T, < 2T, (8.2.20)

between the transverse and longitudinal lifetimes.

8.3 MAXWELL-BLOCH EQUATIONS

The interaction of light and atoms has two sides. As we emphasized in Chapter 1,
this interaction should ideally be dealt with self-consistently. We have not yet done
this in the quantum framework, having taken the field to be a fixed monochromatic

wave for the most part.
Maxwell’s wave equation (2.1.13) remains valid in quantum mechanics. Given

a source polarization, even one described guantum-mechanically, we can solve the
wave equation to find E(r, £). As usual, we will assume that only the z coordinate
will be significant, and that the field will be almost monochromatic. That is, we

will assume that E can be conveniently written
E(r,?) = £8(z, 1) e ™" (8.3.1)

where the real part is understood to be the physical electric field, and where
&(z, t) is the unknown complex amplitude to be determined. An additional as-
sumption implied by the form assumed in (8.3.1) is that the amplitude &(z, 1)
varies slowly compared with the carrier wave e~ " ~k)_ This justifies inequalities

such as

a_§
0z
0’8 aa‘

<< k| 8|

—— < PR—
32| < *az

a8
2| << w|8] -(8.3.2)

In physical terms these inequalities state that &(z, t) represents a smooth enough
pulse in both space and time. This restriction is not severe, since it would be
violated only if &(z, t) represented a pulse shorter than a few optical periods
(~107" sec) in time or a few wavelengths (~ 1 pm) in space.

In parallel with (8.3.1) and (8.3.2), we make similar assumptions about the
polarization density arising from whatever atoms are present. The semiclassical
theory uses the quantum expectation value for the polarization density, namely
Ne(r). In complex form analogous to (8.3.1) we have

P(z, t) = 2Nery, afa,

= 2Ner, 0, (2, 1)@ ™ (8.3.3)

w}(lfrz the real part is the ph}fsical polarization. We have used (6.4.3), (6.3.12)
and (6.5.1). The slowly varying character of &(z, ¢) is also imputed to p,;: o
dpy
‘? K w | P21 |

2
90y

or

'3021
| at

< (8.3.4)

etc.
T . . .
he wave equation for one spatial propagation direction (the z direction) is

<_§i_i i 1 &
0 2 ?) E(z,1) = ;.?? P(z, 1) (8.3.5)

Agft:;er substituting (8.3.1) and (8.3.3) into (8.3.5), and making use of (8.3.2) and
(8. ..4)., we keep. the largest terms (lowest-order derivativeé) on each side' After
projecting both sides on £* and using £* + & = 1 we obtain the wave equat'ion

(ﬂ A ik
0z dct (z.1) = ;NI‘*le(Z, 9 (8.3.6)

~ where we have used the convenient abbreviation [recall (7.2.5)]

u* = ery, - £%) (8.3.7)

{;1;] thg projectif)n of the transition dipole moment on the direction of polarization
eri the relations (8.2.1) for the Bloch variables u and v are introduced, we ﬁn&

<i+ﬁ_ e ik
oz T aar) B2 0 = 3 Nu* (u — i) (8.3.8)

uotht'(8.3'.6) and (8.3.8) arc? known as the reduced wave equation, or the wave

?éll;}a 2;())nt om :lllle slowly-zarymg—envelope approximation. Equations (8.2.18) and
3. ether are sai jons (1

b .g are said to be the coupled Maxwell-Bloch equations (Problem

' tWltlh these ?quations we have a quantum theory that can be treated self-con-

:;:lgrﬁ) y.- i’il‘hat Is, thelt1 collllpled Maxwell-Bloch equations allow the atoms and the

Influence each other mutually, and the theory treats thi i i

at a fundamental level (Figure 8.4). We al v i1 Chapt %1 a0 exticnen.

! 4. ready saw in Chapter 1 an earlier ex-

amplfi of such a r_nutual interaction [recall Figure 1.15], but there the theo:'yrvf::s

g;‘mp etely empirical. We now reexamine some earlier results, including those of

apter 1, from our present, more satisfactory foundation.
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g 4T ied i - ions. The cou-

Figure 8 he mutual interactions embodied in the Maxwell Bl9ch equatnof)ls; ;ht :

pling is r.nuch more intricate than in the conventional rate-equation theory illustrated in
1

Figure 1.15.

8.4 LINEAR ABSORPTION AND AMPLIFICATION

isi ur two-
First we determine what effect other atoms, €.g., the colllslonlpax:;r: c;fpc; e
11 equation. These atoms also
level atoms, have on the Maxwe uat '
ments and give rise to an added polarization density. Thus we add the term

kN axs 4.1
LN#*le(Z’ t) (8.4.1)
€o

to the right side of (8.3.6), where the overbars denote backgrc:iund;a:om )a?:nr:i;
d come to steady state €
ters. These atoms are far from resonance an k -
i i | It (7.2.1) for p,,. We can sately
kly, so we can use the adiabatic resu : . Ry
?}l:: th); background atoms are at most only very slightly excited, so that p;;
and p,, = 1. Thus we have

_ i§/2
1= 8 LA
i(x/2) (B — id) (8.42)

i T{—Bz

where ¥ = %6/ h. This expression for py, gives

k—_,_ _ Np*wp8iA-B
E_ONFL = 2ec h A + B2
_ _l<a_ is>a (8.4.3)
2 .
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Here we have defined

_Npl» B

@ ehc A% + 82 (8.4.4)
_ J— N —12 ‘A‘
5- (3/F)a = J%;Lw . (5.45)

where @ is seen by comparison with (7.4.8) to be the extinction coefficient of the
background atoms. It is also the imaginary part of the index of refraction for light
transmitted through the background atoms alone. [Recall (3.4.11) with the oscil-
lator strength fincluded. ] Similarly_s can be recognized by comparison with (3.4.9)
to correspond to the background correction to the real part of the index of refrac-
tion.

