Raman Coupling in 3-level Atoms

Note also: The effective Raman detuning is shifted.

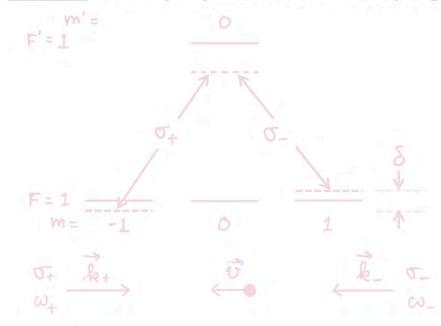
3-level system \Rightarrow ground state shifts $\frac{\chi_1^2}{4\Delta}$, $\frac{\chi_2^2}{4\Delta}$

Differential ground state shift $\frac{x_1^2 - x_2^2}{4\Delta}$

Final note: The atomic dipole (**) will have components that match the frequency and polarization of both driving fields, with amplitudes that depend on both fields.

Non-Linear wave mixing,
Breakdown of superposition principle

Example: Velocity dependent Raman Coupling



field freqs. in co-moving frame

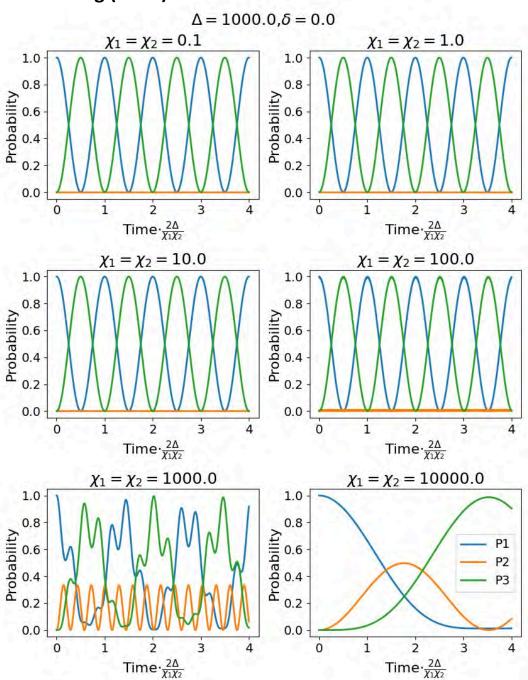
velocity dependent Raman detuning

Applications:

- Doppler velocimetry
- Raman Cooling by velocity selective momentum transfer
- What if we apply a √2 Raman pulse?
- Atom Interferometry

Raman Coupling in 3-level Atoms

Numerical integration of the equations for the probability amplitudes in a 3-level Lambda system with zero Raman Detuning (δ = 0).



3/21/25

Mental Warmup: What is a probability?

(1) Example: Coin toss

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

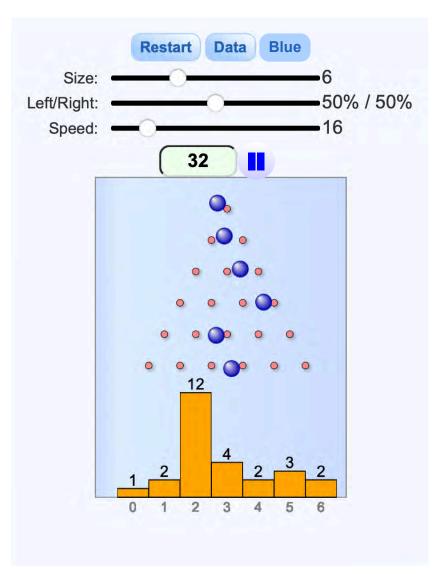
(2) Example: Quincunx

https://www.mathsisfun.com/data/quincunx.html

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

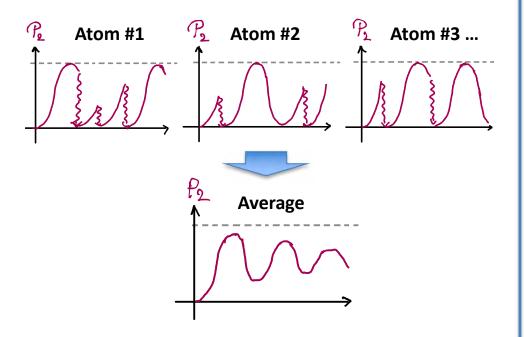
This is the Bayesian Interpretation of Probability

(3) Example: Quantum Quincunx



(5) Example: Quantum Trajectories

 Ensemble of 2-level atoms undergoing Rabi oscillation with random decays



Definition: A system for which we know only the probabilities $\{1, 4, 6\}$ of finding the system in state $\{1, 4, 6\}$ is said to be in a statistical mixture of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

<u>Definition</u>: Density Operator for pure states

Definition: Density Matrix

$$|4(t)\rangle = \sum_{n} C_{n}(t)|.u_{n}\rangle \Rightarrow$$

 $Q_{pn}(t) = \langle u_{p}|Q(t)|u_{n}\rangle = C_{p}(t)C_{n}^{*}(t)$

Definition: Density Operator for mixed states

$$g(t) = \sum_{k} n_k g_k(t), g_k = [4_k(t) \times 4_k(t)]$$

Note: A pure state is just a mixed state for which one 1 and the rest are zero.

