first
introduced the concept of ”stabilizer” to make the theory
of quantum error correction more systematic and perfect.

IV. STABILIZER CODES

A. Properties of stabilizer codes

We first introduce stabilizer formalism. This formalism
requires to describe quantum states by using operators.
For any state |ψ⟩, if the operator P satisfies P |ψ⟩ = |ψ⟩,
or equivalently, |ψ⟩ has eigenvectors with +1 eigenval-
ues, we say the operator P stabilizes the state |ψ⟩. For
example, for single qubit |0⟩:

Z |0⟩ = |0⟩ (10)

Z is the stabilizer of the single-qubit state |0⟩. As for
multi-qubit states, like EPR state, |ϕ+⟩ = 1√

2
(|00⟩+|11⟩)

has:

X1X2

∣∣ϕ+〉 =
∣∣ϕ+〉 (11)

Z1Z2

∣∣ϕ+〉 =
∣∣ϕ+〉 (12)

We say the state |ϕ+⟩ is stabilized by the operators X1X2

and Z1Z2. In fact, |ϕ+⟩ is the unique state (up to a globe
phase) which is stablized by the two operators.

Above all, the stabilizers Pi must satisfy the following
properties:
(1) They must be Pauli-group elements, Pi ∈ Gn, where
Gn is the Pauli group over n-qubits. Here the n-qubits
Pauli group is N fold tensor product of single-qubit Pauli
group G.

G ≡ {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} (13)
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(2) They must stabilize all the logical states |ψ⟩L of the
code. This means that each Pi has +1 eigenvalues for all
possible values of |ψ⟩L.
(3) All the stabilizers of a code must commute with one
another, so that [Pi, Pj ] = 0 for all i and j. This prop-
erty is necessary so that the stabilizers can be measured
simultaneously.

Let’s see how the general error correction procedure
for a single cycle of a stabilizer code works. First, we
need to prepare the logical states |ψ⟩L, that is encoded
stage. Normally, the initial states will entangle with an-
cilla states. Then the encoded logical states are subject
to an error process E. Next, we will measure the stabi-
lizers by the syndrome extraction method, and we can
read out the error from the ancilla systems. In the end,
the decoding step, we need to apply an error correction
procedure by choosing a unitary operation R to return
the logical state to the codespace. We say the error cor-
rection is successful if the decode step has the results:

RE |ψ⟩L = |ψ⟩L (14)

It’s trivially to satisfy this equation by letting R = E†.
But this is not the only solution in some cases. In fact,
for any R, if it equals RE = P , this above equation
will be satisfied. So, if the choice of R is unique, this
is a degenerate code; if this is not unique, this is a non-
degenerate code.

B. Example: the five-qubit code

The five-qubit code[13] is the smallest quantum stabi-
lizer code that corrects for a single error. To prepare it,
we can use the generation operators Pi ∈ S, where S is
the stabilizer group, as shown in TABLE. II, to encode
the logical states:

|0⟩L =
∑
S
Pi |00000⟩

= |00000⟩+ |10010⟩+ |01001⟩+ |10100⟩
+ |01010⟩ − |11011⟩ − |00110⟩ − |00101⟩
− |10001⟩ − |01100⟩ − |10111⟩+ |00101⟩

(15)

and

|1⟩L = X̄ |0⟩L
= |11111⟩+ |01101⟩+ |10110⟩+ |01011⟩
= + |10101⟩ − |00100⟩ − |11001⟩ − |00111⟩
= − |00010⟩ − |11100⟩ − |00001⟩ − |10000⟩
= − |01110⟩ − |10011⟩ − |01000⟩+ |11010⟩

(16)

The stabilizers encode five physical qubits into one log-
ical qubit to correct a single X, Y or Z error. Unlike the
nine-qubit codes which can correct 2 errors, this code can
only correct a single error. And this is also a degenerate
code since the recovery R is unique.

