A cooks recipe – interpretations of §

Step 1 Add N atoms in state $|\Psi_A\rangle$ to bucket A Add N atoms in state $|\Psi_a\rangle$ to bucket B

We now have two ensembles, each of which consist of **N** atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.

Pick an atom from C Which is Correct? The atom is in a pure state but we don't know if it is in $|\Psi_A\rangle$ or $|\Psi_a\rangle$

The atom is in a mixed state

$$9 = \frac{1}{2} 14_A \times 4_A 1 + \frac{1}{2} 14_C \times 4_C 1$$

There is no difference!

The two interpretations lead to identical predictions for any measurement we can do on atoms from C

Quantum Mechanics:

If two descriptions lead to identical predictions for observable outcomes then they are identical

Loosely, (i) is a frequentist view

(ii) is a Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge (subjective)

There is no difference!

The two interpretations lead to identical predictions for any measurement we can do on atoms from C

Quantum Mechanics:

If two descriptions lead to identical predictions for observable outcomes then they are <u>identical</u>

Loosely, (i) is a frequentist view

(ii) is a Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge (subjective)

(*) Note: The notation $\langle \cdot \rangle_{k}$ is used on the following pages to indicate an ensemble average.

More about the Density Matrix
In the orthonormal basis $\{|\mu_j\rangle\}$ the elements of a pure density matrix are $\langle \mu_n | g | \mu_p \rangle = c_n c_p^*$. For a mixed state, $g = \sum_{k} \gamma_k c_k c_k$, we have $c_{np} = \sum_{k} \gamma_k c_n^{(k)} (c_p^{(k)})^*$. Here and elsewhere, the index & indicates members of the ensemble that are distinct due to, e. g., different preparation or history.

Single system: Prob of finding state $|\mathcal{A}_n\rangle$ Ensemble: $|\mathcal{A}_n\rangle$ occurs with freq. $|\mathcal{C}_n\rangle$

Coherences: $S_{NP} = \sum_{k} \gamma_{k} C_{N}^{(k)} (C_{P}^{(k)})^{*}$

Note: Defining $C_{\mathbf{q}} = |C_{\mathbf{q}}|e^{i\Theta_{\mathbf{q}}}$ we have $(*) \langle C_{\mathbf{n}}^{(k)} C_{\mathbf{n}}^{(k)*} \rangle = \langle |C_{\mathbf{n}}^{(k)}||C_{\mathbf{n}}^{(k)}||e^{i(\Theta_{\mathbf{n}}^{(k)} - \Theta_{\mathbf{n}}^{(k)})} \rangle \langle \langle |C_{\mathbf{n}}^{(k)}||C_{\mathbf{n}}^{(k)}|\rangle_{\mathbf{k}}$

It follows that $S_{nn}S_{nn} \leq S_{nn}S_{nn} \leq S_{$

Example: 2-level atom w/random perturbations

The ensemble average

is reduced by the randomly fluctuating phase

Dipole Radiation:

For an ensemble of pure states w/different Θ

Oscillating dipole w/phase that varies between atoms with different perturbation history

Time Evolution of the Density Matrix

Challenge: We need "equations of motion" that combine the Schrödinger Equation with the effect of processes that can change Tr g2 (measure of purity)

Approach: We do not have time for a rigorous derivation, so will rely on plausible arguments to justify the equations

Schrödinger Evolution: In general, we have

$$\dot{g} = -\frac{1}{4}[H_1g] = -\frac{1}{4}(Hg - gH)$$

matrix elements

2-Level Atom
$$\Rightarrow$$

$$\begin{cases} 2 \text{ populations} \\ 2 \text{ coherences} \end{cases}$$

Time Evolution of the Density Matrix

Challenge: We need "equations of motion" that

combine the Schrödinger Equation with the effect of processes that can change Tr g^2 (measure of purity)

