Raman Coupling in 3-level Atoms

Note also: The effective Raman detuning is shifted.

HW Set 2: Dressed-states of a 2-level atom
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3-level system ®» ground state shifts Zf?&' ?Z
X2 Xy

» Differential ground state shift —"_FZ‘-

Final note: The atomic dipole (zﬁ) will have

components that match the frequency and
polarization of both driving fields, with
amplitudes that depend on both fields.

P

Non-Linear wave mixing,
Breakdown of superposition principle
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Example: Velocity dependent Raman Coupling

m' = O
F'=1
o, o-
\ 5
_______ v
F=1 —¢f—
m= -1 O 1 A
- >
O+ e+ o L
AL EEN —e —
&)_[_ _
field fregs. in velocity dependent
co-moving frame Raman detuning
W, = W+t kar
: } » 5. 2ko
C_= W - b
Applications:

— Doppler velocimetry

— Raman Cooling by velocity selective
momentum transfer

— What if we apply a 7/ Raman pulse?
— Atom Interferometry
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Raman Coupling in 3-level Atoms =



Numerical integration of the equations for the probability Begin 02-20-2025

amplitudes in a 3-level Lambda system with zero Raman
Detuning (6= 0).
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Density Matrix Description of 2-Level Atoms

Mental Warmup: What is a probability?

(1) Example: Coin toss

— We can describe physical states by
probability distributions

— Probabilities are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, probability distributions are
subjective ( states of knowledge)

(2) Example: Quincunx

https://www.mathsisfun.com/data/quincunx.html

— We can describe physical states by
probability distributions

— Probabilities are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, probability distributions are
subjective ( states of knowledge)

This is the Bayesian
Interpretation of Probability

(3) Example: Quantum Quincunx

Restart Data | Blue

Left/Right:  en— 5% / 50%

Speed: N 1 6

(32 m
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Density Matrix Description of 2-Level Atoms

(5) Example: Quantum Trajectories

— Ensemble of 2-level atoms undergoing
Rabi oscillation with random decays

% atom#l P Atom #2 R Atom #3 ...

AN

Definition: A system for which we know only

the probabilities 41y, of finding the system in
state (1, ) is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

Begin 02-20-2025

Definition: Density Operator for pure states

QW) = 1) X u()|

Definition: Density Matrix
Iy (1)) = g_c,,(m.u,.» o
Con [4) = <Ml OLH | > = Col) Cpt (L)

Definition: Density Operator for mixed states

QW) =2 Ay @), € =1, () Ky )|
)

Note: A pure state is just a mixed state for
which one 4lg =1 and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably




Density Matrix Description of 2-Level Atoms

Definition: Density Operator for pure states

QW) = 1%t ) X WL)|

Definition: Density Matrix
14 (4)) = 2;, Col&) 1> ®
Con [4) =M QL) [ M, = Cold) C L)

Begin 02-20-2025

Let A be an observable w/eigenvalues 0,

Let & be the projector on the eigen-subspace of O

For a pure state, Q(£) = |1 ) X y(£)| , we have

Definition: Density Operator for mixed states

Q& = [Zh,' (4) X?.Fa[-é)‘

QY=Y Ay Gt
I

Note: A pure state is just a mixed state for
which one 4lg =1 and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably

() T Q&)= Q=D I¢ I =1
(x) (A= Cple)lA ) =}:<'4m [A X[

-Z<M |eXYaI AT up> -—Z< wletoalu
—W[Q@B}A] (> basns in )

(%) Let ), be the projector on eigensubspace of Q,

Pg,) =488, [ty =Tr[QHP,]

