The matrix element = overlap integral

$$V_{21} = \langle n'l' m' | V_{ex+} | nlm \rangle$$

$$= R \times \int_{4\pi}^{d} ds \left(Y_{e'}^{m'} \right)^{+} \left(Y_{1}^{q} e^{-i\omega t} + (-1)^{q} Y_{1}^{-q} e^{i\omega t} \right) Y_{e}^{m}$$
radial angular integral

Thus, to within a constant factor

And thus in the RWA we get

$$V_{11} \propto \langle \ell' m' | \gamma_1^4 e^{-i\omega t} | \ell m \rangle$$
 $V_{12} \propto \langle \ell m | (-1)^4 \gamma_1^{-4} e^{i\omega t} | \ell' m' \rangle$

$$V_{21} \propto \int d\Omega (Y_{e'}^{m'})^{*} Y_{1}^{q} Y_{e'}^{m} \propto \langle 1, q; lm|l'm' \rangle$$
 $V_{12} \propto \int d\Omega (Y_{e'}^{m})^{*} Y_{1}^{-q} Y_{e'}^{m'} \propto \langle 1, -q; l'm'|lm \rangle$

Clebsch-Gordan coefficients

Next: We can understand this as conservation of angular momentum when a photon is absorbed or emitted

Selection Rules for Electric Dipole Transitions

And thus in the RWA we get

$$V_{11} \propto \langle l'm' | \gamma_1^4 e^{-i\omega t} | lm \rangle$$
 $V_{12} \propto \langle lm | (-1)^4 \gamma_1^{-4} e^{i\omega t} | l'm' \rangle$

$$V_{21} \propto \int d\Omega (Y_{e'}^{m'})^{*} Y_{1}^{q} Y_{e'}^{m} \propto \langle 1, q; lm|l'm' \rangle$$
 $V_{12} \propto \int d\Omega (Y_{e'}^{m})^{*} Y_{1}^{-q} Y_{e'}^{m'} \propto \langle 1, -q; l'm'|lm \rangle$

Clebsch-Gordan coefficients

Next: We can understand this as conservation of angular momentum when a photon is absorbed or emitted

Selection Rules for Electric Dipole Transitions **Revisit: Addition of Angular Momenta**

Let
$$\vec{J} = \vec{J}_1 + \vec{J}_2$$
 \Rightarrow eigenstates $\begin{cases} |\dot{\delta}_1 m_1\rangle \\ |\dot{\delta}_1 m_2\rangle \\ |\dot{\delta}_1 m_2\rangle \end{cases}$

We can write $|\dot{q}_1 m\rangle$ in the basis $|\dot{q}_1 m_1\rangle |\dot{q}_2 m_2\rangle$

identity

$$|\dot{a}m\rangle = \sum_{m_1, m_2} |\dot{a}_1 m_1; \dot{a}_2 m_2\rangle\langle \dot{a}_1 m_1; \dot{a}_2 m_2||\dot{a}m\rangle$$

= $\sum_{m_1, m_2} \langle \dot{a}_1 m_1; \dot{a}_2 m_2||\dot{a}m\rangle||\dot{a}_1 m_1; \dot{a}_2 m_2\rangle$

Clebsch-Gordan coefficients

Consequation of

(Conservation of Angular Momentum)

$$|\dot{a}_1 - \dot{a}_2| \le \dot{a} \le \dot{a}_1 + \dot{a}_2$$
 $m_1 + m_1 = m$

Going back to the matrix element, $\bigvee_{2_1} \neq \emptyset$ where $|19\rangle$ combined $w/|\ell m\rangle$ is consistent $w/|\ell' m'\rangle$

"photon" AM ground state AM

excited state AM

Revisit: Addition of Angular Momenta

Let
$$\vec{J} = \vec{J}_1 + \vec{J}_2$$
 \Rightarrow eigenstates
$$\begin{cases} |a_1 m_1\rangle \\ |a_2 m_2\rangle \\ |a_3 m\rangle \end{cases}$$

We can write $|\dot{q}m\rangle$ in the basis $|\dot{q}_1m_1\rangle|\dot{q}_1m_2\rangle$

identity

$$|\dot{j}m\rangle = \sum_{m_1, m_2} |\dot{j}_1 m_1; \dot{j}_2 m_2\rangle \langle \dot{j}_1 m_1; \dot{j}_2 m_2||jm\rangle = \sum_{m_1, m_2} \langle \dot{j}_1 m_1; \dot{j}_2 m_2||jm\rangle||\dot{j}_1 m_1; \dot{j}_2 m_2\rangle = \sum_{m_1, m_2} \langle \dot{j}_1 m_1; \dot{j}_2 m_2||jm\rangle||\dot{j}_1 m_1; \dot{j}_2 m_2\rangle$$