Approach: We do not have time for a rigorous

derivation, so will rely on plausible arguments to justify the equations

Schrödinger Evolution: In general, we have

$$\dot{g} = -\frac{i}{\hbar} [H,g] = -\frac{i}{\hbar} (Hg - gH)$$

matrix elements

2-Level Atom
$$\Rightarrow$$

$$\begin{cases} 2 \text{ populations} \\ 2 \text{ coherences} \end{cases}$$

Consider the 2-Level Rabi problem with

$$H = H_0 + V & V_{12} = \frac{1}{2} k X_{12} e^{-i\omega t} + c.c.$$

$$H = k \left(\begin{array}{c} 0 & \frac{1}{2} (X_{12} e^{-i\omega t} + X_{12}^{*} e^{-i\omega t}) \\ \frac{1}{2} (X_{21} e^{-i\omega t} + X_{21}^{*} e^{-i\omega t}) & \Delta \end{array} \right)$$

Set
$$\chi_{12} = \chi_1 \chi_2 = \chi^*$$
, substitute $\mathcal{G}_{12} = \widetilde{\mathcal{G}}_{12} e^{i\omega t}$
slow variable (Pure state $\Rightarrow \mathcal{G}_{12} = \mathcal{G}_1 \mathcal{G}_2 = \mathcal{G}_1 \mathcal{G}_2 e^{-i\omega t}$)

Substitute in (*) (LHS of the page), make RWA, and drop ~ Homework Set 3 Assignment

$$\dot{S}_{11} = -\frac{i}{2} \left(\times S_{12} - \times^* S_{21} \right)$$
Rabi Eqs. for pure and mixed states
$$\dot{S}_{12} = \frac{i}{2} \left(\times S_{12} - \times^* S_{21} \right)$$

$$\dot{S}_{12} = -i \Delta S_{12} + i \frac{X^*}{2} \left(S_{22} - S_{11} \right) = \dot{S}_{21}^*$$

Consider the 2-Level Rabi problem with

$$H = H_0 + V & V_{12} = \frac{1}{2} h X_{12} e^{-i\omega t} + c.c.$$

$$H = \hbar \left(\begin{array}{c} O & \frac{1}{2} (X_{12} e^{i\omega t} + X_{12}^{t} e^{i\omega t}) \\ \frac{1}{2} (X_{21} e^{-i\omega t} + X_{21}^{t} e^{i\omega t}) & \Delta \end{array} \right)$$

Set
$$X_{12} = X_1 X_2 = X^4$$
, substitute $G_{12} = \widetilde{G}_{12} e^{i\omega t}$
slow variable

(Pure state $\Rightarrow G_{12} = Q_1 Q_2^* = C_1 (c_2 e^{-i\omega t})$)

Substitute in (*), make RWA, and drop ~

$$\dot{\mathcal{G}}_{11} = -\frac{1}{2} \left(\chi \mathcal{G}_{12} - \chi^* \mathcal{G}_{21} \right)$$
Rabi Eqs. for pure and mixed states
$$\dot{\mathcal{G}}_{12} = \frac{1}{2} \left(\chi \mathcal{G}_{11} - \chi^* \mathcal{G}_{21} \right)$$

$$\dot{\mathcal{G}}_{12} = -i \Delta \mathcal{G}_{12} + i \frac{\chi^+}{2} (\mathcal{G}_{22} - \mathcal{G}_{11}) = \dot{\mathcal{G}}_{21}^*$$

Next: Non-Hamiltonian evolution

Types of events

- (i) Elastic collisions: No change in energy
- (ii) Inelastic collisions: Atom loss
- (iii) Spontaneous decay: Transition (2) → 11>

Simple Model of Elastic Collisions

Two atoms near energy levels shift, free evol. of g_{i2} changed

Paradigm for perturbations that do not lead to net change in energy

Next: Non-Hamiltonian evolution

Types of events

- (i) Elastic collisions: No change in energy
- (ii) Inelastic collisions: Atom loss
- (iii) Spontaneous decay: Transition (2>→ 11>