The terms Density Operator and Density Matrix are used interchangeably

<u>Definition</u>: Density Operator for pure states

Definition: Density Matrix

$$|\mathcal{L}(t)\rangle = \sum_{n} C_{n}(t) |\mathcal{U}_{n}\rangle \Rightarrow$$

$$\mathcal{L}_{pn}(t) = \langle \mathcal{U}_{p}|\mathcal{L}(t)|\mathcal{U}_{n}\rangle = C_{p}(t) C_{n}^{*}(t)$$

Definition: Density Operator for mixed states

$$g(t) = \sum_{k} n_k g_k(t), g_k = [4_k(t) \times 4_k(t)]$$

Note: A pure state is just a mixed state for which one 15 and the rest are zero.

The terms Density Operator and Density Matrix are used interchangeably

Let \bigcap be an observable w/eigenvalues \bigcap _n
Let \bigcap be the projector on the eigen-subspace of \bigcap _n

For a <u>pure</u> state, $g(t) = |\psi(t) \times \psi(t)|$, we have

(*) Tr
$$g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{2} = 1$$

(*)
$$\langle A \rangle = \langle \gamma(t) | A | 2 \gamma(t) \rangle = \sum_{p} \langle \gamma(t) | A | 1 \mu_{p} \times \mu_{p} | 2 \gamma(t) \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | 2 \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) | A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) \times \gamma(t) A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle$$

$$= \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \gamma(t) A | 1 \mu_{p} \rangle$$

(*) Let \mathcal{P}_n be the projector on eigensubspace of α_n $\mathcal{P}(\alpha_n) = \langle \psi(t) | \mathcal{P}_n | \psi(t) \rangle = \text{Tr}[g(t) \mathcal{P}_n]$

(*)
$$g(t) = |\chi(t) \times \chi(t)| + |\chi(t) \times \chi(t)|$$

 $= \frac{1}{12} |\chi(t) \times \chi(t)| - \frac{1}{12} |\chi(t) \times \chi(t)| + |\chi(t) \times \chi(t)$

Let \mathcal{A} be an observable w/eigenvalues \mathcal{A}_n Let \mathcal{C}_n be the projector on the eigen-subspace of \mathcal{C}_n For a <u>pure</u> state, $\mathcal{C}(\ell) = |\mathcal{C}(\ell)| \times \mathcal{C}(\ell)|$, we have

(*) Tr
$$g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{2} = 1$$

(*)
$$\langle A \rangle = \langle \psi(t) | A | \psi(t) \rangle = \sum_{p} \langle \psi(t) | A | \mu_{p} \times \mu_{p} | \psi(t) \rangle$$

$$= \sum_{p} \langle \mu_{p} | \psi(t) \times \psi(t) | A | \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \psi(t) | A | \mu_{p} \rangle$$

$$= Tr[\psi(t) | A] \quad (|\mu_{p}\rangle \text{ basis in } \mathcal{H})$$

(*) Let \mathcal{P}_n be the projector on eigensubspace of a_n $\mathcal{P}(a_n) = \langle \psi(t) | \mathcal{P}_n | \psi(t) \rangle = \text{Tr}[g(t) \mathcal{P}_n]$

(*)
$$g(t) = [4(t) \times 4(t)] + [4(t) \times 4(t)]$$

 $= \frac{1}{18} [4(t) \times 4(t)] - \frac{1}{18} [4(t) \times 4(t)] [4(t$

Let \mathcal{A} be an observable w/eigenvalues \mathcal{A}_n Let \mathcal{C}_n be the projector on the eigen-subspace of \mathcal{A}_n

For a <u>mixed</u> state, $g(t) = \sum_{k} \gamma_{k} g_{k}(t)$, $g_{k} = [4_{k}(t) \times 4_{k}(t)]$

(*)
$$Trg(t) = \sum_{k} \eta_{k} Trg_{k}(t) = 1$$

(*)
$$\langle A \rangle = \sum_{k} \eta_{k} \langle \psi_{k}(t) | A | \psi_{k}(t) \rangle = \sum_{k} \gamma_{k} Tr[g_{k}(t) A],$$

$$= Tr[g(t) A]$$

(*) Let \mathcal{P}_n be the projector on eigensubspace of a_n $\mathcal{P}(a_n) = \sum_{k} \gamma_k \langle \psi_k(t) | \mathcal{P}_n | \psi_k(t) \rangle = \text{Tr}[g(t)\mathcal{P}_n]$