(k) S = IR (E Q)+ I X!
—-~Hm&)xucfe3[~ r»,cce)mw[H

-4 1ugl




Density Matrix Description of 2-Level Atoms

Let A be an observable w/eigenvalues 0,

Let & be the projector on the eigen-subspace of O

For a pure state, Q(£) = |1t ) X y(£)| , we have

Begin 02-20-2025

Let A be an observable w/eigenvalues 0,

Let £, be the projector on the eigen-subspace of O,

For a mixed state, Q(£) =) 4y, Qu(t) » €=U, (£)X Yy (4)]
%

(%) Tr Q&)= %_'g,mce) =§ic,,l‘=i

(%) (A= CEOIAILEY = CHATA X gl
=Z<M,,\zgm><tfté)l Afu{b =Z< tplotElatlan)
=£)F[gc¢m] 4

(%) Let ©, be the projectcr on eigensubspace of Q,

Pa,) =488, [ty =Tr QP ]

“MP> basis in i)

(k) S = IR+ X!
= Hmmxu&a['-;-% X H

ALr]

() Tro(t) = %ma"rrg&cﬂ =4
(%) <A>=% m@&cumm&p:% e Trlg D

="Ir[®)A]

(%) Let &, be the projector on eigensubspace of Q,

Pla,) =%m<zﬁ<ﬂl R I%,0) =T [QhIR]

(%) Gt =%\&(hpfax1w{+npzemﬁﬂ )
=.&Zm -7 CHTE X0~ Tenoget) H)

= [He]
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Let A be an observable w/eigenvalues 0,

Let & be the projector on the eigen-subspace of O

For a pure state, Q(£) = |1t ) X y(£)| , we have
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Let A be an observable w/eigenvalues 0,

Let £, be the projector on the eigen-subspace of O,

For a mixed state, Q(£) =) 4y, Qu(t) » €=U, (£)X Yy (4)]
%

(%) Tr Q&)= %_'g,mce) =§ic,,l‘=i

(%) (A= CEOIAILEY = CHATA X gl
=Z<M,,\zgm><tfté)l Afu{b =Z< tplotElatlan)
=£)F[gc¢m] 4

(%) Let ©, be the projector on eigensubspace of Q,

Pa,) =488, [ty =Tr QP ]

“MP> basis in i)

(k) S = IR+ X!
= Hmmxu&a['-;-% X H

ALr]

() Tro(t) = %ma"rrg&cﬂ =4
(%) <A>=% m@&cumm&p:% e Trlg D

="Ir[®)A]

(%) Let &, be the projector on eigensubspace of Q,

Pla,) =%m<zﬁ<ﬂl R I%,0) =T [QhIR]

(%) Gt =%\&(hpfax1w{+npzemﬁﬂ )
=.&Zm -7 CHTE X0~ Tenoget) H)

Density Operator

= [He]

formalism is general !
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Density Matrix Description of 2-Level Atoms

Let A be an observable w/eigenvalues 0,

Let £, be the projector on the eigen-subspace of O,

For a mixed state, Q(+) :ZIM lt) » €p =ty (4)XYg (£)]
%

W) Teglt) = S, Tgu) =1
() <AY=) e (oAl = % 1R TrLQUEAD

="Ir[@@)A]

(%) Let f, be the projector on eigensubspace of a,

Pla.,) =%m<1&(ﬂl D19, = Tr[QHIR,]

(%) QL) Q&?{\&(uﬁaxm\f-rhp&wzp&n)
=th -7 (HIHa X~ et H)

Density Operator
formalism is general !

=1
- e [H.g]
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Important properties of the Density Operator

(1) QisHermitian, "= ) o is an observable

®» 3 basis in which © is diagonal

In this basis a pure state has one
diagonal element = 1 , therest =

(2) Test for purity.
Pure: Gg*:=gQ ® T gt =1
g

(3) Schrodinger evolution does not change the A

{ Tr Q' is conserved

pure states stay pure

mixed states stay mixed

Changing pure ® mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D, & E,;,

10



Density Matrix Description of 2-Level Atoms

Important properties of the Density Operator

(1) O isHermitian, Q*=g ® © is an observable

® J basis in which © is diagonal

In this basis a pure state has one
diagonal element = 1 , therest =

(2) Test for purity.
Pure: Gg*:=Q ®» ¢

X =1

e
Mixed: ©*%+gQ ® Trgtcl

(3) Schrodinger evolution does not change the A

Tr g‘ is conserved
L pure states stay pure

mixed states stay mixed

Changing pure ® mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D, & E;,
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A cooks recipe — interpretations of ©

Step 1 Add N atoms in state [, to bucket A
Add N atoms in state |V, to bucket B

P

We now have two ensembles, each of which
consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.