C. Example: the Shor code

The Shor’s code, or the nine-qubit code has been dis-
cussed before, but this time, let’s check the code in the
view of stabilizer codes. In fact, the nine-qubit code is
the combine of the two three-qubit codes for phase-flip
and error-flip. The three-qubit error-flip code is:

|0⟩L = |000⟩ , |1⟩L = |111⟩ (17)

with the stabiliezrs Z1Z2 and Z2Z3. And the three-qubit
phase-flip code is:

|0⟩L = |+++⟩ , |1⟩L = |− − −⟩ (18)

where |±⟩ = 1√
2
(|0⟩±|1⟩), with the stabiliezrs X1X2 and

X2X3. Combine these two types code, we get the Shor’s
nine-qubit code with all the stabilizers:

S = {Z1Z2, Z2Z3, Z4Z5,

Z5Z6, Z7Z8, Z8Z9,

X1X2X3X4X5X6,

X4X5X6X7X8X9}

(19)

We can see each of the X-errors produce unique syn-
dromes. In contrast, Z-errors that occur in the same
block of the code have the same syndrome. For ex-
ample, if we assume that the error is Z1, by applying
the recovery operation R = Z1, we can get the result
RZ1 |ψ⟩L = Z1Z1 |ψ⟩L = |ψ⟩L. But this is not the
unique choice, if R = Z2, the result is still the same,
RZ1 |ψ⟩L = Z2Z1 |ψ⟩L = |ψ⟩L. Thus, the Shor’s nine-
qubit code is a non-degenerate code.

V. FAULT TOLERANCE

In the above discussion of quantum error correction
codes, we have implicitly assumed that the errors only
occur in certain locations in the circuit. Like in FIG.
3, the error only happens in the error region E, and it
can run perfectly in other locations without any error.
This is not possible in real experiment. In fact, for many
quantum computing technologies, and measurement op-
erations can be dominant sources of error. As such, it
is unrealistic to assume that any part of the circuit is
error free. What’s more, the quantum gates themselves
could happen some systematic errors within the logical

TABLE II. The stabilizer for the five-qubit code.
Name Operators
P1 XZZXI
P2 IXZZX
P3 XIXZZ
P4 ZXIXZ
Z̄ ZZZZZ
X̄ XXXXX
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FIG. 5. An example of error propagation.

data block. For example, an error can propagate from
the control qubit to the target qubit. See the example
in FIG. 5, we have the states, |ψ⟩ = a |0⟩ + b |1⟩, and
|±⟩ = |0⟩ ± |1⟩. Then by performing a CNOT gate from
the first qubit to the second, we get:

a |0⟩ (|0⟩ ± |1⟩) + b |1⟩ (±1)(|0⟩ ± |1⟩) (20)

Initially we flip the sign on the second qubit, then we will
get a sign flip on the first qubit after the CNOT gate.

The basic principle of fault-tolerance is that the cir-
cuits used for gate operations and error correction proce-
dures should not cause errors to cascade[14]. It’s impor-
tant to define a fault-tolerant measurement and a fault-
tolerant state preparation. We say it’s fault-tolerant if
the failure of any single component in the procedure re-
sults in an error in at most one qubit in each encoded
block of qubits at the output procedure. And if the
preparing procedure is fault-tolerant, there is at most a
single qubit in error in each block of qubits output from
the procure. In fact, fault-tolerance is a complex con-
ception, here we will use a simpler but easier model to
understand fault-tolerance. Assume the error types on
qubits are one of the four types: I,X, Y, Z. When per-
forming gates, we allow errors to happen on two qubits
in some probability with the form of tensor products of
Pauli matrices. For example, an X error on the first qubit
occurs just before any kind of gate. Assume this unitary
operator of this gate is U , then the effective action of the
circuit is UX1 = UX1U

†U = X2U , this means as though
the error X happens before the gate, and the gate was
applied correctly, but this X error occurred on both the
first and the second qubits after the gate. So the question
is, how to design a fault- tolerant circuit? The general
structure of the circuit was first developed by Shor, and
it should be noted that several more recent methods for
fault-tolerant state preparation and correction now exist.
Here we just want to show one simple way to understand
fault-tolerant circuit.