(*)
$$g(t) = \sum_{k} p_{k}(|\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$

$$= \sum_{k} p_{k} \frac{1}{2} (H|\psi(t) \times \psi(t)| - |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$

$$= \frac{1}{2} [H, g]$$

Let \mathcal{A} be an observable w/eigenvalues \mathcal{A}_n Let \mathcal{C}_n be the projector on the eigen-subspace of \mathcal{C}_n For a <u>pure</u> state, $g(\ell) = |\psi(\ell) \times \psi(\ell)|$, we have

(*) Tr
$$g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{2} = 1$$

(*)
$$\langle A \rangle = \langle \psi(t) | A | \psi(t) \rangle = \sum_{p} \langle \psi(t) | A | \mu_{p} \times \mu_{p} | \psi(t) \rangle$$

$$= \sum_{p} \langle \mu_{p} | \psi(t) \times \psi(t) | A | \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \psi(t) | A | \mu_{p} \rangle$$

$$= Tr[\psi(t) | A] \quad (|\mu_{p}\rangle \text{ basis in } \mathcal{H})$$

(*) Let \mathcal{P}_n be the projector on eigensubspace of a_n $\mathcal{P}(a_n) = \langle \psi(t) | \mathcal{P}_n | \psi(t) \rangle = \text{Tr}[g(t) \mathcal{P}_n]$

(*)
$$g(t) = [4(t) \times 4(t)] + [4(t) \times 4(t)]$$

 $= \frac{1}{18} [4(t) \times 4(t)] - \frac{1}{18} [4(t) \times 4(t)] [4(t$

Let \mathcal{A} be an observable w/eigenvalues \mathcal{A}_n Let \mathcal{A} be the projector on the eigen-subspace of \mathcal{A}_n

For a <u>mixed</u> state, $g(t) = \sum_{k} \gamma_{k} g_{k}(t)$, $g_{k} = [4_{k}(t) \times 4_{k}(t)]$

(*)
$$Trg(t) = \sum_{k} \eta_{k} Trg_{k}(t) = 1$$

(*)
$$\langle A \rangle = \sum_{k} \eta_{k} \langle \psi_{k}(t) | A | \psi_{k}(t) \rangle = \sum_{k} \gamma_{k} Tr[g_{k}(t) A],$$

$$= Tr[g(t) A]$$

(*) Let \mathcal{P}_n be the projector on eigensubspace of a_n $\mathcal{P}(a_n) = \sum_{k} \gamma_k \langle v_k(t) | \mathcal{P}_n | v_k(t) \rangle = \text{Tr}[g(t) \mathcal{P}_n]$

(*)
$$g(t) = \sum_{k} p_{k}(|\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$

$$= \sum_{k} p_{k} \frac{1}{|\psi(t) \times \psi(t)|} - |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|$$

$$= \sum_{k} p_{k} \frac{1}{|\psi(t) \times \psi(t)|} - |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|$$

$$= \sum_{k} p_{k} \frac{1}{|\psi(t) \times \psi(t)|} - |\psi(t) \times \psi(t)|$$
Density Operator formalism is general.

Let \triangle be an observable w/eigenvalues \bigcirc _n Let \bigcirc _n be the projector on the eigen-subspace of \bigcirc _n

For a mixed state, $g(t) = \sum_{k} \gamma_{k} g_{k}(t)$, $g_{k} = [4_{k}(t) \times 4_{k}(t)]$

(*)
$$Trg(t) = \sum_{k} \eta_{k} Trg_{k}(t) = 1$$

(*)
$$\langle A \rangle = \sum_{k} \eta_{k} \langle y_{k}(t) | A | y_{k}(t) \rangle = \sum_{k} \gamma_{k} Tr[g_{k}(t) A],$$

$$= Tr[g(t) A]$$

(*) Let \mathbb{R} be the projector on eigensubspace of \mathfrak{a}_{N}

$$P(a_n) = \sum_{k} \gamma_k \langle \psi_k(t) | P_n | \psi_k(t) \rangle = \text{Tr}[g(t)P_n]$$

(*)
$$g(t) = \sum_{k} p_{k}(|\psi(t)| \times |\psi(t)| + |\psi(t)| \times |\psi(t)|)$$

$$= \sum_{k} p_{k}(|\psi(t)| \times |\psi(t)| - |\psi(t)| \times |\psi(t)|)$$

$$= \sum_{k} p_{k}(|\psi(t)| \times |\psi(t)| - |\psi(t)| \times |\psi(t)|)$$
Density Operator formalism is general!

Important properties of the Density Operator

- (1) g is Hermitian, $g^+ = g \Rightarrow g$ is an observable $\Rightarrow \exists$ basis in which g is diagonal In this basis a pure state has one diagonal element = 1, the rest = 0
- (2) Test for purity.

