Maxwell-Bloch Equations

So far in the Semiclassical Description

(*) Classical light acting on quantum atoms

(*) Next: Close the loop

Self-Consistent Description

Electric Field —» 2-Level Atom
A I

We need to set up and solve a set of workable
simultaneous equations for the atoms and field.

(1) The electric field. We write

Elz +)= s ‘TE (2¢) o~ Wt -£2)

wavepacket envelope

— Plane wave propagating in the +% direction,
the real part is the physical field
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Slowly Varying Envelope Approximation (SVEA)
- .

We require that the envelope 5&,—&) is smooth in
space and time compared to the plane wave part.

-
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This is not particularly restrictive, unless working
with ultrafast lasers.

(2) The Macroscopic Polarization Density.

- a
We use the quantum expectation value £(21) = N<ALY

Of this, we need the complex part that goes with

-
E(2-t) and can be plugged into the wave equation.
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Thus, of

- (ot L) | =
Dy Sy e )¢ 1B
~ slow variables

(-5 )

we need the part that goes as ¢~ il o)

~ (Wt -5 ]

The physical fieldis RelE &1 4)e

The physical dipole is
R"-[[’?“m g, & i [wﬁ—&%)] + ;ﬁll g, Z:(m—&-u]

Note factor of 2 => = ;Qz_[jw"wgua-i[wt- BQ\]

Note: The coherence Q, depends on 24 because
the field depends on 2+ through the envelope
E(2t)® implicit SVEA on @, .

Note: In a real, multilevel atom /ﬁ,,_ need not be
parallel to the field. However, only the part that
is parallel to the field can emit radiation that
interferes with it and lead to absorption and
dispersion.
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Thus, of
4D = Fraaa)s + Py <aa8>

- (w0t Loy
Dy Sy e a Vi h8ye
N slow variables

! (w-l:-—«ﬂ—’k]

we need the part that goes as ¢~ i de2)

The physical fieldis e [E & (2 4)e i(Wi-23) 7
The physical dipole is

ol
Re.[[/(\”_gh ST &%)]'(—(ﬂllgl?.
Note factor of 2 => = |)x M[V)VL%( —([wt 29.\]

(- &‘H'}

Note: The coherence Q;,depends on Z,£ because
the field depends on 2+ through the envelope
E(2t)® implicit SVEA on @, .

Note: In a real, multilevel atom ﬁ,,_ need not be
parallel to the field. However, only the part that
is parallel to the field can emit radiation that
interferes with it and lead to absorption and
dispersion.
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The complex dipole parallel to 3 is

Ple ) = EIN (i, E*) g, (20 @t 4D
KW_J
7

= Bl a4

Final Note: Because of the RWA we have

2 wolg,] [P «w B

(3) Maxwells eqs. ® Wave Equation

We plug in the complex g[&,ﬂ and’f?@,ué), use
the SVEA conditions on the derivatives to
eliminate all but the leading terms, and finally
take the scalar product with £
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The complex dipole parallel to 3 is

Ple ) = EIN (i, E*) g, (20 @t 4D
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Final Note: Because of the RWA we have
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(3) Maxwells eqs. ® Wave Equation

We plug in the complex g[&,ﬂ and’f?@,ué), use
the SVEA conditions on the derivatives to
eliminate all but the leading terms, and finally
take the scalar product with £ to get a scalar
equation. (Home Work Problem)
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The complex dipole parallel to 5is

A
= £IN /u"‘gm[—z(—é)e"' (o4 -G2)

Pret) = SN (i, E*) g, (ard) & (@4
%f_/

Note: Because of the RWA we have

D %,
1By «olg,] 28] kw2

(3) Maxwells eqs. ® Wave Equation

¢ 1 ar )\ g N L3
(%‘L -a—zazz) EQ#)=¢ 0 pp PEL

We plug in the complex E[&lﬂ andﬁ@,i), use

the SVEA conditions on the derivatives to

eliminate all but the leading terms, and finally

take the scalar product with £ to get a scalar
equation. (Home Work Problem)
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This gives us our final equation for the envelope:

-~

(%*ég}) Ext) = % Nut ey (2)

where u* =4, &*

Write Q| in terms of the Bloch variables to get the

Maxwell-Bloch Equations

2 i :
(5'_%{— ég—(.) £(%|-E) = 'i% “/A*(M~nv>

<

z-paut Im[ATow + Ar

I

4V}

B+ A« Re]XTa)

a)= -::_; (4taw)~ Re[XJu—ImIXTm
1

Note: The Maxwell-Bloch Equations are a key result.
They lead to rich physics, including absorption,
gain, dispersion, solitons, lasers, and much more.
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This gives us our final equation for the envelope:

Write €y, in terms of the Bloch variables to get the

Maxwell-Bloch Equations

2 I
(55:+ é 337(.) £[2T£) = l *[’“ "'”)

*

A== ot Tm[XTaw + A

= —fBo+ A e Re]XTa)

Q)= ~ 7;_; (4tw) - Re[XJo~ImIXTm

Note: The Maxwell-Bloch Equations are a key result.