The effect of the background atoms (collision partners, etc.) on the slowly vary-
ing Maxwell equation (8.3.6) is therefore simply to add two terms to the left side:

d a 6 @ ik
o n A . = — *
<Bz * 2 2 + 8ct> &(z, 1) o Np* py(z, 1) (8.4.6)

Now consider the Maxwell-Bloch equations in steady state. We discard the
time derivative in (8.4.6) and use the quasisteady solution (7.2.1b) for p,,. All of
the steps from (8.3.8) to (8.4.6) apply as well to p,; as to p,;, except that we

cannot assume py, = 0 and p;, = 1 for on-resonant atoms. This minor distinction
is easily accounted for, and we can write (8.4.6) as

d E—iy
—_— + —— 8 = 0 8.4.7
E+450) s (8.47)
where we have introduced the temporary abbreviation

f-im_
2

(@i + (a —i8) (py — 02)) (8.4.8)

[N

Let us multiply (8.4.7) by &* and add the complex conjugate equation to get

d §—in d £+ iy
& | — + >—~ 9 _—
<6z o2 )8 " (62 T ) &* =0 (8.4.9)
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Since 8|8 [2/8z = &* (38 /8z) + c.c., this is the same as

K g) |&]> =0 (8.4.10)
0z
and since |8|? is proportional to I, we have
A_ _y (8.4.11)
0z

Equation (8.4.11) is the same as Eq. (2.6.14) and has the same exponential
decay solution

I(z) = I(0) e™* (8.4.12)
as was given in (2.6.15), if we identify £ with the extinction coefficient a;:
a, < £=a+alpy — £22) (8.4.13)

In fact, we find much more than a simple identification of‘ coefﬁcients.. From the
Maxwell-Bloch result (8.4.11) we can draw two conclusions about light propa-
gation in a medium of atoms both near to resonance and far off resonance (back-

ground atoms):

i. If the resonant atoms are all in their ground states' on = 1, pn = 0), then
the classical law of exponential extinction is valid, _and a; =a + a. That
is, both on-resonance and off-resonance atoms contribute alike to the atten-
uation of the field.

ii. If the nearly resonant atoms are in their excited s@tes (p“_z 0, pn = 1_),
then the solution is still exponential in form but w1'th a;=4a - a. It. is quite
possible that a >> a, since the detuning A appearing in the denominator of
the expression for @ in (8.4.4) is by assumption very large, and the deturﬁmg
A in the corresponding expression for a is small or even Zero. Und.er t ese
conditions a, is negative, and describes not artenuation but amplification
(Figure 8.5).

I(z) 0,<0

10 9,>0 Figure 8.5 Amplification or attenuation of

Y z—= an incident pulse.
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It is clear that in case (ii) the the possibility of laser action is foretold. Equation
(8.4.13) also gives clear instructions on how to go about obtaining the right con-

ditions for it. One need only. (!) ensure that the near-resonant atoms are sufficiently
excited by some means, so that

P — pu > dfa (8.4.14)

All formulas for critical or threshold inversion governing laser action derive
from the principles leading to (8.4.14). Mirror losses can, in practice, be more
significant than attenuation due to absorption or scattering in the laser medium,
but they lead to similar results, as we will find in Chapter 10. The methods for

achieving threshold inversion are many. They vary greatly with type of laser, and
are discussed in Chapter 13.

8.5 SEMICLASSICAL LASER THEORY

Laser action based on inversion is a quantum effect, as (8.4.14) suggests. The
need for a positive inversion cannot be satisfied in a classical system, for which
the concept of inversion does not exist. We present the elements of a quantum-
mechanical laser theory in this section. It will not be a full theory for many rea-
sons, but it will be complete enough to correct the flaws in the classical theory of
the laser, given in Section 3.5.

We must first recall the expression given in (1.3.1) and (3.5.2) for the electric

field in a laser cavity. The allowed wave vectors and mode functions are deter-
mined by the cavity length:

k, = mw/L (8.5.1)

so we have E(z, t) = L, E, (z, t), where
E, = &, &§,(t) sin k,z e ™ (8.5.2)

is the electric field of the mth mode of the cavity. Note that the complex mode
amplitude &,(¢) does not depend on z, since the cavity mode function sin k,,z is
assumed to express the z dependence fully. The frequency w of laser oscillation is
not known initially, although it will be close to one of the cavity mode frequencies:
W = W,

It is convenient to express the polarization’s z dependence in terms of cavity
mode functions as well. That is, we will write P(z, ) = L,,P,, (2, t), where

P,, = 2Ner,057(z, t) sin k,z e ™™ (8.5.3)