N = [4,>

Pick an atom
from C
Which is
Correct?

N x %>

The atom is in a pure state but we
don’t know if it is in WA> or [V,

The atom is in a mixed state
Q= 3 e Xtql +3 14X Y, |

11
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A cooks recipe — interpretations of ©

Step 1 Add N atoms in state [, to bucket A
Add N atoms in state |, to bucket B

-

We now have two ensembles, each of which
consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.
N x “Lg> N x “‘L8>

N = [y, N x 1>

The atom is in a pure state but we

Pick an atom ’ ifitisi
£an at don’t know if it is in [uA> or [\,

Which is The atom is in a mixed state
Correct? [ [
9 = 3 H{AX"['al +5-L“+GXZECG[

Begin 02-20-2025

There is no difference!

The two interpretations lead to identical predictions
for any measurement we can do on atoms from C

Quantum Mechanics:
If two descriptions lead to identical predictions
for observable outcomes then they are identical

Loosely, (i) isa frequentist view

(ii) isa Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge
(subjective)

12



Density Matrix Description of 2-Level Atoms

There is no difference!

The two interpretations lead to identical predictions
for any measurement we can do on atoms from C

g
Quantum Mechanics:

If two descriptions lead to identical predictions
for observable outcomes then they are identical

Loosely, (i) isa frequentist view

(ii) isa Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge
(subjective)

Begin 02-20-2025

More about the Density Matrix
In the orthonormal basis {""'j>] the elements of
a pure density matrix are {«, [¢|n,) =c"a“; .Fora
mixed state, 9:%@&9& , we have g, = %w{cff‘ ()%,
Here and elsewhere, the index & indicates members
of the ensemble that are distinct due to, e. g.,
different preparation.

Populations:

(real-valued)

Gun: Sy EPEH =3y 1681

Single system:  Prob of finding state |4 %
Ensemble: 14 ,% occurs with freq. Q.

Coherences:

(&)Y ¥
iy

Sy W o
gmp &"We n

(complex-valued)

Note: Defining C&"- Icor[e_ieﬁ we have

@) V¥ _ 1 L& A&, HOn 8% ¢ o1 oy (B
(;<) Gy Gy = ICRNC @™ =50 ) I HICE Dy

'

(*) Note: The notation <-}Qis used on the
following pages to indicate an ensemble
average.

It follows that

gf"/l" . - 9“31

?w;.?.ms SinSpp » 8= .t

with = for pure states
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More about the Density Matrix
In the orthonormal basis {’”"j>] the elements of
a pure density matrix are {«, [¢]xn,) =a"a“; .Fora
mixed state, 9:%@&9& , we have QMP*:%YIJQC&“ ()%,
Here and elsewhere, the index £ indicates members
of the ensemble that are distinct due to, e. g.,
different preparation.

Populations:

(real-valued)

Can 2 My Ca =§ 1 11

Single system:  Prob of finding state |4 %
Ensemble: 14 ,% occurs with freq. Q.

Coherences:

- (&)} %
Q= %p&q‘f‘ (5

(complex-valued)

Note: Defining Cg,"' lcq[e,ie‘# we have
: l’&\_ (Al )
( (B My (e OOy < e,
gm/l' .- gl’lal

gncp?.‘qyl $ QVMQ’(‘{I » Q: : ’ ° :

with = for pure states

It follows that

Begin 02-20-2025

More about the Density Matrix
Choose a basis [ > =§C§MIMJ.> . We define
)

Populations:

(real-valued)

Single system:  Prob of finding state |4

Ensemble: |4, ,% occurs with freq. €,

Coherences:

Qn)(r"' € c(? C{»';\A ,v%

(complex-valued)

Note: Defining CQ: xcq[e‘ea we have

(O™, oy plh
<R M= ey o OOy cciePlicPid,

It follows that

gr"/l" . - 9“31

?ncp?.‘wls SimSpp » 8= .t

Qun *** @

with = for pure states ™
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More about the Density Matrix
In the orthonormal basis {m,jﬂ the elements of
a pure density matrix are {«, [¢]xn,) =a"a“; .Fora
mixed state, 9:%@&9& , we have QMP*:%YIJQC&“ ()%,
Here and elsewhere, the index £ indicates members
of the ensemble that are distinct due to, e. g.,
different preparation.

Populations:

(real-valued)

Can 2 My Ca =§ 1 11

Single system:  Prob of finding state |4 %
Ensemble: 14 ,% occurs with freq. Q.

Coherences:

- L)y ¥
Q= %p&cy‘f‘ (5

(complex-valued)

Note: Defining Cg,"' Icq[e,ie‘# we have
: l’&\_ (Al )
( (B My (e OOy < e,
gm/l' .- gl/lal

gmcp?.‘wl $ QVMQ’(‘{I » Q: : ’ ° :

with = for pure states

It follows that
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Example: 2-level atom w/random perturbations

E? >
12> . —=. 1 Perturbing events cause
random phase shifts '€
1Y W 11> between states.
>t P

The ensemble average Cnp=(Cn C; e'(?)“

is reduced by the randomly fluctuating phase

Dipole Radiation: _
Go=Tried]=T[( o ol ™))

= Qu:ﬁu* 9!4/7‘."1: 3 Re [ @, Fig.

For an ensemble of pure states w/different ©
A ) —
> = <R‘3Y§t(a.j "(‘u7>&

Oscillating dipole w/phase that varies between
atoms with different perturbation history

15
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Example: 2-level atom w/random perturbations Time Evolution of the Density Matrix

E a s Challenge: We need “equations of motion” that

12> . —=. 1 Perturbing events cause combine the Schrodinger Equation
random phase shifts 2'® with the effect of processes that can

o> ? > between states. change T € (measure of purity)

> € -V Approach: We do not have time for a rigorous

. derivation, so will rely on plausible

The ensemble average Qm‘l ={Cn Cff e'?)n arguments to justify the equations

is reduced by the randomly fluctuating phase
Schrodinger Evolution: In general, we have

Dipole Radiation: g = —.ef: [H,Q] = —é(Hg—gH)

5 — & o T @u Q| 0 1
>=Trigy] = lr[( o, @ 1\(’& E“)]
HoSw T matrix elements S
= @y 8y fin= 2Re1Cy ] ] 23
Som =& &= (Mot Q1™ G )
For an ensemble of pure states w/different © ' e
29

<> =< Relg® A, !
1 < \ n:f '/(l l7>& 2-Level Atom » { 2 populations Sis ( ') 8y,

Oscillating dipole w/phase that varies between 2 coherences
atoms with different perturbation history e,

16
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Time Evolution of the Density Matrix

Challenge: We need “equations of motion” that
combine the Schrodinger Equation
with the effect of processes that can
change T €% (measure of purity)

Approach: We do not have time for a rigorous
derivation, so will rely on plausible
arguments to justify the equations

Schrodinger Evolution: In general, we have

g =-+[Hg] =-1(Hg-gH)

matrix elements —J—
- i
gnm - ERZ (H"& 9Qm QM& H&m

=1y

(%)
)

€29

2 populations
2-Level Atom { Pop Qs ( }9:.,
2 coherences

€

Begin 02-20-2025

Consider the 2-Level Rabi problem with
- ! 1
H=HtV & V= E&XILZ “Tree

\ - :
o i (X,le:'wt'f X:elut J

H=A

! - ¢ _wi
i(xue/ e K¢ ) Wy

£ . _ o~
Set ‘)Cm .—:X' X, = X", substitute Q, = g, ' £
A slow variable
* ~
(Pure state ® Q,,= 4,4, =C,(¢c,& “*))

Substitute in (%) (LHS of the page), make RWA,
and drop ¥ Homework Set 4 Assignment

Rabi Eqgs. for

&= ‘,"{(X@H."X*QNB pure and

. : . mixed states
9}.‘). = ‘L(xgu_'_x 9,_,)

. ok .
Q.= ‘AQIL*‘%‘L{ (&y-21) =§9j

17
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Consider the 2-Level Rabi problem with

H=H+V & \/mz;_—,&xu_a‘"'“* FC.C.