Simple Model of Elastic Collisions

Two atoms near each other

energy levels shift, free evol. of g_{12} changed

Paradigm for perturbations that do not lead to net change in energy

Evolution of coherence (fast variables)

$$\frac{\dot{g}_{12}}{g_{12}} = -i \left[\omega_{1} + \delta \omega(\xi) \right] g_{12} \qquad \begin{array}{c} \text{collisional history} \\ \text{history} \\ \Rightarrow g_{12}(\xi) = g_{1}(0) e^{-i\omega_{1} \xi} e^{-i \int_{0}^{\xi} d\xi' \, d\omega(\xi')}$$

We need the ensemble average of $\mathfrak{G}_{12}(4)$

Assumptions:

- From atom to atom ∂ω(₺) is a
 Gaussian Random Variable
- Averaged over the ensemble $\langle \delta \omega \omega \rangle_{2} = 0$
- Collisions have no memory over time,

Can show that, averaged over time and the ensemble

$$\left\langle e^{-i\int_{0}^{t}dt'\delta\omega(t')}\right\rangle_{R}=e^{-t/T}$$

Evolution of coherence (fast variables)

$$\frac{\dot{g}_{12} = -i \left[\omega_{11} + \delta \omega(t) \right] g_{12}}{\text{history}}$$

$$\Rightarrow g_{12}(t) = g_{12}(0) e^{-i\omega_{11}t} e^{-i \int_{0}^{t} dt' \, d\omega(t')}$$

We need the ensemble average of $\mathfrak{G}_{12}(4)$

Assumptions:

- From atom to atom ∂ผ(₺) is a
 Gaussian Random Variable
- Averaged over the ensemble < δωω) = 0
- Collisions have no memory over time,

Can show that, averaged over time and the ensemble

$$\left\langle e^{-i\int_{0}^{t}dt'\delta\omega(t')}\right\rangle_{\mathbf{R}} = e^{-t/T}$$

It follows that: $g_{12}(4) = g_{42}(0) e^{-i\omega_{21}t} e^{-t/\tau}$

Add this decay to the equation of motion to get

$$\dot{g}_{12} = (\dot{g}_{12})_{S.E.} + (\dot{g}_{12})_{E.C.} = -(i\omega_{21} - 1/\tau)g_{12}$$

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly, this is a steady loss of atoms

This is strange because Trg(t) is not preserved Convenient when working with quantities

It follows that: $g_{12}(4) = g_{12}(0) e^{-i\omega_{21}t} e^{-t/\tau}$

Add this decay to the equation of motion to get

$$\dot{g}_{12} = (\dot{g}_{12})_{S.E.} + (\dot{g}_{12})_{E.C.} = -(i\omega_{21} - 1/\tau)g_{12}$$

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly, this is a steady loss of atoms

This is strange because Trg(t) is not preserved Convenient when working with quantities

Effect on probability amplitudes

Populations are ensemble averages of the type

$$g_{11}(t) = \langle [a_1(t)]^2 \rangle = \langle [a_1(0)]^2 \rangle e^{-\Gamma_1 t}$$

 $g_{12}(t) = \langle [a_2(t)]^2 \rangle = \langle [a_2(0)]^2 \rangle e^{-\Gamma_2 t}$

When the populations decay, the averages of the probability amplitudes must decay accordingly,

$$\langle |a_1(\xi)| \rangle = \langle |a_1(0)| \rangle e^{-\frac{\pi}{2}\xi} + \langle |a_2(\xi)| \rangle = \langle |a_2(\xi)| \rangle e^{-\frac{\pi}{2}\xi} + \langle |a_2(\xi)| \rangle = \langle |a_2(\xi)| \rangle e^{-\frac{\pi}{2}\xi} + \langle |a_2(\xi)| \rangle = \langle |a_2(\xi)| \rangle e^{-\frac{\pi}{2}\xi} + \langle |a_2(\xi)| \rangle = \langle |a_2(\xi)| \rangle e^{-\frac{\pi}{2}\xi} + \langle |a_2(\xi)| \rangle e^{-\frac{\pi}{2}\xi}$$

Thus, for the coherences

$$911(t)=\langle a_1(t)a_2(t)^*\rangle=\langle a_1(0)a_2(0)^*\rangle e^{-i\sqrt{2}t}e^{-i\sqrt{2}t}$$