Pure: $g^1 = g \Rightarrow \text{Tr } g^2 = 1$

Mixed: $g^1 \neq g \Rightarrow \text{Tr } g^1 < 1$

(3) Schrödinger evolution does not change the Mg

Tr g¹ is conserved
 pure states stay pure
 mixed states stay mixed

Changing pure

mixed requires non-Hamiltonian evolution − see Cohen Tannoudji D_{III} & E_{III}

Important properties of the Density Operator

- (1) g is Hermitian, $g^+ = g \Rightarrow g$ is an observable

In this basis a pure state has <u>one</u> diagonal element = 1, the rest = 0

(2) Test for purity.

Pure: $g^2 = g \Rightarrow \text{Tr } g^2 = 1$

Mixed: $g^1 \neq g \Rightarrow \text{Tr } g^1 < 1$

(3) Schrödinger evolution does not change the Mg

Tr g¹ is conserved
 pure states stay pure
 mixed states stay mixed

Changing pure

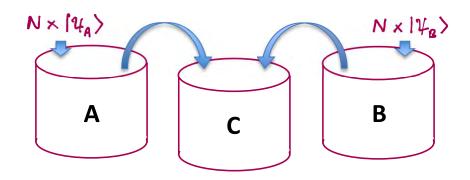
mixed requires non-Hamiltonian evolution − see Cohen Tannoudji D_{III} & E_{III}

A cooks recipe – interpretations of 9

Step 1 Add N atoms in state $|\Psi_A\rangle$ to bucket A Add N atoms in state $|\Psi_a\rangle$ to bucket B

We now have two ensembles, each of which consist of **N** atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.



Pick an atom from C Which is Correct? The atom is in a pure state but we don't know if it is in $|\Psi_A\rangle$ or $|\Psi_B\rangle$

The atom is in a mixed state

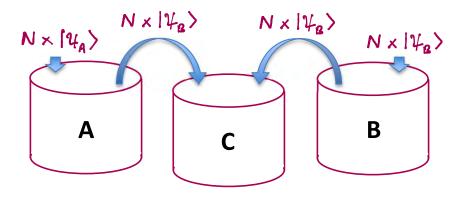
$$9 = \frac{1}{2} | \chi_A \times \chi_A | + \frac{1}{2} | \chi_C \times \chi_C |$$

A cooks recipe – interpretations of 9

Step 1 Add N atoms in state $|\Psi_A\rangle$ to bucket A Add N atoms in state $|\Psi_a\rangle$ to bucket B

We now have two ensembles, each of which consist of **N** atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.



Pick an atom from C Which is Correct? The atom is in a pure state but we don't know if it is in $|\Psi_A\rangle$ or $|\Psi_a\rangle$

The atom is in a mixed state

$$9 = \frac{1}{2} 14_A \times 4_A 1 + \frac{1}{2} 14_C \times 4_C 1$$

There is no difference!

The two interpretations lead to identical predictions for any measurement we can do on atoms from C

Quantum Mechanics:

If two descriptions lead to identical predictions for observable outcomes then they are <u>identical</u>

Loosely, (i) is a frequentist view

(ii) is a Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge (subjective)

There is no difference!

The two interpretations lead to identical predictions for any measurement we can do on atoms from C

Quantum Mechanics:

If two descriptions lead to identical predictions for observable outcomes then they are identical

Loosely, (i) is a frequentist view

(ii) is a Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge (subjective)

(*) Note: The notation $\langle \cdot \rangle_{k}$ is used on the following pages to indicate an ensemble average.

More about the Density Matrix In the orthonormal basis $\{|u_i\rangle\}$ the elements of a pure density matrix are $\langle u_n lg | u_p \rangle = C_n C_p^*$. For a mixed state, $g = \sum_{n} \gamma_{k} g_{k}$, we have $g_{NP} = \sum_{n} \gamma_{k} c_{n}^{(k)} (c_{p}^{(k)})^{*}$. Here and elsewhere, the index & indicates members of the ensemble that are distinct due to, e.g., different preparation.

Populations: (real-valued)

Single system: Prob of finding state | M | > Ensemble: $|u_n\rangle$ occurs with freq. Q_n

Coherences: (complex-valued)

$$S_{NP} = \sum_{k} \gamma_k C_{N}^{(k)} (C_{P}^{(k)})^*$$

Note: Defining $C_{\underline{a}} = |C_{\underline{a}}| e^{i\Theta_{\underline{a}}}$ we have

$$(*) < C_{n}^{(k)} \subset_{n}^{(k)*} = < |C_{n}^{(k)}||C_{n}^{(k)}||e^{i(\theta_{n}^{(k)} - \theta_{n}^{(k)})}| < < |C_{n}^{(k)}||C_{n}^{(k)}| >_{k}$$

It follows that
$$S_{nn}S_{nn} \leq S_{nn}S_{nn} \Rightarrow S=$$
 with = for pure states $S_{nn} = S_{nn} =$

More about the Density Matrix
In the orthonormal basis $\{[\omega_i]\}$ the elements of a pure density matrix are $\langle \omega_n | g | \omega_p \rangle = c_n c_p^*$. For a mixed state, $g = \sum_{k} \gamma_k g_k$, we have $g_{np} = \sum_{k} \gamma_k c_n^{(k)} (c_p^{(k)})^*$. Here and elsewhere, the index & indicates members of the ensemble that are distinct due to, e. g., different preparation.