-
7% o .;: (Xne:iut"' X:elb-’é )
H= . -
5‘_ (Xue;'wa x:@lw£3 Wy,

Set X,y =X, X,= X7, substitute Q,, = g, et

/’ slow variable
% -~
(Pure state ® Q,=0,0, =C, (¢, & )

Substitute in (%), make RWA, and drop ~

g
‘ ) Rabi Eqgs. f
Sn="1 ( XQy - X*QMB ?oulreqasndor
o N ,‘4
9}_&, = i(x9|;PX g}_r)

mixed states
° . 3 X'(‘ ot
Q=14 iy (&y-21) =Sy

Next: Non-Hamiltonian evolution

Types of events

(i)  Elastic collisions: No change in energy

(ii)  Inelastic collisions: Atom loss

(ili) Spontaneous decay: Transition [3) <> !¢

Simple Model of Elastic Collisions

Two atoms near N energy levels shift,

each other free evol. of @, changed
EN ) . — 1
N
Wy Wytd
I N
liy " 11y

Paradigm for perturbations that do
not lead to net change in energy

18
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Next: Non-Hamiltonian evolution

Types of events

(i)  Elastic collisions: No change in energy

(ii) Inelastic collisions: Atom loss

(ili) Spontaneous decay: Transition [2) <> !¢

Simple Model of Elastic Collisions

Two atoms near N energy levels shift,
each other free evol. of @, changed

E 2 199

1272 —. 22
T R
w r"'b 6"11

i [
> —

> &

Paradigm for perturbations that do
not lead to net change in energy
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Evolution of coherence (fast variables)

. < collisional
Q= ! [Nu +90) (‘L-\] Qs history

v
> Qylt)= gzco\g'%ﬁ ( cte! o0 )

We need the ensemble average of @, (+)

Assumptions:

—  From atom to atom Ju(+) isa
Gaussian Random Variable

— Averaged over the ensemble <5CJU§)%=O

— Collisions have no memory over time,

J :-2- ¢!
@wméwcuzc V.Em £)
‘

Can show that, A Sl )
averaged over time < f 3> T
and the ensemble &

19
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Evolution of coherence (fast variables)

collisional

gl?. = "“\ [Nu + 30\) “‘.\] glz_ history

€
=> Q) =Q,0\e Wyt C,q"-’ e

We need the ensemble average of @), (£)

Assumptions:

—  From atom to atom Jw(t) isa
Gaussian Random Variable

— Averaged over the ensemble 45&1(:‘»'}7&:0

— Collisions have no memory over time,

<bw&)5w(é')>_t>%5(£-£'3

-

Can show that, _
averaged over time <Q.
and the ensemble

: fdf' 5th‘3> _ ST
&

Begin 02-20-2025

It follows that: g, (€)= ©, ) ™™ e T

Add this decay to the equation of motion to get

Gy = (Qlgp t ('éu)e.c_: - (i, - "T)g,

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly,
this is a steady loss of atoms

-
Cu- (én)S.E, — 17 @ >fy

Qyy = (én)s.e. —M1Q)y  m—11y

This is strange because Tr @(t) is not preserved

Convenient when working with quantities

N (’ﬁ> o N (/ﬁ::.‘gu f /ﬁ‘n@nﬂ

20
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It follows that: 9;,_&4)- 9"_(3 "w?.rt '-'é/f

Add this decay to the equation of motion to get

Qi = (-‘ém)s.e, t ('§u>5.c,: - (i, - "T)g,

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly,
this is a steady loss of atoms

- e (1.7

Qu=18)e — 17 & ¥>E

Qo= (G ) ~1Qy ——it?