This gives us

elastic inelastic

$$g_{12} = (g_{22})_{g.E.} - 1/\tau g_{12} - \frac{\Gamma_1 + \Gamma_2}{2} g_{12}$$

Effect on probability amplitudes

Populations are ensemble averages of the type

$$g_{11}(t) = \langle [a_1(t)]^2 \rangle = \langle [a_1(0)]^2 \rangle e^{-\int_1^2 t}$$

 $g_{12}(t) = \langle [a_2(t)]^2 \rangle = \langle [a_2(0)]^2 \rangle e^{-\int_2^2 t}$

When the populations decay, the averages of the probability amplitudes must decay accordingly,

$$\langle |a_1(\xi)| \rangle = \langle |a_1(0)| \rangle e^{-\frac{\pi}{2} \frac{1}{2} \xi}$$

 $\langle |a_2(\xi)| \rangle = \langle |a_2(\xi)| \rangle e^{-\frac{\pi}{2} \frac{1}{2} \xi}$

Thus, for the coherences

$$911(t)=\langle a_1(t)a_2(t)^*\rangle=\langle a_1(0)a_2(0)^*\rangle e^{-i\sqrt{2}t}e^{-i\sqrt{2}t}$$

This gives us

elastic inelastic $\mathcal{G}_{12} = (\mathcal{G}_{22})_{3.6} - \frac{1}{T} \mathcal{G}_{12} - \frac{\Gamma_1 + \Gamma_2}{2} \mathcal{G}_{12}$

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives the evolution

Step (2) She gives atom B to Bob and asks him to measure if it is in [1] or |2] and keep the result secret forever.

Result: Alice now has a 2-level atom in the state

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives the evolution

Step (2) She gives atom B to Bob and asks him to measure if it is in [1] or |2] and keep the result secret forever.

Result: Alice now has a 2-level atom in the state

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field

Final OPTI 544 Lectures:

$$|\mathcal{L}(0)\rangle = |2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \text{ evolution over time } t$$

$$|\mathcal{L}(t)\rangle = C_{2,0}(t)|2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \sum_{k} C_{1,1k}(t)|1\rangle_{A}|n_{k}=1\rangle_{QEF}$$

$$\text{photon "in the atom"} \qquad \text{photon in field mode } k$$

Cannot recover info in continuum of field modes

Probability $|C_{2,0}(\xi)|^2$ of having no decay

Probability $\sum_{k} |C_{1,1,k}(\xi)|^2$ of having decay

No Coherence established between states $|1\rangle$, $|2\rangle$

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field

Final OPTI 544 Lectures:

$$|\mathcal{L}(0)\rangle = |2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \text{ evolution over time } t$$

$$|\mathcal{L}(t)\rangle = C_{2,0}(t)|2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \sum_{k} C_{1,1k}(t)|1\rangle_{A}|v_{k}=1\rangle_{QEF}$$

$$\text{photon "in the atom"} \qquad \text{photon in field mode } k$$

Cannot recover info in continuum of field modes

Probability $|C_{2,0}(\xi)|^2$ of having no decay Probability $\sum_{\ell} |C_{1,1,\ell}(\xi)|^2$ of having decay

No Coherence established between states 117, 127

Conclusion: Decay moves population $|2\rangle \Rightarrow |1\rangle$ at rate A_{21} , damps coherence at rate $A_{21}/2$

Putting it all together:

$$\dot{g}_{11} = -\Gamma_{1} g_{11} + A_{21} g_{22} - \frac{1}{2} (\chi g_{12} - \chi^{*} g_{21})$$

$$\dot{g}_{22} = -\Gamma_{2} g_{22} - A_{21} g_{22} + \frac{1}{2} (\chi g_{12} - \chi^{*} g_{21})$$

$$\dot{g}_{12} = (i\Delta - \beta) g_{12} + \frac{i\chi^{*}}{2} (g_{22} - g_{11}) = g_{21}^{*}$$
where $\beta = \frac{1}{\tau} + \frac{A_{21}}{2} + \frac{\Gamma_{1} + \Gamma_{2}}{2}$