Populations: $q_{nn} = \sum \eta_{k} c_{n}^{(k)} c_{n}^{(k)*} = \sum_{k} \eta_{k} |c_{n}^{(k)}|^{2}$

Single system: Prob of finding state $|\mathcal{M}_n\rangle$ Ensemble: $|\mathcal{M}_n\rangle$ occurs with freq. $|\mathcal{Q}_n\rangle$

Coherences: $S_{NP} = \sum_{k} \gamma_{k} C_{N}^{(k)} (C_{P}^{(k)})^{*}$

Note: Defining $C_{q} = |C_{q}|e^{i\theta_{q}}$ we have

$$(*) \langle C_{n}^{(k)} C_{n}^{(k)*} \rangle = \langle |C_{n}^{(k)}| |C_{n}^{(k)}| |e^{i(\theta_{n}^{(k)} - \theta_{n}^{(k)})} \rangle \langle \langle |C_{n}^{(k)}| |C_{n}^{(k)}| \rangle_{k}$$
It follows that
$$S_{nn}S_{nn} \leq S_{nn}S_{nn} \Rightarrow S = S_{nn}$$
with = for pure states
$$S_{nn} \leq S_{nn} \leq S_{$$

More about the Density Matrix

Choose a basis $|\psi\rangle = \sum_{j} c_{j}^{(k)} |\mu_{j}\rangle$. We define

Single system: Prob of finding state $|\mathcal{A}_n\rangle$ Ensemble: $|\mathcal{A}_n\rangle$ occurs with freq. $|\mathcal{A}_n\rangle$

Coherences: $g_{n\eta} = \langle c_n^{(k)} c_{\eta}^{(k)*} \rangle$

Note: Defining $C_{q} = |C_{q}|e^{i\theta_{q}}$ we have $\langle C_{n}^{(k)} C_{n}^{(k)*} \rangle = \langle |C_{n}^{(k)}||C_{n}^{(k)}||e^{i(\theta_{n}^{(k)} - \theta_{n}^{(k)})} \rangle \langle \langle |C_{n}^{(k)}||C_{n}^{(k)}|| \rangle_{\ell}$

It follows that $S_{nn}S_{nn} \leq S_{nn}S_{nn} \Rightarrow S=$ with = for pure states $S_{nn} = S_{nn} = S_{nn}$

More about the Density Matrix In the orthonormal basis $\{|u_i\rangle\}$ the elements of a pure density matrix are $\langle u_n lg | u_p \rangle = c_n c_p^*$. For a mixed state, $g = \sum_{n} \gamma_{k} \mathcal{Q}_{k}$, we have $\mathcal{Q}_{NP} = \sum_{n} \gamma_{k} \mathcal{C}_{N}^{(k)} (\mathcal{C}_{P}^{(k)})^{*}$. Here and elsewhere, the index & indicates members of the ensemble that are distinct due to, e.g., different preparation.

Populations: (real-valued)

Single system: Prob of finding state | M , > $|u_n\rangle$ occurs with freq. Q_n **Ensemble:**

Coherences:

$$S_{NP} = \sum_{k} \gamma_k C_N^{(k)} (C_P^{(k)})^*$$

Note: Defining $C_{\underline{q}} = |C_{\underline{q}}| e^{i\theta_{\underline{q}}}$ we have

$$(*) < C_{n}^{(k)} \subset C_{n}^{(k)} >_{k} = < |C_{n}^{(k)}||C_{n}^{(k)}|| e^{i(\Theta_{n}^{(k)} - \Theta_{n}^{(k)})} >_{k} < < |C_{n}^{(k)}||C_{n}^{(k)}| >_{k}$$

It follows that
$$S_{nn}S_{nn} \leq S_{nn}S_{nn} \Rightarrow S = \begin{cases} S_{nn} \cdots S_{nn} \\ S_{nn} & S_{nn} \end{cases}$$
with = for pure states

Example: 2-level atom w/random perturbations

Perturbing events cause random phase shifts eia between states.