This is strange because Tr @(t) is not preserved

Convenient when working with quantities

N<AT> o N ({18, * Tai€i)

Begin 02-20-2025

Effect on probability amplitudes
Populations are ensemble averages of the type
&, [4) = <10,60%> =< g lorye T
Oy, 1) = 18,1V = L[y (0 F

When the populations decay, the averages of the
probability amplitudes must decay accordingly,

{a,ey=d0,@re 4t
Logey=(aane e

Thus, for the coherences

S’l&('é'\ {0 (.'(:\al({\*> <a1 (o‘)al(o)i.?e [! - 2/—{,—
This gives us elastic inelastic
Y |
f7+h
?rs." (912\3 a. /f ,.__’: N

21
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Effect on probability amplitudes
Populations are ensemble averages of the type

g, ) = <1a,06V*> :({0,1[0)[1>Z~E'£

Quy 1) = 18, ()% = L[ay (0D F

When the populations decay, the averages of the
probability amplitudes must decay accordingly,

{a,16]y=<10, > 2t
Logly=a,ane 4T

Thus, for the coherences

This gives us elastic inelastic
g \
N +P9_
Qrs." [912\3 e. e O~ 3 S
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Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

[, ©3(=

atom-field
interaction

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives
the evolution

19,1195 == @, 115,119 + 4, 125,125,

Step (2) She gives atom B to Bob and asks him to
measure if it is in (17, or 125, and keep
the result secret forever.

Result: Alice now has a 2-level atom in the state

9= (0,12 112,4<4]+ [0y *1255,<2

22
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Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

Ory(=0)

atom-field
interaction

125
Ay
117

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives
the evolution

1194117 == 0y 11D, 1175+ 4, [19, 125,
Step (2) She gives atom B to Bob and asks him to

measure if it is in (Oeor l2>13 and keep
the result secret forever.

Result: Alice now has a 2-level atom in the state

§= (0,12 112,,<2]+ [0y H123g,<2

Begin 02-20-2025

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

Oy(=0)

atom-field
interaction

12>
Ay,
117

Final OPTI 544 Lectures:

[ (0)>=(3 Ve pe,

[EL)=C, ) ILY, V0C Der B D C, oV, =D
A I A

photon in field mode &

» evolution over time ¢

photon “in the atom”

Cannot recover info in continuum of field modes

P

Probability |C, o (£)|* of having no decay
Probability > Ic, 1, (+)I* of having decay
%

No Coherence established between states [17,[27

23
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Spontaneous Decay Conclusion: Decay moves population [27 <> [1D
This process occurs due to interaction between the at rate A,/ , damps coherence at rate A,,/2
Atom and the Quantized Electromagnetic Field w-w
129 . .
[ O3() | [Tk
[
® o
T = - A?. = *
117 atom-field 912. "§:’ Qli 92-1
interaction

Final OPTI 544 Lectures: Putting it all together:

[‘lF (0)>=3 ')A IVae )& EF » evolution over time ¢
» = Q +A ~L[X®,, -X*

) )=C, ,10) riga Vo Yggr B D_Cp g1, 0= e Q=1 Gyt AuGy—1 (X2, -X"gy, )

e A o .
photon “in the atom” photon in field mode & Qu = rg_ 99_9_"/'\3_, @9_2 S -;—_ ( X ?l& - X *g!.l >
o - . s XX‘ 8 H
Cannot recover info in continuum of field modes Qi 'CIA-F’) St 'II‘ (6n-2u)=%y
where /3:%_+§£’+r%¥2—
Probability |C; o (£)|* of having no decay

Probability Z’Cq,u(‘b”z of having decay
%

. Density Matrix
These are our desired . .
No Coherence established between states |17,[27 Equations of Motion

24



Emission and Absorption — Population Rate Equations