These are our desired

Density Matrix Equations of Motion

More about the Density Matrix

Let $|4\rangle = \sum_{i} c_{i} |u_{i}\rangle$, where $\{|u_{i}\rangle\}$ is a basis and the index & labels members of the ensemble

Populations:

(real-valued)

Bayesianist:

Single system: Q_{nn} is prob of observing the state $|\mathcal{M}_n\rangle$

Frequentist:

Ensemble: The state $|u_n\rangle$ occurs with frequency g_n

Coherences:
$$(complex-valued)$$
 $S_{nn} = \langle c_n^{(k)} c_n^{(k)\pi} \rangle_k$, $S_{nn} = S_{nn}^*$

Note: Defining $C_{\underline{a}} = |C_{\underline{a}}| e^{i\theta_{\underline{a}}}$ we have

It follows that
$$S_{nn}S_{nn} \leq S_{nn}S_{nn} \leq S_{$$

Example: 2-level atom w/random perturbations

The ensemble average

is reduced by the randomly fluctuating phase

Dipole Radiation:

$$\langle \hat{\vec{r}} \rangle = \text{Tr} \left[g \hat{\vec{r}} \right] = \text{Tr} \left[\begin{pmatrix} g_{11} & g_{12} \\ g_{11} & g_{22} \end{pmatrix} \begin{pmatrix} O & \vec{r}_{11} \\ \vec{r}_{21} & O \end{pmatrix} \right]$$

$$= g_{12} \vec{r}_{21} + g_{21} \vec{r}_{12} = 2 \text{Re} \left[g_{12} \vec{r}_{21} \right]$$

For an ensemble of pure states w/different 😊

Oscillating dipole w/phase that varies between atoms with different perturbation history

More about the Density Matrix

Let $|4\rangle = \sum_{i} c_{i} |u_{i}\rangle$, where $\{|u_{i}\rangle\}$ is a basis and the index & labels members of the ensemble

Populations:

(real-valued)

Bayesianist:

Single system: Q_{nn} is prob of observing the state $|\mathcal{M}_n\rangle$

Frequentist:

Ensemble: The state $|u_n\rangle$ occurs with frequency g_n

Coherences:
$$(complex-valued)$$
 $S_{nn} = \langle c_n^{(k)} c_n^{(k)\pi} \rangle_k$, $S_{nn} = S_{nn}^*$

Note: Defining $C_{\underline{a}} = |C_{\underline{a}}| e^{i\theta_{\underline{a}}}$ we have

It follows that
$$S_{nn}S_{nn} \leq S_{nn}S_{nn} \leq S_{$$

Example: 2-level atom w/random perturbations

The ensemble average

is reduced by the randomly fluctuating phase

Dipole Radiation:

$$\langle \hat{\vec{r}} \rangle = \text{Tr} \left[g \hat{\vec{r}} \right] = \text{Tr} \left[\begin{pmatrix} g_{11} & g_{12} \\ g_{11} & g_{22} \end{pmatrix} \begin{pmatrix} O & \vec{r}_{11} \\ \vec{r}_{21} & O \end{pmatrix} \right]$$

$$= g_{12} \vec{r}_{21} + g_{21} \vec{r}_{12} = 2 \text{Re} \left[g_{12} \vec{r}_{21} \right]$$

For an ensemble of pure states w/different 😊

Oscillating dipole w/phase that varies between atoms with different perturbation history

Example: 2-level atom w/random perturbations

The ensemble average

is reduced by the randomly fluctuating phase

Dipole Radiation:

For an ensemble of pure states w/different Θ

Oscillating dipole w/phase that varies between atoms with different perturbation history

Time Evolution of the Density Matrix

Challenge: We need "equations of motion" that combine the Schrödinger Equation with the effect of processes that can change Tr g2 (measure of purity)

Approach: We do not have time for a rigorous derivation, so will rely on plausible arguments to justify the equations