They lead to rich physics, including absorption,

gain, dispersion, self-induced transparency, solitons,

lasers, and much more.
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Steady-State Solutions to MBE’s

Steady state means that '
1 08 ¥ )

c 5.=0 & Qy, (2t)~ Qg (2 0) /5*'36(@12 "
Combine with X =-Aly E €4 =mn&/p
B
DS_ - ____ —:,ME. 1
5 L, Npe ( )/3+IA (%u-€4)
_ kol £

1HE, A- /31( b1 94438'

We can rewrite this as

é%= a-id)w &
_&o* g

G=Sgr A:.f/zz"\’“_m
&niln’* A A

0= ShE, Bt /\J(_,’(.\‘(M
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Steady-State Solutions to MBE’s
Steady state means that

1 & -1 X/a
c 520 & 8y (%)~ Gy (3] (

Combine with X =~y £ €4 =m&/p

- .
Bi. —:,ME. 1
2 - e (£) o e
aauwrz B-ih

1HE, Ar¢fl (?21"9«38'

We can rewrite this as

é—i’-: (a-13)w &
et g

a‘ )-&E A?-v(-/32- "NG.(A)
&nin’* A A

0= 7, Bt AJ@G(AB

e

-Q,)
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To compare with our classical theory of dispersion,
we solve for £(2) and plug into eq. for a plane wave.

Field: E(2) = é[é}e:&a’
(222 '( u) »
Envelope: &(2)= £o)e' * 2
Field: E(2)-= &oye( ) ("ae«)&*
Compare to: E(3)= £ ¢ "tk ,ineke
— -

Real & Imaginary Index of Refraction

_ _aw - NaJ
N = 2 le L&WCA)

=g OW _ ,_é_
RT1- S5 = 1($ S(a)

Analogous to results from Electron Oscillator

L
L{E‘,MLC\) Az,[.ﬁe-

, Vl,e(w\ = 1+% )
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To compare with our classical theory of dispersion,

we solve for £(2) and plug into eq. for a plane wave.

Field: E() - Era)e'l? } N

anw\, (.du
Envelope: 8(&): é(oy e( E) )&e'( 2 )f

aw\y .( du
Field: E(2) = &) e( 2 >&e'(1' 2&)&"
Compare to: E(3)= E, e:"‘f-&i' ej”a&%

— -

Real & Imaginary Index of Refraction

W Na)
VII.:—?_M& T - ETCA}

- W A Nw
Vg = 1-—%{=1—FET[A)

Analogous to results from Electron Oscillator

Nt | P2 o B
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Behavior of the Intensity

D rgfg] - g8 , OEF
a_%rzg_l £B%+52£

= 3 (a-idwIEM L (atid)w [£1 =aw]e[?

— -

QJ:\‘: w =~ & -u)I
53 awT (€y~€

a=Ng(a) 20
Note that

T2 = T(o) 2 S0 S

Exp. Decay of 1 for ©,-¢ <0

Exp. growthof 1 for ¢,-g >0

must be maintained by
some external process

8
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Maxwell-Bloch Equations

Behavior of the Intensity Behavior of the Dispersion:
*9 o1
%_[2"5;] =& ‘3% T 32 3 Real & Imaginary Index of Refraction

= 3 (a-idw [+ L (atid)w]g ]t zawlg]:

W N
N = -%}: = - ETCA}
- W A Nw
R~ 1"L- 1"‘?{ A (\\[A)
oI > B(€y-Q) T
= QWL = &(€y-8) 1
Y S
ad=NGg(a) 20 wW<1 absorption W>1 gain
Note that (
(3 = Tlo) e Cn~S. )2 y el {\

Exp. Decay of 1T for ©,-¢ <0 l/ \/

Exp. growthof 1 for ¢,-g >0

0y, — 0 AN —

must be maintained by
some external process
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Maxwell-Bloch Equations - Solitons

Self-Induced Transparency & Solitons

(*) Example of a non-trivial application of the MBE’s

in the context of pulse propagation (highly
dynamic, non-steady state behavior.

(%) The pulse area theorem suggests a light pulse

with the proper envelope will act as a 27t pulse.