The ensemble average

is reduced by the randomly fluctuating phase

Dipole Radiation:

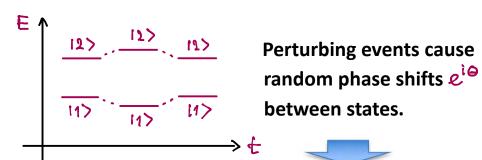
$$\langle \vec{R} \rangle = \text{Tr} \left[g \vec{R} \right] = \text{Tr} \left[\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} 0 & \vec{R}_{12} \\ \vec{R}_{21} & 0 \end{pmatrix} \right]$$

= $g_{12} \vec{R}_{21} + g_{21} \vec{R}_{12} = 2 \text{Re} \left[g_{12} \vec{R}_{21} \right]$

For an ensemble of pure states w/different 😊

Oscillating dipole w/phase that varies between atoms with different perturbation history

Example: 2-level atom w/random perturbations



The ensemble average

is reduced by the randomly fluctuating phase

Dipole Radiation:

For an ensemble of pure states w/different Θ

Oscillating dipole w/phase that varies between atoms with different perturbation history

Time Evolution of the Density Matrix

Challenge: We need "equations of motion" that combine the Schrödinger Equation with the effect of processes that can change Tr g2 (measure of purity)

Approach: We do not have time for a rigorous derivation, so will rely on plausible arguments to justify the equations

Schrödinger Evolution: In general, we have

$$\dot{g} = -\frac{1}{4}[H_1g] = -\frac{1}{4}(Hg - gH)$$

matrix elements

2-Level Atom
$$\Rightarrow$$

$$\begin{cases} 2 \text{ populations} \\ 2 \text{ coherences} \end{cases}$$

Time Evolution of the Density Matrix

Challenge: We need "equations of motion" that combine the Schrödinger Equation with the effect of processes that can change Tr g2 (measure of purity)

Approach: We do not have time for a rigorous derivation, so will rely on plausible arguments to justify the equations

Schrödinger Evolution: In general, we have

matrix elements

2-Level Atom
$$\Rightarrow$$

$$\begin{cases} 2 \text{ populations} \\ 2 \text{ coherences} \end{cases}$$

Consider the 2-Level Rabi problem with

$$H = H_0 + V & V_{12} = \frac{1}{2} k X_{12} e^{-i\omega t} + c.c.$$

$$H = k \left(\begin{array}{cc} 0 & \frac{1}{2} (X_{12} e^{-i\omega t} + X_{21}^{\dagger} e^{-i\omega t}) \\ \frac{1}{2} (X_{12} e^{-i\omega t} + X_{21}^{\dagger} e^{-i\omega t}) & \omega_{21} \end{array} \right)$$

Set
$$X_{12} = X_1 X_2 = X^*$$
, substitute $S_{12} = \widetilde{S}_{12} e^{i\omega t}$
| Slow variable (Pure state $\Rightarrow S_{12} = Q_1 Q_2^* = C_1 (c_2 e^{-i\omega t})$)

Substitute in (*) (LHS of the page), make RWA, and drop ~ Homework Set 4 Assignment

$$\hat{S}_{11} = -\frac{1}{2} \left(\times \mathcal{G}_{12} - \times^* \mathcal{G}_{21} \right) \quad \text{Rabi Eqs. for pure and mixed states} \\
\hat{S}_{12} = \frac{1}{2} \left(\times \mathcal{G}_{12} - \times^* \mathcal{G}_{21} \right) \\
\hat{S}_{12} = i \Delta \mathcal{G}_{12} + i \frac{X^*}{2} \left(\mathcal{G}_{22} - \mathcal{G}_{11} \right) = \hat{\mathcal{G}}_{21}^*$$

Consider the 2-Level Rabi problem with

$$H = H_0 + V & V_{12} = \frac{1}{2} h X_{12} e^{-i\omega t} + c.c.$$

$$H = h \begin{pmatrix} 0 & \frac{1}{2} (X_{12} e^{i\omega t} + X_{21}^{t} e^{i\omega t}) \\ \frac{1}{2} (X_{12} e^{-i\omega t} + X_{21}^{t} e^{i\omega t}) & \omega_{21} \end{pmatrix}$$

Set
$$X_{12} = X_1 X_2 = X^4$$
, substitute $G_{12} = \widetilde{G}_{12} e^{i\omega t}$
slow variable

(Pure state $\Rightarrow G_{12} = Q_1 Q_2^* = C_1 (c_2 e^{-i\omega t})$)

Substitute in (*), make RWA, and drop ~

$$\dot{S}_{11} = -\frac{i}{2} \left(\times S_{12} - \times^* S_{21} \right)$$
Rabi Eqs. for pure and mixed states
$$\dot{S}_{12} = \frac{i}{2} \left(\times S_{12} - \times^* S_{21} \right)$$

$$\dot{S}_{12} = i \Delta S_{12} + i \frac{X^+}{2} \left(S_{22} - S_{11} \right) = \dot{S}_{21}^*$$

Next: Non-Hamiltonian evolution

Types of events

- (i) Elastic collisions: No change in energy
- (ii) Inelastic collisions: Atom loss
- (iii) Spontaneous decay: Transition (2) → 11>