Clebsch-Gordan coefficients

Conservation of

(Conservation of Angular Momentum)

$$|\dot{a}_1 - \dot{a}_2| \le \dot{a} \le \dot{a}_1 + \dot{a}_2$$
 $m_1 + m_1 = m$

Going back to the matrix element, $\bigvee_{2_1} \neq \emptyset$ when $|19\rangle$ combined w/ $|\ell m\rangle$ is consistent w/ $|\ell' m'\rangle$ when "photon" AM ground state AM excited state AM

The corresponding Selection Rules are

$$\ell' - \ell = 0, \pm 1$$
, $m' - m = q$, $q = 0, \pm 1$

Combining this with the Parity Rule we get

Electric Dipole Selection Rules

$$\ell'-\ell=\pm 1$$
, $m'-m=q$, $q=0,\pm 1$

Remarkably:

- (*) These selection rules generalize to complex many electron atoms, and after we include both electron and nuclear spins in the theory.
- (*) From a physics perspective, this reflects the conservation of angular momentum in rotationally invariant systems, and therefore transitions that do not conserve angular momentum are forbidden
- (*) To find the Clebsch-Gordan coefficients for different transitions we would need to use the Wigner-Eckart theorem, the proof of which is beyond this course.

The corresponding Selection Rules are

$$\ell' - \ell = 0, \pm 1$$
, $m' - m = q$, $q = 0, \pm 1$

Combining this with the Parity Rule we get

Electric Dipole Selection Rules

$$\ell'-\ell=\pm 1$$
, $m'-m=q$, $q=0,\pm 1$

Remarkably:

- (*) These selection rules generalize to complex many electron atoms, and after we include both electron and nuclear spins in the theory.
- (*) From a physics perspective, this reflects the conservation of angular momentum in rotationally invariant systems, and therefore transitions that do not conserve angular momentum are forbidden
- (*) To find the Clebsch-Gordan coefficients for different transitions we would need to use the Wigner-Eckart theorem, the proof of which is beyond this course.

General ED Selection Rules

$$\Delta L = \pm 1$$
 \overrightarrow{L} : total e orbital A. M.

$$\triangle F = 0, \pm 1$$
 \rightleftharpoons : total orbital + spin A. M.

$$\Delta m_F = q = 0, \pm 1$$
 q: polarization of EM field

Clebsch-Gordan coefficients (
$$E_{E_i^! M_E^!} > E_{E_i^! M_E}$$
)

General ED Selection Rules

: total e orbital A. M. $\Delta L = \pm 1$

 $\triangle F = 0, \pm 1$ \overrightarrow{r} : total orbital + spin A. M.

 $\Delta m_F = q = 0, \pm 1$ q: polarization of EM field

Clebsch-Gordan coefficients ($E_{F_{\cdot}'M_{F}'} > E_{F_{\cdot}M_{F}}$)

Hydrogen atom

4S-2S: forbidden 4S-2P: allowed

Total spin: $\vec{F} = \vec{J} + \vec{I}$, $\vec{J} = \vec{L} + \vec{S}$

nuclear orbital electron spin

1S State:

2P State:

$$J = \frac{1}{2}$$
, $F = 0, 1$

Level diagram for transitions

$$1S_{1/2}(F=1) \rightarrow 2P_{3/2}(F=2)$$

Polarization:

$$q=0$$
 $q=1$ $q=-1$

1S State:

2P State:

$$J = \frac{1}{2}$$
, $F = 0, 1$
 $J = \frac{3}{2}$, $F = 1, 2$

Level diagram for transitions

$$1S_{l_2}(F=1) \rightarrow 2P_{3/2}(F=2)$$

Polarization:

Note: When the field polarization is pure linear or circular the levels are coupled in pairs, and the oscillator strengths depend on the Clebsch-Gordan coefficients