Thus, if the pulse is shorter than the excited
state lifetime it may propagate without loss.
Correct shaping may also allow propagation
without changes in pulse shape.

(%) See Lecture Notes, Slusher & Gibbs 1972.

Envelope: €(%)= 2& sech(§/7: f=t-2/v, 4=0

L X(%,£)=%Se0)t(§/f), e=f‘><(§/r)df=rn—

Self-consistent
solution with the
the properties

of a Soliton

-

£(24) = 22 seeh (3/7)

S UIES
o (§/7) = 2 Sech(&/T)tanh(§/T)
w—(f/'ﬁ) = -1+% Sech(§/T)

In the SVEA version of the Wave Eq.

(g% z at)ffuh—/\z/uu (m-i0)

Substitute solutions for €, .41 and " to get

o (afé‘z&) Sech ({;ici) =

ff‘r (5o oo )] sech{ E2Y fomun £22¢)] =

ken - -
M s (202

Solve for C/\/ to get

0
C -+ _/A_ze}&[ ctl= 1+ —a[sc'rl

o= }ﬂlg' = NTOD } ( on-resonance

where 26,4 e absorption coeff.

Consider Na vapor, »=539nm,N = 0% 3, T~ 0K,
and 2=1xrx4+9MHz (completely opaque on res.)
Assuming v~ —c» v )= 4+a[3c,'c'l » a/z.c ~v1

we must have 'r:~| (21 ~ 26pS & lpns 1!

11
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Quantum Electrodynamics — Intro to Field Theory

HARDER LHEN YOU BRING ERomasfnpeer EX

IN QUANTUM MECHANTCS

Source: xkcd.com
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Quantum Electrodynamics — Intro to Field Theory

(*) Primary goal of OPTI 544: Classical Simple Harmonic Oscillator (SHO)
Quantum description of EM field

Particl K W
(%) Challenge: 1st semester Grad level QM :::ﬁi;n g—'wr—Q AENE7A
(OPTI 570) does not tell how to do this > q 4
4y osc freq.

(*) Warm-up: Quantum field theory for dynamical coordinate.

vibrations (sound) in elastic rod

(%) This is in part a review of the classical Kinetic Energy: T=1 mé}
Lagrange/Hamilton-Jacobi description ?‘
of continuous systems Potential Energy: V= zkg} =imw1g1

(%) Here we present the formalism as a
Cookbook Recipe for how we get from

Classical to Quantum Physics Lagrangian: % - T-V = lzvvué}--;-_mw‘q_"
See, e. g., Cohen-Tannoudji Vol. 2, ) g_‘t’t_ - _a_sz’ =0 ®» §+ wif} =0
Appendix I, Sections 1-3. ot 0q 9q T

usual eq. of motion
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Quantum Electrodynamics — Intro to Field Theory

Classical Simple Harmonic Oscillator (SHO)

Particle on W wm
a spring % @

0= [,
> 9 %

4 osc freq.

dynamical coordinate.

Conjugate
momentum ff‘

ox

quc

Hamiltonian

ineti . - | Y
Kinetic Energy: T-= T W‘Q,
Potential Energy: V= ';'kﬂ} =I'\Mw19"-

Lagrangian: ¢ - T-V = é”é}"fi""'wlq}
0 o2& _of 2
5625 3g ° ® qugr 0

usual eq. of motion

. L
R=T(4=Tm)+ VI9) = LT 15 meq?
4 2% ..1
. % » g+wg=o0
M- ==- mw‘qu

29
Phase plane
Scaled variables solution 7P

Q= 9/q,, P——f@/fp,/

dhy

Q= Rel«’] >
X=Q+ 0L P= Imlal \ \/
X=E, a*x ~— K(¢)
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Quantum Electrodynamics — Intro to Field Theory

Quantum Harmonic Oscillator
Conjugate 0%
momentum = 3 \mq: Formal Quantization Procedure:

>4, p>1, 1[4, 4]=ik

Hamiltonian

_TE I GRS
X=T3=0)+ V(g) = T+ Smurg choose Eo”%‘“ N Qo:,,%, PN P
. 2K /6,\ natural scale
4 55 Vm s Gritaco -
Y drwg=
/KIZ—T —vvm)‘lq[_ o(_—»a'-'éz-t-'ﬁ: ".’.“.’.".(A-r.':ﬁ_)
Q‘ : 18 W
L 16 1
Phase plane
Scaled variables solution AP

Rewrite:
Q= q/qo’ p"(‘/’(’o/ /\
Q= Rel«] >Q H= B[ A+52) = Buw(a*h + 1h)
X=Q+iPq P Inlal \ \/ N=0*&  (number operator)

X=E,a*x
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Quantum Harmonic Oscillator