Simple Model of Elastic Collisions

Two atoms near energy levels shift, free evol. of g_{12} changed

$$\begin{array}{c|c}
\hline
 & 12 \\
 & \uparrow \\
 & \omega_{21} \\
 & \omega_{21} \\
 & \downarrow \\
 & 11 \\
 & \downarrow \\$$

Paradigm for perturbations that do not lead to net change in energy

Next: Non-Hamiltonian evolution

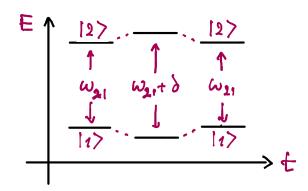
Types of events

- (i) Elastic collisions: No change in energy
- (ii) Inelastic collisions: Atom loss
- (iii) Spontaneous decay: Transition (2>→ 11>

Simple Model of Elastic Collisions

Two atoms near each other

energy levels shift, free evol. of g_{12} changed



Paradigm for perturbations that do not lead to net change in energy

Evolution of coherence (fast variables)

$$\dot{g}_{12} = -i \left[\omega_{11} + \delta \omega(\xi) \right] g_{12}$$

$$\Rightarrow g_{12}(\xi) = g_{12}(0) e^{-i\omega_{12} \xi} e^{-i \int_{0}^{\xi} d\xi' \, d\omega(\xi')}$$

We need the ensemble average of $\mathfrak{G}_{12}(4)$

Assumptions:

- From atom to atom ∂ω(₺) is a
 Gaussian Random Variable
- Averaged over the ensemble $\langle \delta \omega \omega \rangle_{2} = 0$
- Collisions have no memory over time,

Can show that, averaged over time and the ensemble

$$\left\langle e^{-i\int_{0}^{t}dt'\delta\omega(t')}\right\rangle_{\Omega}=e^{-t/T}$$

Evolution of coherence (fast variables)

$$S_{12} = -i \left[\omega_{11} + \delta \omega(\xi) \right] S_{12}$$

$$\Rightarrow S_{12}(\xi) = S_{13}(0) e^{-i\omega_{11} \xi} e^{-i \int_{0}^{\xi} d\xi' \, d\omega(\xi')}$$

We need the ensemble average of $\mathfrak{G}_{12}(4)$

Assumptions:

- From atom to atom ∂ผ(₺) is a
 Gaussian Random Variable
- Averaged over the ensemble くδωωζείος = 0
- Collisions have no memory over time,

Can show that, averaged over time and the ensemble

$$\left\langle e^{-i\int_{0}^{t}dt'\delta\omega(t')}\right\rangle_{\mathbf{R}} = e^{-t/T}$$

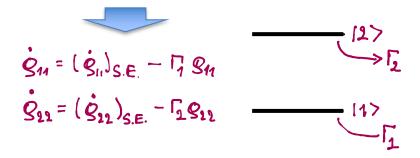
It follows that: $g_{12}(4) = g_{42}(0) e^{-i\omega_{21}t} e^{-t/\tau}$

Add this decay to the equation of motion to get

$$\dot{g}_{12} = (\dot{g}_{12})_{S.E.} + (\dot{g}_{12})_{E.C.} = -(i\omega_{21} - 1/\tau)g_{12}$$

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly, this is a steady loss of atoms



This is strange because Trg(t) is not preserved Convenient when working with quantities

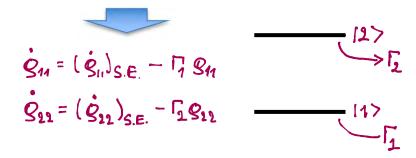
It follows that: $g_{12}(4) = g_{12}(0)e^{-i\omega_{21}t}e^{-t/\tau}$

Add this decay to the equation of motion to get

$$\dot{g}_{12} = (\dot{g}_{12})_{S.E.} + (\dot{g}_{12})_{E.C.} = -(i\omega_{21} - 1/\tau)g_{12}$$

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly, this is a steady loss of atoms



This is strange because Trg(t) is not preserved Convenient when working with quantities

Effect on probability amplitudes

Populations are ensemble averages of the type

$$g_{11}(t) = \langle |Q_1(t)|^2 \rangle = \langle |Q_1(0)|^2 \rangle e^{-\Gamma_1 t}$$

 $g_{12}(t) = \langle |Q_2(t)|^2 \rangle = \langle |Q_2(0)|^2 \rangle e^{-\Gamma_2 t}$

When the populations decay, the averages of the probability amplitudes must decay accordingly,

$$\langle |a_1(\xi)| \rangle = \langle |a_1(0)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle e^{-\frac{$$

Thus, for the coherences

This gives us

elastic inelastic

$$g_{12} = (g_{22})_{g.E.} - 1/\tau g_{12} - \frac{\Gamma_i + \Gamma_2}{2} g_{12}$$

Effect on probability amplitudes

Populations are ensemble averages of the type

$$g_{11}(t) = \langle [a_1(t)]^2 \rangle = \langle [a_1(0)]^2 \rangle e^{-\int_1^2 t}$$

