
OPTI 570, Fall 2019 Midterm Exam 3 Anderson

120-minute written exam to be taken in class:
Wednesday, Nov. 20, 4:00-6:00pm.

Instructions

• You may consult the following items during the exam: a bound copy of the course notes, and
anything that you have personally written (on paper or an electronic device) or that you have
personally typed and printed. You may use any notes from your studying, and any problems
that you have worked. You may use a calculator, but you may not use its graphing or
symbolic manipulation capabilities. You may not use: the course textbook, photocopies
of any material (other than the course notes and the homework questions), computers (unless
used only to access your notes), or the distributed solutions to the problem sets or practice
exam. You may not consult other people, or use internet, email, or any other electronic
resources. You are also on your honor to refrain from providing any help, hints, or feedback
of any sort to other students who are in the process of taking the exam. Violation of these
rules will result in a failing grade.

• There are 4 problems on the 3 pages that follow. 100 points are available. Raw scores will be
scaled and converted to a final grade.

• Use your own paper to solve all problems. Show enough work that I can follow your reasoning
and give you partial credit for problems that are not fully correct.

• It is up to you to convince me that you know how to solve the problems, and to write legibly
enough that I do not need to struggle to interpret your work. However, I expect you to work
quickly, and that the neatness of your solutions might consequently suffer. That’s OK as long
as I can interpret your solutions. Draw a box around final answers if your final results are
not obvious. If you have a mess of equations all over the page, direct my attention to your
line of thought if it is not otherwise obvious. If you have obtained an answer that you know
is not correct and you do not have enough time to fix the error, please tell me that you know
the answer is wrong, why you know that it is wrong, and guess an appropriate answer – this
may help you earn significant partial credit.

• If you are convinced that there is a mistake in a problem, please ask me about it. Alternatively,
if I have made an error that is obvious to you, clearly indicate what you think is wrong, what
should be changed to make the problem solvable in the manner that you think I intended,
then solve the problem. Make sure that I can understand how you have modified the problem
to make it solvable. Part of the challenge of learning a new subject is to try to identify
mistakes and speculate about the original intention!

• The 120 minutes that you have available for the exam begins as soon as you open the exam.

You are required to turn in the exam questions when you turn in your answers. Before
starting the following problems, make sure your name is written on this page AND on
your first sheet of paper.
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1. Hellmann-Feynman Theorem [10 pts.] For an eigenstate |ψk〉 of a time-independent Hamil-
tonian Ĥ, such that Ĥ|ψk〉 = Ek|ψk〉, the Hellmann-Feynman Theorem states

dEk
dξ

= 〈ψk|
dĤ

dξ
|ψk〉,

where the derivatives are taken with respect to some fixed parameter (here represented by ξ) of
the specific problem. This theorem is straightforward to prove, but you are not asked to do so
here. The theorem can come in handy when calculating certain expectation values. For example,
if ĤQHO = 1

2m P̂
2 + 1

2mω
2X̂2 and the eigenvalues of ĤQHO are En = ~ω(n+ 1

2), taking derivatives
with respect to ω gives

dEn
dω

= ~(n+ 1/2) and

〈
dĤ

dω

〉
= mω〈X̂2〉

and therefore 〈X̂2〉 = ~
mω (n+ 1

2) for any harmonic oscillator energy eigenstate.

Now consider the Hamiltonian for the spinless hydrogen atom model,

Ĥ =
P̂ 2

2m
− e2

R̂

where m is the electron mass (which we will assume is identical to the reduced mass), P̂ 2 is the
square of the momentum vector operator, R̂ is the magnitude of the position vector operator, and

e2 ≡ q2

4πε0
where q = 1.6 × 10−19 C. Use the Hellmann-Feynman Theorem to evaluate 〈1/R̂〉 for

any hydrogen energy eigenstate |n, l, mz〉 with energy eigenvalue En = − me4

2~2n2 . Proceed by first

taking derivatives of Ĥ and En with respect to e. Put your final answer in terms of the Bohr radius
a0 = ~2

me2
.

2. [20 pts.] A 87Rb atom (3/2 nuclear spin) is in the 5 2D3/2 |F = 2, mF = 2〉 state, where ~mF

is the ẑ-component of the atom’s total angular momentum.

(a) If the ẑ-component of the nuclear spin is to be measured, what are the possible measure-
ment results, and the associated probabilities of obtaining each result?

(b) If the ẑ-component of the total orbital angular momentum of the electrons is to be mea-
sured, what is the probability that the result will be zero? Hint: feel free to skip the calculations
of quantities that don’t help you answer the question asked.
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3. [30 pts.] Consider a particle with a spin quantum number s = 1/2 and a negative gyromagnetic
ratio γ. For times t ≥ 0, the particle is in the presence of a spatially uniform magnetic field that
points in the x̂ direction. The magnetic field has an exponentially decaying amplitude given by
B0 exp {−Γt}. Both B0 and Γ are real and positive. At time t = 0, the particle is in a spin state
|ψ(0)〉 = |+〉z corresponding to spin up along the ẑ direction.

(a) For t ≥ 0, calculate P−(t), the time-dependent probability of finding the particle in the state
|−〉z, which corresponds to spin down along the ẑ direction.

(b) Carefully (and methodically) sketch P−(t) for the case Γ = −γB0/(2π). Remember γ < 0.

(c) For Γ = −γB0/(2π), at what time is P− maximized, and what is this maximum value?