Schrödinger Evolution: In general, we have

$$\dot{g} = -\frac{1}{4}[H_1g] = -\frac{1}{4}(Hg - gH)$$

matrix elements

2-Level Atom
$$\Rightarrow$$

$$\begin{cases} 2 \text{ populations} \\ 2 \text{ coherences} \end{cases}$$

Time Evolution of the Density Matrix

Challenge: We need "equations of motion" that combine the Schrödinger Equation with the effect of processes that can change Tr g2 (measure of purity)

Approach: We do not have time for a rigorous derivation, so will rely on plausible arguments to justify the equations

Schrödinger Evolution: In general, we have

matrix elements

2-Level Atom
$$\Rightarrow$$

$$\begin{cases} 2 \text{ populations} \\ 2 \text{ coherences} \end{cases}$$

Consider the 2-Level Rabi problem with

$$H = H_0 + V & V_{12} = \frac{1}{2} k X_{12} e^{-i\omega t} + c.c.$$

$$H = h \left(\begin{array}{c} 0 & \frac{1}{2} (X_{12} e^{-i\omega t} + X_{12}^{*} e^{-i\omega t}) \\ \frac{1}{2} (X_{21} e^{-i\omega t} + X_{21}^{*} e^{-i\omega t}) & \Delta \end{array} \right)$$

Set
$$\chi_{12} = \chi_1 \chi_2 = \chi^*$$
, substitute $\mathcal{G}_{12} = \widetilde{\mathcal{G}}_{12} e^{i\omega t}$
slow variable (Pure state $\Rightarrow \mathcal{G}_{12} = \mathcal{G}_1 \mathcal{G}_2 = \mathcal{G}_1 \mathcal{G}_2 e^{-i\omega t}$)

Substitute in (*) (LHS of the page), make RWA, and drop ~

$$\dot{g}_{11} = -\frac{1}{2} \left(\times g_{12} - \times^* g_{21} \right)$$
Rabi Eqs. for pure and mixed states
$$\dot{g}_{12} = \frac{1}{2} \left(\times g_{12} - \times^* g_{21} \right)$$

$$\dot{g}_{12} = -i \Delta g_{12} + i \frac{\chi^*}{2} \left(g_{22} - g_{11} \right) = \dot{g}_{21}^*$$

Consider the 2-Level Rabi problem with

$$H = H_0 + V & V_{12} = \frac{1}{2} h X_{12} e^{-i\omega t} + c.c.$$

$$H = h \begin{pmatrix} 0 & \frac{1}{2} (X_{12} e^{i\omega t} + X_{12}^{t} e^{i\omega t}) \\ \frac{1}{2} (X_{21} e^{-i\omega t} + X_{21}^{t} e^{i\omega t}) & \Delta \end{pmatrix}$$

Set
$$X_{12} = X_1 X_2 = X^*$$
, substitute $G_{12} = \widetilde{G}_{12} e^{i\omega t}$
slow variable

(Pure state $\Rightarrow G_{12} = G_1 G_2^* = C_1 (c_2 e^{-i\omega t})$)

Substitute in (*), make RWA, and drop ~

$$\dot{g}_{11} = -\frac{i}{2} \left(\chi g_{12} - \chi^* g_{21} \right)$$
Rabi Eqs. for pure and mixed states
$$\dot{g}_{12} = \frac{i}{2} \left(\chi g_{12} - \chi^* g_{21} \right)$$

$$\dot{g}_{12} = -i \Delta g_{12} + i \frac{\chi^+}{2} \left(g_{22} - g_{11} \right) = \dot{g}_{21}^*$$

Next: Non-Hamiltonian evolution

Types of events

- (i) Elastic collisions: No change in energy
- (ii) Inelastic collisions: Atom loss
- (iii) Spontaneous decay: Transition (2) → 11>

Simple Model of Elastic Collisions

Two atoms near energy levels shift, free evol. of g_{12} changed

Paradigm for perturbations that do not lead to net change in energy

Next: Non-Hamiltonian evolution

Types of events

- (i) Elastic collisions: No change in energy
- (ii) Inelastic collisions: Atom loss
- (iii) Spontaneous decay: Transition (2>→ 11>