One way is called the concatenated codes. The key
point is to use iteration, by repeatedly applying the
original quantum codes and constructing a hierarchy of
quantum circuits. As illustrated in FIG. 6, the original
circuit is C0. The error enter on the first block is at
most c0p, where c0 is a constant. After the second block,
the probability for this circuit is at most (c0p)

2. Now
we will extend this quantum circuit by repeating this
many times. Thus, if we concatenate k times, the failure
probability is now (c0p)

2k . It’s quite easy to find that

FIG. 6. An example of three level concatenated codes.

(c0p)
2k ≤ (c0p)

2, only when (c0p)
2 = 1 we get equiva-

lence. And the more concatenations we have, the failure
probability will be smaller when (c0p)

2 < 1. Clearly, the
disadvantage is that the size of the circuit increase as k
time the size of the original circuit.

VI. OUTLOOK

A. Modern developments in quantum error
correction codes

In the above discussion, we only focus on the most
basic principals and codes examples. For the require-
ments of construction of large scale quantum computers,
these basic codes are far not enough to use, we need more
modern protocols. Since this will far outside our review
paper, we only attempt to have some simple discussion
of two of these more complicated codes.

The first one is called the surface code, or topological
error correction, which is first introduced by Kitaev[15].
Surface code is defined on a lattice of qubits for detect-
ing and correcting errors. The error suppression achieved
by the surface code is usually estimated by simulating
toy noise models describing random Pauli errors. The
general design principle behind topological codes is that
the code is built up by ‘patching’ together repeated ele-
ments. We will see that this modular approach ensures
that the surface code can be straight-forwardly scaled in
size whilst ensuring stabilizer commutativity. In terms
of actual implementation, the specific advantage of sur-
face code for current hardware platforms is that it re-
quires only nearest-neighbour interactions. This is ad-
vantageous as many quantum computing platforms are
unable to perform high-fidelity long-range interactions
between qubits[6].

Gottesman, Kitaev and Preskill have formulated a way
of encoding a qubit into an oscillator such that the qubit
is protected against small shifts (translations) in phase
space[16]. The idea underlying this encoding is that error
processes of low rate can be expanded into small shift
errors. The qubit space is defined as an eigenspace of two
mutually commuting displacement operators Sq and Sp

which act as large shifts in phase space. The GKP code
is intrinsic fault-tolerance, and construed by only linear
optical elements. These advantages make the GKP code
an ideal encoding scheme in experiments.
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B. Challenges need to overcome

As we have discussed lots of importance and advan-
tages of quantum error correction codes, we cannot ig-
nore the big challenges that need to overcome in the
nowadays. (1) One is the code itself. Although quantum
error correction offers a solution to control qubits in an
error-free way to construct a quantum computer[6], we
cannot not ignore that it requires additional large num-
ber of qubits to operate. This will significantly increase
the overheads associated with quantum computing. We
have developed lots of quantum error correction codes,
from the earliest nine-qubit code to the surface codes and
many other codes in the recent years; however, we have
not found any ”perfect” codes to avoid this disadvantage
with retaining the advantages we need. (2) There is still
an obvious disconnect between the abstract framework of

quantum coding and the more physically realistic imple-
mentation of error correction for large-scale quantum in-
formation processing[14]. Even with the development of
many of new quantum error correction codes, the physi-
cal construction and accuracy of current qubit fabrication
is still hard to obtain benefits from them.

But the study of quantum error correction is and will
still be active in the area of quantum information process-
ing research. Although there are many difficulties, the
development of quantum error correction codes proves
that it is not impossible to perform reliable quantum
computation. The latest results show that in quantum
computers, as long as the error rate is below some cer-
tain threshold, quantum computation with arbitrary pre-
cision can be performed. We believe that with the efforts
of scientists, realizing reliable quantum computing is no
longer a dream.
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