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Problem 1 
 

Note:  It is non-trivial to obtain the wave equation from the Lagrangian expressed in 
terms of the acoustic field , as this involves taking the derivative of a functional 

 with respect to functions . We avoid the need to learn about functional 
derivatives by stating from the discrete Lagrangian, 
 

 

 

From the Lagrange equation of motion, , we get an equation for each i: 

 
                                                                                       Eq. (i) 
 
  
In the limit  the last two terms become  
 

 

 

Also    

  
 Thus Eq. (i) above turns into a wave equation for the acoustic field, 
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FIG. 1. (color online) Average simulation infidelity for 12
spin-coherent states, evolved to T = 20 with a range of Trot-
ter step sizes. For a given ⌧ the unitary time step is iter-
ated n = T/⌧ times. (a) Predicted infidelity when compar-
ing perfect Trotterized evolution, UTrot(⌧)

n, to perfect LMG
evolution, ULMG(⌧)

n. (Trotter error only, black solid line).
(b) Predicted infidelity when comparing Trotterized evolution
with added native errors to perfect LMG evolution. (Total
error, red dotted line.) (c) Predicted infidelity when compar-
ing Trotterized evolution with added native errors to perfect
Trotterized evolution. (Native errors only, green dashed line.)
(d) Scatter points (red circles and green triangles) are exper-
imentally measured infidelities, in good agreement with the-
oretical predictions. Error bars show one standard deviation
of the mean across the selected initial states.
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where (2b) is easily recognized as a single iteration of a
QKT with a non-linear rotation / ⌧ .

Theoretical study of Trotter expansions suggest errors
grow with step size as ⌧p+1, where p is the order of the
product formula (here p = 1). In the absence of native
errors, this implies that one should choose the smallest
possible ⌧ to minimize error when propagating the sim-
ulation to a fixed final time T . When native errors are
present, they are likely to grow with the number of time
steps (because each unitary time step is slightly imper-
fect), and with the total time for which the processor is
running (due to the cumulative e↵ect of environmental
noise). Our SHAQ processor has native errors of both
kinds, though the former are dominant [? ? ]. However,
Optimal Control on the SHAQ processor is unbiased in
regards to the target map: it finds controls of fixed du-
ration and almost identical fidelity for any unitary tar-
get. That means we can use the protocol outlined in
[? ] to generate ULMG(⌧) as well as UTrot(⌧), without
explicitly separating the latter into two steps. This ef-
fectively simulates the Trotter error for any ⌧ , without
introducing additional native errors. Also, the Hilbert
space dimension of the SHAQ processor is small enough

that we can model its behavior on a classical computer,
yet large enough to display non-trivial dynamics such as
quantum chaos.
The trade-o↵ between native and Trotter errors in our

experiment is illustrated in Fig. 1. Here, we show the
average simulation infidelity for 12 initially spin-coherent
states that evenly cover the spherical phase space of a
spin J = 15/2. Any infidelity  1 is the result of either
native errors on their own, Trotter errors on their own,
or a combination of both. Also shown are predictions for
the average infidelity based on numerical simulations of
these scenarios, with native errors modeled using the er-
ror model developed in [? ]. As can be seen, experimental
data and theoretical predictions are in close agreement,
and both show a clear minimum in infidelity at a distinct
Trotter step size, in this case near ⌧ = 1. Intuitively, this
happens because a small step size requires many steps,
leading to large native error. Increasing the step size
reduces the number of steps and thus the native error.
Eventually a point is reached where the combined e↵ect
of native and Trotter errors is minimized, and as the step
size is further increased Trotter errors become large and
dominant.
As demonstrated above, native errors set a lower

bound on Trotter step size below which simulations be-
come unreliable. Similarly, Trotter errors set an upper
bound on the useful step size, with the eventual onset
of chaos indicating a definite breakdown in the ability
to perform accurate simulations. This makes it essential
to find signatures of chaos that can be observed on the
quantum processor itself.
In what remains of this letter, we use an out-of-time-

order correlator (OTOC) to determine if chaos is present.
OTOCs have been connected to Lyapunov exponents in
classically chaotic systems [? ? ], making it a physically
motivated choice when looking for quantum chaos. To
measure this OTOC we adopt a procedure detailed in
[? ]. As a first step, we choose a spin-coherent initial
state | 0i = |✓,'i = |n̂i, oriented along the n̂ direction
in phase space. We then define the OTOC as

F (T ) = h 0|W †(T )V †
W (T )V | 0i, (3)

where V = | 0ih 0| is the projector onto the initial
state, W0 = e

�i(J·n̂)↵ is a rotation about the axis n̂, and
W (T ) = (U †

Trot(⌧))
n
W0UTrot(⌧))n is the time-evolved

version of W0. In the following we choose ↵ = 2⇡/d
for optimal resolution. The choice of V makes this a
fidelity-OTOC, and Eq. (3) simplifies to
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, (4)

where Pn(T ) are the (measured) populations and �n are
the eigenangles for the eigenstates of W0. Thus, a mea-
surement of F (T ) can be obtained by forward-evolving



Problem 2 
 
(a) Expressed in terms of the field , the kinetic energy is  
 

  

 
(b) Working out the expression for the potential energy is a bit more involved. 

First 
 

        (1) 

 
Using integration by part, , we can 
rewrite the last part, 
 

  

 
Substituting, we get 
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Next, we use 
 
 

 

 
where in the last step we have used .  Substituting in (2) we get 
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Finally, we use 
 

 , 

 

where .  Substituting in (3), we then get 

 

      (4) 

 
This is the result given in the notes. 
 
 
 
(c) The Lagrangian is 
 

 

 
Plugging into the Lagrange equation of motion gives us 
 

 

 
 This is the standard differential equation for a collection of harmonic 

oscillators, one for each normal mode k. 
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