Quantum Electrodynamics — QED

Starting point: Maxwells Equations

Free Fields - Switch to Fourier Domain

1) 7 E(Fit) = 5 o(Ft)
2 v.B(F4) = 0
B) vxE[ft)=-2 é(ﬁt)
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(1) ;E.E(zﬁﬁig( )

Implicit: Charges & Fields in Vacuum
No “medium response”

Same issue as with our introductory example:

Maxwells eqgs are non-local

P

We need to put the classical description
in proper form -> Normal Mode expansion
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Fourier Transform: - U
VxG 2 ihxh

Note: This is a Normal Mode decomposition

No charges -> No coupling between modes
with different 75
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Free Fields - Switch to Fourier Domain
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Fourier Transform:
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Note: This is a Normal Mode decomposition

No charges -> No coupling between modes
with different /o
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Separate into Transverse & Longitudinal Fields
Ekt)-E, Ba+& (LY
Bl = Bl ®)+ B (Rt) MEq(2)

(B Entirely Transverse

)
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f,”= —i;'r % -2 is the projection of € onto K
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Coulomb field from the charges
e

— )
Only £J_and ‘BJ_are new degrees of freedom

beyond the particles -> Free Fields
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Separate into Transverse & Longitudinal Fields
E1)-E (Rp+& (LY
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(B Entirely Transverse
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Coulomb field from the charges
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Only £Land ‘Bf,_are new degrees of freedom

beyond the particles -> Free Fields

Eqs for Transverse Fields, from MEqs (3) & (4)

L §

5a) & Bt) = ~Kix E, (Bt

(62) & % (B4 = i BxBlle) - L3 @

- inverse FT

5b) 2 BEL) =~V E, (74}

(6b) 2, [Fit\= cloxBIRe)-7 ] (F4)

combine (5b) & (6b)

Wave Equation for the Free Fields
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Eqs for Transverse Fields, from MEqs (3) & (4)

o

5a) & Beled) = ~ix E, ()

+)

(

(6a) SZ— »EL[.%,% =ct .’Kx@[ﬁ,ﬁ) —%—}L (%

- inverse FT

(5b) 537: 5(""‘%} ==V x El(s'r',f\

(6b) 2 E, [Fit\= clOxBIA£)-7 ] (F2)

Normal Modes in a 1D Cavity

standing wave
[T R

Normal Modes are Standing Waves

Length L
Cross section A
Volume V=LA

— - fiducial
let E(2t)=E, E (21) andexpand ™3

combine (5b) & (6b)

Wave Equation for the Free Fields

(v’ L3 ) Edy=o

\
(7) B, (24)- 28,9 )sin 2} , A=, [ 25
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£3 transverse B 8,2 =0
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From Eq. (5a) we see that

BLEE, » Bat)-§, 8y 2)

Putting this together we get

af: ZA g (4) Sin (e;2)

-r

(8) By(t) = Zég-lé,émws(%%)
3 dJ

Hamiltonian (Energy) for the Classical Field

o - i_;é fdg(n;l +c2R1?) =
L ? / 9
LA Yo (st VLAY
e, LD\}AZ[A&({; c.w*(&d;)ﬁa&_‘;qd (41> cos™ ()]
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Integrating over the Cavity volume

L L
Adrsint ) = f g cos*(R;3) = V4
0 o

)
2w M.
and substituting ﬁa‘ = —-84\73' we finally get
0

X - Z[»."’d“ﬂ +om qu]

Lagrangian for the Classical Field
L — </
L= %ﬁ[ dy (c*(@*- IE1L)
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Integrating over the Cavity volume

- L
F’fﬂ' 2Sin' (4;3) = A f dz cos*(R2) = Vg
°© 0

)
2_: M.
and substituting Ho' = —-EJ\’/'& we finally get
0

S |imotatedim-qr
X3 [ameia}t+imar]
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Lagrangian for the Classical Field

L
g - %“l] dy (c*(@*- IEIY) M
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ec s BQS 9% O ®» q‘a+wdqr;—o
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(Vg'-— E‘E’-\ EJ_("F,H =0 » 'Q;‘-l«r-w}qé =0

And Finally:
Conjugate Momentum 4= fo' = m-9q.
J Q. d 7
3

As before, a collection
of Harmonic Oscillators,
ready for quantization!
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Standard Quantization Procedure Note:
R These are the Field Operators in the
qj - Q; . b3 Schrodinger Picture (t-dependence in states)
s [ ) "] =(. iy
(e il 49 Often advantageous to use Heisenberg Picture
(t-dependence in operators)
o (4) = Q; .
J J [Q "'.i- ] - 5"’ ‘
% at’ 1 ! 94
“(*E\—'} a. rs a "'LOJ"E
d J o, (L) = ;) = a;lo)e ™"
A A np. . Field Quantization in Free Space:
E )= D & (;+a )sin(k;2) 4 hat
3 Normal . 2 (=.7. o(Wpt-&¥)
> [ Y Modes ’“E.x(r) €28 +C.G
Bg (2) = x> EZJ (ﬁd. —4, ) COS(Q;%) A: polarization index
J
Finite quantization volume: €= \/£,..; /2¢,v
Total Field A
L large -> nature of ) LxLxL
5 s 2 -~ A boundary conditions
E(2) = x ,(N:H 8'3 Eg)('?') not important » - y
A - A A - > [ ] =n2mw/L
B(2) = £,<Bx[2) + EB By2) Periodic boundary
conditions
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Note:

These are the Field Operators in the
Schrodinger Picture (t-dependence in states)

Often advantageous to use Heisenberg Picture

(t-dependence in operators)

P

o [L) ~> Q;(8) = a;lo)e ot

Field Quantization in Free Space:

- - 3 - wp "d.—.
Normal P TIR (r): SE.AZ ' gt &r)-l-C.C.

Modes * " &>
A: polarization index

Finite quantization volume: €= Vaw 26,V

0)
L large -> nature of ) LxLxL
boundary conditions
not important & -
- . » [ =naw/L
Periodic boundary
conditions )

Classical Fields (Fourier Sum):

ponel ) ""( ": &r)
E (Fd)= Z 8_. m i
BxEz (Wt~ ReT
1[ :Jf Z &(Ae * )*C“C'
Py

Quantization:

[&E,:\ ta%.',A'] = éﬁ,”' é/\.)\"

0(~. - (X.&tx ’ {a,rl)\[azrl)‘r] = [aé(x' a%r‘x] = O

o(..-() -> 0\;—-)‘ ,

&\
-

s A Wy E-RF)
g‘ﬁ.kg’"’,x P2 + H.C.

- Ex'é" A A ’:(W,QA'L‘“EF) tHC

— Heisenberg Picture -
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Positive & Negative Frequency Components:
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Wrap Up:

Read page 13 in handwritten Note Set for brief

discussion of different, equivalent ways to put
the QED formalism together, e. g.

A

E.la+07) & By (A0 )
VS

A " A+ A "~ A_,_
Ey [d-07) & By e (a5+0;)

Other Normal Modes Sets

AN

Atom in Cavity: @

cA N

paraxial modes

free space modes

. (Milloni & Eberly,\ (QED lecture
WavepaCkets' ( Sec.12.8,p 381) ( notes, p 16)

Classical field pulse envelope

= . - 1 (&2 000t
E(vtl = S,EDAA(%—cﬂe'( 200 ).w.'.c.
Mode volume  \/= dSTIM(x.Y,%'-C-E\lz

N
Quantization &_—> O(a—’gg,ag, etc.
o £

Wave-Particle Duality similar for
Photons and Phonons



Application: Classical & Quantum Beamsplitters
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Classical Beamsplitter

Eq
A Coupled H & V modes
Linear symmetric
E S > Eq input-output map
1
I\ Ey=tE+YE,

Energy conservation requires

|E,It+\6)) = |E,[ >« IE,|*
Choose E1= E  E=0 ®

B>+ [Ey2=E, (14/2+Ir]*)
Choose Ef:\l_l_-z. E Effi E, »

By 418, 1%= v E, [t+Fl* »

[tlle T r by ®rrd® =1

From this it follows that

[tlt+ly|t =1
tr¥s vit¥=0

Classical input-output map
Eq) \r t](B

Quantum Beamsplitter

Heisenberg Field Operators obey
Picture Maxwells Eqs

Classical field Quantum equivalent

E (F4) < «)  EYEE) < )

11
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From this it follows that

ity > 1
tr¥q vt =0

Classical input-output map
Ey) \r t/(B

Quantum Beamsplitter

Heisenberg Field Operators obey
Picture Maxwells Eqs

Classical field Quantum equivalent

E (f) < aft)  EVEL) < Ak

Quantum Beamsplitter

EN 4 or
éq)"<r f](
-

Quantum input-output map

HEWIR

Oy = £yt » 4, =t 4y + ¥R,

1

l—b Mm>

Invert Map

A ~ A

Switch to - ra"
creation
operators 0\?_ +,a

12
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Quantum Beamsplitter

.\ [t T (&
E 1'-&132
N

Quantum input-output map

Invert Map
~ A " A ~ A
Qy =gty » a, =t ag+r¥a,

A ~ A

Switch to Schrodinger Picture

2-mode vacuum

l

= 1 htvg. A ptm
= 2%, =00V gn 6] 105

General input state:

The BS maps @, G} to linear combinations of 47, ag

-

General output state:  (Schrodinger Picture)

» - n 1 A ~
o2 A 47 ) gy 4617107

. A+ _ A'F‘ a,’.
Swntc.h to Af =+03 £ 0y
creation . ns "y
operators O\Z = ras +£Q,

Example: One-photon input state
[ﬁ_\lih) = ‘1>., 10‘>J_ = él\;-[o>

[Ypue? = (6074607 ) [0 = Bladylox, +r[o), [0,

13
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Switch to Schrodinger Picture