4. Neutrino oscillations. [40 pts.] A neutron (n) can interact with an electron neutrino (νr),
producing a proton (p) and an electron (e). This process is characterized by the expression

νe + n→ p + e.

Similarly, if a muon neutrino νµ interacts with a neutron, a proton and a muon (µ) can be produced:

νµ + n→ p + µ.

Since νe + n → p + µ and νµ + n → p + e do not occur, neutrino types (“flavors”) can be
determined by examining the particles produced in interactions with neutrons. (A third type of
neutrino exists, but we neglect them in this problem.) Neutrinos are also produced as one of these
types (νe or νµ) in different processes. Although neutrinos have non-zero mass, the νe and νµ
particles apparently do not have well-defined mass! This topic was the subject of the 2015 Physics
Nobel Prize. The problem below gives an example of how neutrino mass differences can be mea-
sured using a quantum oscillation effect, and challenges our intuition on the meaning of mass. The
underlying theory is based on the idea that the νe and νµ particles actually represent two different
quantum states of the physical entity that we call a neutrino.

In an accelerator, neutrinos are produced with well-defined momentum p (from here on, p refers
to momentum, rather than symbolizing a proton). Since a neutrino’s mass m is so small, and
since neutrinos travel very nearly at the speed of light c, neutrino energy E =

√
p2c2 +m2c4 is

approximated by E ' pc+ m2c4

2pc .

Let Ĥ be the Hamiltonian of a free neutrino of momentum p. We label the eigenstates of Ĥ
as |ν1〉 and |ν2〉. Suppose that

Ĥ|ν1〉 = E1|ν1〉, Ĥ|ν2〉 = E2|ν2〉

where

E1 = pc+
m2

1c
4

2pc
, E2 = pc+

m2
2c

4

2pc
.

Here, m1 and m2 are the masses of the two states |ν1〉 and |ν2〉, and we assume m1 > m2. We can
say that |ν1〉 and |ν2〉 are not only energy eigenstates, but also mass eigenstates (to make sense
of this, we might assume that a mass operator could be constructed). However, these statements
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do not mean that a particle must necessarily exist at any arbitrary point in time in one of these
Hamiltonian’s eigenstates, i.e., in a state with definite mass.

Let |νe〉 and |νµ〉 indicate the electron and muon neutrino quantum states, respectively. Based
on the processes defined at the beginning of this problem, these are the states that are produced or
detected in an experiment, rather than a state of well-defined mass (|ν1〉 or |ν2〉). In other words,
we are supposing that neutrino mass is not directly measurable using the interactions described
earlier. So we will also suppose the following:

|νe〉 = |ν1〉 cos θ + |ν2〉 sin θ,

|νµ〉 = −|ν1〉 sin θ + |ν2〉 cos θ,

where θ is some constant real scalar called the mixing angle (which has nothing to do with mixed
states). θ just defines a transformation from one basis to another, and is not an angle in space.

(a) Suppose that a muon neutrino of momentum p is produced in a particle accelerator at time
t = 0, so that we write the neutrino’s initial quantum state as |ν(t = 0)〉 = |νµ〉. Calculate the
time-dependent neutrino state |ν(t)〉 for times t > 0, writing your answer in terms of |ν1〉 and |ν2〉.

(b) What is the probability of detecting the neutrino of part (a) in the state |νe〉 at a later time t?
Express the result in terms of θ, c, p, t, ~ and δ(m2) ≡ m2

1 −m2
2.

(c) Suppose that after the neutrino described above is produced, it is detected in a target lo-
cated a distance d from the production point. Express the probability of part (b) in terms of d.
Use the approximation that the neutrino travels at the speed of light, c.

(d) You should see that for any θ there will be many distances d where the probability of de-
tecting the neutrino in state |νe〉 is maximized, given that it was initially produced in state |νµ〉.
Calculate a value for the shortest distance d where this probability is maximized. Use the following
in your calculation: δ(m2) · c4 = 1 (eV)2, pc = 10 GeV = 1010 eV, and ~ = 6.6× 10−16 eV·s.

(e) In 1998, convincing evidence for such neutrino oscillations was reported using atmospheric
neutrino data resulting from a 535-day exposure of the Super-Kamiokande detector (Fukuda et al.,
PRL 81, 1562 (1998)). Other recent experiments with high-precision detectors have also provided
evidence for neutrino oscillations. Based on the experimental results, we can realistically suppose
that that δ(m2) · c4 ≈ 10−3 (eV)2 (instead of the estimate given above). Using this number, and
letting pc = 1010 eV and θ = π/4, what is the probability of detecting a neutrino in the |νe〉 state
given that it was produced in the |νµ〉 state 1000 m away? Your answer should be small but non-
zero, and give some insight into why it is difficult to detect neutrino oscillations in lab experiments.

(f) Neutrinos can be produced when cosmic ray protons enter the earth’s atmosphere, and it
turns out there are twice as many νµ particles as νe detected. So suppose that a neutrino traveling
through the atmosphere reaches the earth’s surface in a mixed state with probabilities of 1/3 to
be found in the |νe〉 state, and 2/3 to be found in the |νµ〉 state. Write the density matrix for this
neutrino in both the {|νe〉, |νµ〉} representation, and in the {|ν1〉, |ν2〉} representation in terms of θ.
Make sure you label your answers appropriately.

End of exam. Turn in the exam questions along with your answers.
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