Atom-Light Interaction: Multi-Level Atoms

The matrix element = overlap integral
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And thus in the RWA we get
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Thus, to within a constant factor
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Clebsch-Gordan coefficients

Next: We can understand this as conservation of
angular momentum when a photon is absorbed

or emitted C

Selection Rules for Electric Dipole
Transitions
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And thus in the RWA we get
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Revisit: Addition of Angular Momenta
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Clebsch-Gordan coefficients

Next: We can understand this as conservation of
angular momentum when a photon is absorbed

or emitted C

Selection Rules for Electric Dipole
Transitions
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Revisit: Addition of Angular Momenta
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Going back to the matrix element, V, = © when
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The corresponding Selection Rules are
L'-2 =0,t1 ,m-m=0, 3=0,%1
Combining this with the Parity Rule we get

Electric Dipole Selection Rules

L-L=t1,m-m=g,0:0*1

Remarkably:

(%) These selection rules generalize to complex
many - electron atoms, and after we include
both electron and nuclear spins in the theory.

(k) From a physics perspective, this reflects the
conservation of angular momentum in
rotationally invariant systems, and therefore
transitions that do not conserve angular
momentum are forbidden

(%) To find the Clebsch-Gordan coefficients for
different transitions we would need to use
the Wigner-Eckart theorem, the proof of
which is beyond this course.
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The corresponding Selection Rules are
L-2 =011 ,m-m=¢,3=0%1

Combining this with the Parity Rule we get

Electric Dipole Selection Rules

L-L=t1, m-m=g,6Q=0*1

Remarkably:

(%k) These selection rules generalize to complex
many — electron atoms, and after we include

both electron and nuclear spins in the theory.

(k) From a physics perspective, this reflects the
conservation of angular momentum in
rotationally invariant systems, and therefore
transitions that do not conserve angular
momentum are forbidden

(%) To find the Clebsch-Gordan coefficients for
different transitions we would need to use
the Wigner-Eckart theorem, the proof of
which is beyond this course.
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General ED Selection Rules

AL = %1 L: total e orbital A. M.
OF =0,%1

Amc =q =0,t1 Q: polarization of EM field

F: total orbital + spin A. M.

Clebsch-Gordan coefficients ( Eg.,,t > Eeme)
(P mo I VIFmeha {19, Fm | # mp?

CRme[ VIF meH < {1 -a, F'ma | Fme)
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General ED Selection Rules

AL = %1
AF =0t1
AMch-:thi

f: total e orbital A. M.

F: total orbital + spin A. M.

Q: polarization of EM field

Clebsch-Gordan coefficients ( E: > Eeme)

(P mo I VIFmeha {19, Fm | # mp?

{Fme| VIF meH < {{ -a,F'mp| Fmg)

Hydrogen atom

1€ ~-2S : forbidden

o)

Total spin:

F =

1€ -2p : allowed

> > A o
J+I, J=L+S
4 A K

nuclear orbital electron spin

18 State:
J=1j,

2P state:

J="l,
J=34,

Level diagram for
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1Sy, (F=1) = 205, (F=2)

transitions
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1€ State:
J=1ly, F=0,1 "
2P state: 291/2_
J= 1/21 F =0 1
J=3,, F=12
13[[2

Level diagram for
transitions
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Polarization:

15,,1(1: 1)

IQ 0 /4L \ %

Note: When the field polarization is pure linear
or circular the levels are coupled in pairs,
and the oscillator strengths depend on
the Clebsch-Gordan coefficients

Demo: Clebsch-Gordan Coefficients and

()

()

()

Oscillator Strengths from Mathematica

Dense or hot gases: Collisions redistribute
Atoms between m-levels on very short time
scales and the gas looks like a gas of 2-level
atoms w/an effective coupling strength. If the
dipole is orlented at random with the field,
Then (x e . KA

The sarrre is t“r&[e fof u/rrnlpolarlzed light

Short interaction time: If the atoms are
“unpolarized” (random m-level populations)
and the interaction too brief to change this,
the atoms behave as an ensemble with
different oscillator strengths

Optical pumping: In dilute gases without
collisions, atoms can be “pumped” into a

single, pure state, e. g., 1Sy, (F=1 Me=1) .

If driven with &4 1 polarlzatlon th|s will

realize a true 2-level system, as 20, (F'=2,m}=2)

can only decay back to 15, (F=1,m.=+)

If more than one frequency or polarization is
Present, one can often drive Raman transitions

12
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Note: When the field polarization is pure linear

or circular the levels are coupled in pairs,
and the oscillator strengths depend on
the Clebsch-Gordan coefficients

Demo: Clebsch-Gordan Coefficients and

(%)

(%)

(%)

()

Oscillator Strengths from Mathematica

Dense or hot gases: Collisions redistribute
Atoms between m-levels on very short time
scales and the gas looks like a gas of 2-level
atoms w/an effective coupling strength. If the
dipole is orlented at random with the field,
Then (ji &, % Zangjes 3|<’f‘>[

The same is tr&e for unpolarized light

Short interaction time: If the atoms are
“unpolarized”(random m-level populations)
and the interaction too brief to change this,
the atoms behave as an ensemble with
different oscillator strengths

Optical pumping: In dilute gases without
collisions, atoms can be “pumped” into a
single, pure state, e. g., 1Sy, (F=1 ,Me=1) .

If driven with &4 1 polarlzatlon this will

realize a true 2-level system, as 2¢;, (F'=2,m}=2)
can only decay back to 15, (F=1,m.=+)

If more than one frequency or polarization is
Present, one can often drive Raman transitions
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Raman Coupling in 3-Level Systems
Consider an atom with this 3-level structure

electronic

% [2 > € cxcited state

[\

((k),Xﬂ ((A)'H) X}) é (<O here)

AL N

112 12> 1

Wo

For simplicity we set E,=E, (no loss of generality)

{ at o, coupling (17,12 w/Rabi freq. X,
Fields . .
atw+ §, coupling (25 (1> w/Rabi freq. ‘7(,~
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Raman Coupling in 3-Level Systems
Consider an atom with this 3-level structure

electronic

% [1D € excited state
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(wlx‘l) (w+6'){2) é ((O here)

/ N

11 13> 1
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For simplicity we set E,=£, (no loss of generality)

at o, coupling (17,12 w/Rabi freq. X,
Fields . .
atw+ §, coupling 135,11 w/Rabi freq. ‘7(,~
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The Hamiltonian for this systemis ( Xy X, real )
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Setting [2(t)) =0, (£)1) +Qy (£)[2 + Qg ) (2D
we get a S.E.
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Raman Coupling in 3-level Atoms e

Rotating Wave Approximation.
ya b 'wt ' 10
Let 01- 1) Ql- lQ, &" 36

Plug into in S.E. @
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Drop non-resonant terms, set ()~ W = A

-
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Rotating Wave Approximation.

Let a,=A4,, a,=b,e7'%%, o, =b,e'%t

J

PlugintoinS.E. I
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Drop non-resonant terms, set (- W = A
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This S.E. has no explicit time dependence
Easy to solve numerically...

Now assume that 45, (t=0) = 0 B the atomisin
the electronic ground state at =0 when the
fields turn on.

® we can solve eq. for £, (1) :
Lyt =ik -ig (), qlt)-(Xig + Kopy )

~at(t
L, )= - . J ik

0
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Reminder: Integration by parts
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