Demo: Clebsch-Gordan Coefficients and Oscillator Strengths from Mathematica

- (*) <u>Dense or hot gases</u>: Collisions redistribute Atoms between *m*-levels on very short time scales and the gas looks like a gas of 2-level atoms w/an effective coupling strength. If the dipole is oriented at random with the field, Then (ネットリートリー・ファイル アンドル・ファイル アン
- (*) Short interaction time: If the atoms are "unpolarized" (random *m*-level populations) and the interaction too brief to change this, the atoms behave as an ensemble with different oscillator strengths
- (*) Optical pumping: In dilute gases without collisions, atoms can be "pumped" into a single, pure state, e. g., $1S_{1/2}$ (F=1, M_E =1). If driven with $\tilde{\mathcal{E}}_q$ =1 polarization this will realize a true 2-level system, as $2P_{3/2}$ (F'=2, M_E =2) can only decay back to $1S_{1/2}$ (F=1, M_E =1)
- (*) If more than one frequency or polarization is Present, one can often drive Raman transitions

Note: When the field polarization is pure linear

or circular the levels are coupled in pairs, and the oscillator strengths depend on

the Clebsch-Gordan coefficients

Demo: Clebsch-Gordan Coefficients and Oscillator Strengths from Mathematica

- (*) <u>Dense or hot gases</u>: Collisions redistribute Atoms between *m*-levels on very short time scales and the gas looks like a gas of 2-level atoms w/an effective coupling strength. If the dipole is oriented at random with the field, Then (ネットリー) The same is true for <u>unpolarized light</u>
- (*) Short interaction time: If the atoms are "unpolarized" (random m-level populations) and the interaction too brief to change this, the atoms behave as an ensemble with different oscillator strengths
- (*) Optical pumping: In dilute gases without collisions, atoms can be "pumped" into a single, pure state, e. g., $1S_{1/2}$ (F=1, $m_E=1$). If driven with $\vec{\mathcal{E}}_q=1$ polarization this will realize a true 2-level system, as $2P_{3/2}$ (F'=2, $m_P'=2$) can only decay back to $1S_{1/2}$ (F=1, $m_E=1$)
- (*) If more than one frequency or polarization is Present, one can often drive Raman transitions

Raman Coupling in 3-Level Systems

Consider an atom with this 3-level structure

For simplicity we set $E_4 = E_3$ (no loss of generality)

Fields
$$\begin{cases} at \omega, coupling |1\rangle, |2\rangle \text{ w/Rabi freq. } \chi_1 \\ at \omega + \delta, coupling |3\rangle, |2\rangle \text{ w/Rabi freq. } \chi_2 \end{cases}$$

Raman Coupling in 3-Level Systems

Consider an atom with this 3-level structure

For simplicity we set $E_4 = E_3$ (no loss of generality)

Fields
$$\begin{cases} at \omega, coupling (1), (2) \text{ w/Rabi freq. } \chi_1 \\ at \omega + \delta, coupling (3), (2) \text{ w/Rabi freq. } \chi_2 \end{cases}$$

The Hamiltonian for this system is (χ_1, χ_2 real)

$$H = \frac{1}{2\pi} \begin{pmatrix} 0 & \chi_1(t) & 0 \\ \chi_1(t) & \omega_0 & \chi_2(t) \\ 0 & \chi_2(t) & 0 \end{pmatrix}$$
where
$$\chi_1(t) = \frac{\chi_1}{2} \left(e^{i\omega t} + e^{-i\omega t} \right)$$

$$\chi_2(t) = \frac{\chi_2}{2} \left(e^{i(\omega + \delta)t} + e^{-i(\omega + \delta)t} \right)$$

Setting $|2\downarrow(t)\rangle = a_1(t)|1\rangle + a_2(t)|2\rangle + a_3(t)|3\rangle$ we get a S.E.

$$\dot{a}_{1} = -i \frac{X_{1}}{2} (e^{i\omega t} + e^{-i\omega t}) a_{2}$$

$$\dot{a}_{2} = -i \omega_{0} a_{2} - i \frac{X_{1}}{2} (e^{i\omega t} + e^{-i\omega t}) a_{1}$$

$$-i \frac{X_{2}}{2} (e^{i(\omega t \partial)t} + e^{-i(\omega t \partial)t}) a_{3}$$

$$\dot{a}_{3} = -i \frac{X_{2}}{2} (e^{i(\omega t \partial)t} + e^{-i(\omega t \partial)t}) a_{2}$$

