OPTI 646
Introduction to Quantum Information and Computation

The course covers the foundations of quantum information and selected topics in quantum communication and quantum computation, including physical implementations.

Professor: Poul Jessen, Meinel 604. Email: jessen@optics.arizona.edu

Text: “Quantum Information and Computation”, lecture notes by John Preskill, Caltech 1998. Can be downloaded at

http://theory.caltech.edu/~preskill/ph219/index.html#lecture

Course Website: https://wp.optics.arizona.edu/opti646/

Grading: Homework (30%), student presentation (40%) and class participation (30%). Each student is required to give a lecture presentation on a topic related to Quantum Information Science

Prerequisites:
A solid knowledge and understanding of graduate level quantum mechanics is essential, as developed for example in OPTI/PHYS 570A “Quantum Mechanics” or equivalent.
Topics

Introduction and overview
Physics of information, Quantum computation
Quantum parallelism, Deutsch’s problem
Quantum error correction
Physical implementation: Ion trap, Cavity QED, NMR

Review of quantum mechanics I - basics
State vectors, Linear operators, Observables
Postulates of quantum mechanics

Review of quantum mechanics II – bipartite systems
Tensor product of state spaces
Measurements on one part of a system
Density operator, Separate description of part of a system, Partial trace

Qubits, spin-1/2 & other 2-level systems
Spin observables, Pauli matrices
Pure states, density operator, Bloch picture
Rotations, Schrödinger evolution, single-qubit gates.

Entanglement
2-spin state space
Alice & Bob joint experiments, Local measurements and correlations
Sending non-orthogonal states, Significance of ensemble decomposition
Local hidden variable theories, Bell inequalities

Quantum Communication
Information in entangled pairs, Dense coding
Quantum key distribution, Security against eavesdroppers, No cloning theorem
Quantum teleportation

General Theory of Measurement
Von Neumanns theory of orthogonal measurement, System-meter model
Non-orthogonal measurements – POVM’s
Implementation as orthogonal measurement in extended state space

Superoperators and Decoherence
Operator-sum representation, Kraus operators, Super-operators
Decohering quantum channels – depolarizing, phase & amplitude damping
Quantum Information Theory
- Shannon entropy, classical data compression
- Shannons noiseless coding theorem, Noisy channel coding theorem
- Von Neumann entropy
- Quantum data compression, Schumacher compression,
- Schumachers noiseless coding theorem
- Mixed-state coding

Quantum Computation
- Classical circuits, universal gate sets
- Classical circuit complexity, complexity classes (P, NP, NPC, NPI)
- Quantum circuits, Quantum complexity (BQP)
- Universal quantum gates, Deutsch’s gate, other universal sets
- Quantum database search, Grovers algorithm
Student Lecture Topics 2002
 EPR and GHZ, loopholes
 Quantum teleportation
 Quantum communication and quantum cryptography
 Neutral atom quantum computation – optical lattices
 Slow light and quantum data storage
 Quantum games
 Quantum measurement – QND and POVM

Student Lecture Topics 2005
 Quantum Computing with Ion Traps
 Quantum Data Storage in Ensembles
 Quantum Algorithms
 Quantum Key Distribution
 Solid State Implementations of Quantum Computation
 Classical Wave Simulations of QM

Student Lecture Topics 2008
 EPR experiments
 Quantum Non-Demolition Measurements
 Quantum State Reconstruction
 Public Key Cryptography and the RSA cryptosystem
 Slow light and quantum data storage
 Quantum teleportation
 Ion trap quantum computation
 Linear optics quantum computation
 Solid state implementations of quantum computation
 Robust quantum control of qubits
 Quantum simulation of model Hamiltonians
 Shors algorithm for factoring
 Topological quantum computing
 Quantum Information Theory - Holevo Information, Accessible Information

Student Lecture Topics 2010
 EPR experiments
 Quantum Non-Demolition measurements
 Quantum State Reconstruction
 Quantum Metrology
 Public Key Cryptography and the RSA cryptosystem
 Slow Light and Quantum Data Storage
 Ion Trap Quantum Computation
 Grovers Algorithm for Data Base Search
 Quantum Trajectories and Quantum Monte Carlo Simulation
Student Lecture Topics 2012
- Quantum Non-Demolition measurements
- Spin Squeezing
- Weak Values in Quantum Measurement
- Quantum Cryptography
- Grovers Algorithm
- Adiabatic Quantum Computing
- Quantum Simulation in Chemistry

Student Lecture Topics 2015
- Quantum non-demolition measurements
- Superoperators and decoherence
- Dynamical decoupling and composite pulses
- Measurement based one-way quantum computation

Student Lecture Topics 2018
- Quantum Repeaters
- Surface Code Quantum Computing
- Grovers Algorithm
- Quantum Tomography
- Squeezed States