Formal Quantization Procedure:

q~4, p>1, [44{]:ik

Choose E,,:i%‘co » Qo=\l%; /xi,=\/2wtco

natural scale

P

T_

Rewrite:

Commutator Y_Q,KJ] =0

® joint energy/number states v

K = fico (M+lhymd

NIMS = nind

Commutators

alnS=9nm-1>

= A h
B Q¥In) =
= -Q a

Qalo>=0

it [nHD

Generating excited states

Ind= F (@*Y 10>
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Quantum Electrodynamics — Intro to Field Theory

Commutator U':(,':J] =0

® joint energy/number states %

Hiny = fico (M+lh )

NS = nnd

Commutators

alnS=9nm-1>

0] =& .
41 - } » | G =vsi vt
N @&[=-a

[N

al0> =0

Generating excited states

iny= F (@*)" 10

Expectation values for c'a: and /fl in number states
{nlginy = (nlqilnd =0
2
(NIGnD = =2 (Nt %0
P /rl!
(niptiny = = (M+14) + 0
AL RAY (B % GEUA —.,&(mr/,\

Phase space visualization n=>0

of number states /

Quasi-classical P

(coherent) state 1
x>
~lx1Y/y Q" /
x=¢e — In
.zm g K 4

Moqp=4/, sQ=ap




Quantum Electrodynamics — Intro to Field Theory

Lagrange formulation of 1D Scalar Field

KWmMXmKwmK

—— (L, == (\,—H—

Xici X Xy

“vibronium”

Configuration space = { x;z (set of N osc. positions)

Lagrangian, equations of motion

Continuum limit ® Elastic rod

N = O m/a - ¢ linear mass
/ M density
0~ olx Y& = Y < Youngs modulus

displacement field

gxi} > X} & (sound)

Rewrite
v 0"
T:ﬁ;‘if.ﬁ;“i( “JoxanlE)
Ve L.mza a(Ze ) (1)’
N-e0 i=
Lagrangian:
£-T V=dei/,\(‘—5}1 folx y(g—g)i

— Not yet ready for Quantization —
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Rewrite Normal Mode Decomposition
N 01 \2
: L o . 1y .
T:bzg ;O‘z(%bﬁl :jdxi',u(g) Field in cavity: § E
N 0 L
" EEEVIRY § { ayl p)
Veim B2 (2
N <0 Z:u : ( » ) Ox ) Solutions to wave eq.
let (xt)= GEMMI) =94 2™ (x) ¥

Lagrangian: §-arin' = ~ g mlx)—w L9l m" (x) = 0

P

atlxy = = Emix) Ko = 0y

Solutions in cavity:

oy ont o
—— — Gy —, — - r
otr  m xt «{A&(_K\-\/-E'-SM(&&\, k=T

— Not yet ready for Quantization - These standing waves are a set of Normal Modes



Quantum Electrodynamics — Intro to Field Theory

Normal Mode Decomposition

Field in cavity: % E
0 L

Solutions to wave eq.
Let 7(xt) = GEMMI) ':%oQ:WtM(’C) ¥
W -arty" = -\ mlx)-vlgtilm" (x\ = 0

P

af(x) = -—'@."M(&}l Ke = 6%qy

Solutions in cavity:

- (2 nir
A N sintleny , R=

These standing waves are a set of Normal Modes

These modes are orthonormal and complete

P

(x3) =L %%H\ g (X)

Normal mode expansion of '(](X‘ﬂ in basis M&(x\

Lagrangian for the acoustic field:

T= e 501> 2, iUy oot

) i
=2 7MY, M “b:

%
V= fxgy (82102 2 Ly, g, (de(2)( %)
=D Mg
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Quantum Electrodynamics — Intro to Field Theory

The rest now follows from the Lagrangian

S(=T"V:%('Z‘I‘N\q;"—i/\/\wza;> ‘:%g%_
-

Canonical _ 3_@_ M
Momentum Nk = iy =2

Hamiltonian

... we get solutions

0(&[{':\ = Q&['£3+; Pb[b) = 0(,,“’) e i“ﬁ"?

This finally gives us

. | 2
X(e,0) = Tev > 2 (Lo fmenge})

( collection of SHO'’s, one for each normal mode )

Following the standard recipe...

X- '2;_%«:&(&:4: ) --%_Qrw&o(,fo(z
x, L\ =L %q&um,,cxs

= 5 3V1g3, (A A+ 4500

Eqk:/ﬁwk ) q'o:&; UM’LIMN& ’/(ID.L: M&Wh
Q&: Q&/qo,&' p&""’K’&/’qu. » g = &gn‘&

27