General input state: 2-mode vacuum

l

%= 24, =" gn Z b o)

The BS maps ﬁ;‘, a;: to linear combinations of af, ﬁ;'
General output state:  (Schrodinger Picture)

a a n 1 " [
ERORI TR B -

Example: One-photon input state
[, 5 = 113,105, =G loY

Yo ? = (6057 +0D7) [0 = £1ad10), +r o) 10,

50/50 Beamsplitter Ey

4

t'—'-t/\rj_' V':'./\Jz E1 4

N
l )

Yyt = \—r‘;(lﬁgo)‘fﬁloglﬁq)

Note: This is a Mode Entangled State

(*) A coherent superposition of states w/
one photon in port 3 and zero in port 4,
and zero in port 3 and one in port 4.

Can we assign states such as, e. g.
-\,'-;_ ([,1>3+i, lo),) toport3
sz (fod,+:[12,) toporta

Viewed on their own, each portisina
mixed state

14
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Switch to Schrodinger Picture

General input state: 2-mode vacuum

l

%= 24, =" gn Z b o)

The BS maps ﬁ;‘, a;: to linear combinations of af, ﬁ;'
General output state:  (Schrodinger Picture)

a a n 1 " [
ERORI TR B -

Example: One-photon input state
[, 5 = 113,105, =G loY

Yo ? = (6057 +0D7) [0 = £1ad10), +r o) 10,

50/50 Beamsplitter Ey

4

t'—'-t/\rj_' V':'./\Jz E1 4

N
l )

Yyt = \—r‘;(lﬁgo)‘fﬁloglﬁq)

Note: This is a Mode Entangled State

(*) A coherent superposition of states w/
one photon in port 3 and zero in port 4,
and zero in port 3 and one in port 4.

Can we assign states such as, e. g.

to port 3
|

to port 4

Viewed on their own, each portisina
mixed state
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50/50 Beamsplitter Ey

4

t-':r/\rz_; V':;/\]z El >

N
l )

[yt = = (11103 +1 163112

Note: This is a Mode Entangled State

(*) A coherent superposition of states w/
one photon in port 3 and zero in port 4,
and zero in port 3 and one in port 4.

Can we assign states such as, e. g.

to port 3

to port 4

Viewed on their own, each portisina
mixed state

Example: Two-photon input state, 50/50 BS
4, = 4y 4,7 109

destructive
interference

= +(1ay0%+; a*a +a30\q a;ag)m
I

= 7 (B85 +83a5 )10y = 5 (110,102, #1018, )

%, 02 =§(&;‘+ ar)(iatal) 1oy

Experiment: o ]
Coincidence detections

A are never seen when
A =
detectors pulses overlap ->

/\ v “bunching”.

N
7

f Delay between pulses
) > leads to Coincidence
;l‘l’(‘)%(l)‘; A detections.
pulses

coincidence rate
A

< ~ pulse width

v

> delay

16
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VOLUME 59, NUMBER 18
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Measurement of Subpicosecond Time Intervals between Two Photons by Interference

C. K. Hong, Z. Y. Ou, and L. Mandel

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 10 July 1987)

A fourth-order interference technique has been used to measure the time intervals between two pho-
tons, and by implication the length of the photon wave packet, produced in the process of parametric
down-conversion. The width of the time-interval distribution, which is largely determined by an interfer-
ence filter, is found to be about 100 fs, with an accuracy that could, in principle, be less than 1 fs.

PACS numbers: 42.50.Bs, 42.65.Re

The usual way to determine the duration of a short
pulse of light is to superpose two similar pulses and to
measure the overlap with a device having a nonlinear
response.! The latter might, for example, make use of
the process of harmonic generation in a nonlinear medi-
um. Indeed, such a technique was recently used?® to
determine the coherence length of the light generated in
the process of parametric down-conversion.®> The coher-
ence time was found to be of subpicosecond duration, as
predicted theoretically.* It is, however, in the nature of
the technique that it requires very intense light pulses
and would be of no use for the measurement of single

) ' ~ a1 a1 1 -1 ' e J iV lel deeean

phasized that the signal and idler photons have no
definite phase, and are therefore mutually incoherent, in
the sense that they exhibit no second-order interference
when brought together at detector D1 or D2. However,
fourth-order interference effects occur, as demonstrated
by the coincidence counting rate between D1 and D2.6-8
The experiment has some similarities to another, recently
reported, two-photon interference experiment in which
fringes were observed and measured, but without the use
of a beam splitter.®

Although the sum frequency )+ w; is very well
defined in the experiment, the individual down-shifted

Lunmeccmcmnnlan o~ v haevia lncemAa steanna bnimbinn thndt e~
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No. of coincidence counts in 10 min.

Amp.
& »{ Counter
Disc.
A 4
Uv Coincidence PDP
KDP | ™ 1123+
Wy —»-  Counter
3
Amp.
& +— Counter
Disc.
Pinhole IF1
FIG. 1. Outline of the experimental setup.
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