 $g_{12}(t) = \langle [a_2(t)]^2 \rangle = \langle [a_2(0)]^2 \rangle e^{-\int_2^2 t}$

When the populations decay, the averages of the probability amplitudes must decay accordingly,

$$\langle |a_1(\xi)| \rangle = \langle |a_1(0)| \rangle e^{-\frac{\pi}{2} \frac{1}{2} \xi}$$

 $\langle |a_2(\xi)| \rangle = \langle |a_2(\xi)| \rangle e^{-\frac{\pi}{2} \frac{1}{2} \xi}$

Thus, for the coherences

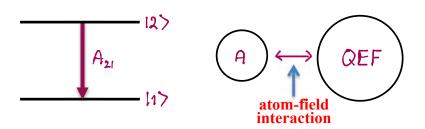
$$911(t)=\langle a_1(t)a_2(t)^*\rangle=\langle a_1(0)a_2(0)^*\rangle e^{-i\sqrt{2}t}e^{-i\sqrt{2}t}$$

This gives us

elastic inelastic $g_{12} = (g_{22})_{g.e.} - \frac{1}{T} g_{12} - \frac{\Gamma_1 + \Gamma_2}{2} g_{12}$

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field



Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

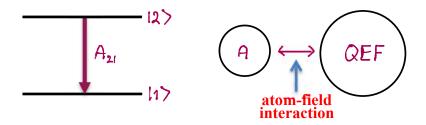
Step (1) She applies a Hamiltonian that drives the evolution

Step (2) She gives atom B to Bob and asks him to measure if it is in 1, or 2, and keep the result secret forever.

Result: Alice now has a 2-level atom in the state

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field



Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

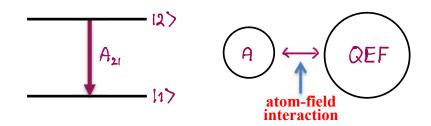
Step (1) She applies a Hamiltonian that drives the evolution

Step (2) She gives atom B to Bob and asks him to measure if it is in [1] or |2] and keep the result secret forever.

Result: Alice now has a 2-level atom in the state

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field



Final OPTI 544 Lectures:

$$|\mathcal{L}(0)\rangle = |2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \text{ evolution over time } t$$

$$|\mathcal{L}(t)\rangle = C_{2,0}(t)|2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \sum_{k} C_{1,1k}(t)|1\rangle_{A}|n_{k}=1\rangle_{QEF}$$

$$\text{photon "in the atom"} \qquad \text{photon in field mode } k$$

Cannot recover info in continuum of field modes

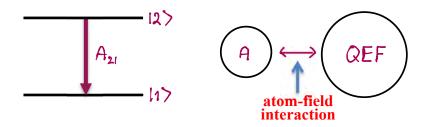
Probability $|C_{2,0}(\xi)|^2$ of having no decay

Probability $\sum_{k} |C_{1,1,k}(\xi)|^2$ of having decay

No Coherence established between states $|1\rangle$, $|2\rangle$

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field



Final OPTI 544 Lectures:

$$|\mathcal{L}(0)\rangle = |2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \text{ evolution over time } t$$

$$|\mathcal{L}(t)\rangle = C_{2,0}(t)|2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \sum_{k} C_{1,1k}(t)|1\rangle_{A}|v_{k}=1\rangle_{QEF}$$

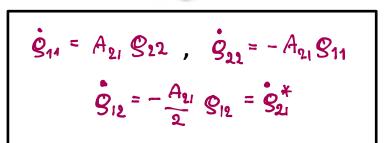
$$\text{photon "in the atom"} \qquad \text{photon in field mode } k$$

Cannot recover info in continuum of field modes

Probability $|C_{2,0}(\xi)|^2$ of having no decay Probability $\sum_{\ell} |C_{1,1,\ell}(\xi)|^2$ of having decay

No Coherence established between states 117, 127

Conclusion: Decay moves population $|2\rangle \Rightarrow |1\rangle$ at rate A_{21} , damps coherence at rate $A_{21}/2$



Putting it all together:

$$\dot{S}_{11} = -\Gamma_{1} S_{11} + A_{21} S_{22} - \frac{1}{2} (X S_{12} - X^{*} S_{21})$$

$$\dot{S}_{22} = -\Gamma_{2} S_{22} - A_{21} S_{22} + \frac{1}{2} (X S_{12} - X^{*} S_{21})$$

$$\dot{S}_{12} = (i\Delta - \beta) S_{12} + \frac{iX^{*}}{2} (S_{22} - S_{11}) = S_{21}^{*}$$
where
$$\beta = \frac{1}{L} + \frac{A_{21}}{2} + \frac{\Gamma_{1} + \Gamma_{2}}{2}$$

These are our desired

Density Matrix Equations of Motion

Emission and Absorption – Population Rate Equations