Raman Coupling in 3-level Atoms

$$iC_{1}(t) = -\frac{1}{2} \left(X_{12} e^{-i2\omega t} + \chi_{21}^{*} \right) C_{2}(t)$$

$$iC_{2}(t) = (\omega_{21} - \omega) C_{2}(t) - \frac{1}{2} \left(\chi_{21} + \chi_{12}^{*} e^{i2\omega t} \right) C_{1}(t)$$

$$i\dot{c}_{1}(\mathcal{L}) = -\frac{1}{2} \times_{1}^{4} C_{2}(\mathcal{L})$$

$$i\dot{c}_{2}(\mathcal{L}) = \Delta C_{2}(\mathcal{L}) - \frac{1}{2} \times_{2} C_{1}(\mathcal{L})$$
 (detuning)

Rotating Wave Approximation.

Let
$$a_1 = b_1$$
, $a_2 = b_3 e^{-i\omega t}$, $a_3 = b_3 e^{i\delta t}$

Plug into in S.E.

$$\dot{b}_{1} = -i \frac{\chi_{1}}{2} (1 + e^{-i2\omega t}) b_{2}$$

$$\dot{b}_{2} = -i (\omega_{0} - \omega) b_{2} - i \frac{\chi_{1}}{2} (e^{i2\omega t} + 1) b_{1}$$

$$-i \frac{\chi_{2}}{2} (e^{i2(\omega + d)t} + 1) b_{3}$$

$$\dot{b}_{3} = -i \delta b_{3} - i \frac{\chi_{2}}{2} (1 + e^{-i2(\omega + d)t}) b_{2}$$

Drop non-resonant terms, set $\omega_0 - \omega = \Delta$

$$\dot{b}_{1} = -i \frac{\chi_{1}}{2} b_{2}$$

$$\dot{b}_{2} = -i \Delta b_{2} - i \frac{\chi_{1}}{2} b_{1} - i \frac{\chi_{2}}{2} b_{3}$$

$$\dot{b}_{3} = -i \delta b_{3} - i \frac{\chi_{2}}{2} b_{2}$$

Raman Coupling in 3-level Atoms

Rotating Wave Approximation.

Let
$$a_1 = b_1$$
, $a_2 = b_2 e^{-i\omega t}$, $a_3 = b_3 e^{i\delta t}$

Plug into in S.E.

$$\dot{b}_{1} = -i \frac{\chi_{1}}{2} (1 + e^{-i2\omega t}) b_{2}$$

$$\dot{b}_{2} = -i (\omega_{0} - \omega) b_{2} - i \frac{\chi_{1}}{2} (e^{i2\omega t} + 1) b_{1}$$

$$-i \frac{\chi_{2}}{2} (e^{i2(\omega + d)t} + 1) b_{3}$$

$$\dot{b}_{3} = -i \delta b_{3} - i \frac{\chi_{2}}{2} (1 + e^{-i2(\omega + d)t}) b_{2}$$

Drop non-resonant terms, set $\omega_0 - \omega = \Delta$

$$\dot{b}_{1} = -i \frac{\chi_{1}}{2} b_{2}$$

$$\dot{b}_{2} = -i \Delta b_{2} - i \frac{\chi_{1}}{2} b_{1} - i \frac{\chi_{2}}{2} b_{3}$$

$$\dot{b}_{3} = -i \delta b_{3} - i \frac{\chi_{2}}{2} b_{2}$$

This S.E. has no explicit time dependence Easy to solve numerically...

Now assume that $t_2(t=0) = 0$ the atom is in the electronic ground state at t=0 when the fields turn on.

 \Rightarrow we can solve eq. for $\mathcal{L}_{2}(\mathcal{L})$:

$$\dot{b}_{2}(t) = -i\Delta b_{2} - ig(t), \quad g(t) = \left(\frac{\chi_{1}}{2}b_{1} + \frac{\chi_{2}}{2}b_{3}\right)$$

$$b_2(t) = -e^{-i\Delta t} \int_0^t ie^{i\Delta t'} g(t') dt'$$
 (A)

$$= -e^{-i\Delta t} \left(\left[\frac{1}{\Delta} e^{i\Delta t'} g(t') \right]_{0}^{t} - \int_{0}^{t} \frac{1}{\Delta} e^{i\Delta t'} \dot{g}(t') dt' \right)$$
(3)

Reminder: Integration by parts

$$\int_{a}^{b} f(x)g(x)dx = \left[F(x)g(x)\right]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$