Simple Model of Elastic Collisions

Two atoms near each other

energy levels shift, free evol. of g_{12} changed

Paradigm for perturbations that do not lead to net change in energy

Evolution of coherence (fast variables)

$$\dot{S}_{12} = -i \left[\omega_{11} + \delta \omega(\xi) \right] \mathcal{G}_{12}$$

$$\Rightarrow \mathcal{G}_{12}(\xi) = \mathcal{G}_{12}(0) e^{-i\omega_{11} \xi} e^{-i \int_{0}^{\xi} d\xi' \, d\omega(\xi')}$$

We need the ensemble average of $\mathfrak{G}_{12}(4)$

Assumptions:

- From atom to atom ∂ω(₺) is a
 Gaussian Random Variable
- Averaged over the ensemble $\langle \delta \omega \omega \rangle_{2} = 0$
- Collisions have no memory over time,

Can show that, averaged over time and the ensemble

$$\left\langle e^{-i\int_{0}^{t}dt'\delta\omega(t')}\right\rangle_{\Omega}=e^{-t/T}$$

Evolution of coherence (fast variables)

$$S_{12} = -i \left[\omega_{11} + \delta \omega(\xi) \right] S_{12}$$

$$\Rightarrow S_{12}(\xi) = S_{13}(0) e^{-i\omega_{11} \xi} e^{-i \int_{0}^{\xi} d\xi' \, d\omega(\xi')}$$

We need the ensemble average of $\mathfrak{G}_{12}(4)$

Assumptions:

- From atom to atom ∂ผ(₺) is a
 Gaussian Random Variable
- Averaged over the ensemble < δωω) = 0
- Collisions have no memory over time,

Can show that, averaged over time and the ensemble

$$\left\langle e^{-i\int_{0}^{t}dt'\delta\omega(t')}\right\rangle_{\mathbf{R}} = e^{-t/T}$$

It follows that: $g_{12}(4) = g_{42}(0) e^{-i\omega_{21}t} e^{-t/\tau}$

Add this decay to the equation of motion to get

$$\dot{g}_{12} = (\dot{g}_{12})_{S.E.} + (\dot{g}_{12})_{E.C.} = -(i\omega_{21} - 1/\tau)g_{12}$$

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly, this is a steady loss of atoms

This is strange because Trg(t) is not preserved Convenient when working with quantities

It follows that: $g_{12}(4) = g_{12}(0) e^{-i\omega_{21}t} e^{-t/\tau}$

Add this decay to the equation of motion to get

$$\dot{g}_{12} = (\dot{g}_{12})_{S.E.} + (\dot{g}_{12})_{E.C.} = -(i\omega_{21} - 1/\tau)g_{12}$$

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly, this is a steady loss of atoms

This is strange because Trg(t) is not preserved Convenient when working with quantities

Effect on probability amplitudes

Populations are ensemble averages of the type

$$g_{11}(t) = \langle [a_1(t)]^2 \rangle = \langle [a_1(0)]^2 \rangle e^{-\Gamma_1 t}$$

 $g_{12}(t) = \langle [a_2(t)]^2 \rangle = \langle [a_2(0)]^2 \rangle e^{-\Gamma_2 t}$

When the populations decay, the averages of the probability amplitudes must decay accordingly,

$$\langle |a_1(\xi)| \rangle = \langle |a_1(0)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle = \langle |a_1(\xi)| \rangle e^{-\frac{1}{2}/2} + \langle |a_1(\xi)| \rangle e^{-\frac{$$

Thus, for the coherences

$$911(t)=\langle a_1(t)a_2(t)^*\rangle=\langle a_1(0)a_2(0)^*\rangle e^{-i\sqrt{2}t}e^{-i\sqrt{2}t}$$

This gives us

elastic inelastic

$$g_{12} = (g_{22})_{g.e.} - 1/\tau g_{12} - \frac{\Gamma_1 + \Gamma_2}{2} g_{12}$$

Effect on probability amplitudes

Populations are ensemble averages of the type

$$g_{11}(t) = \langle [a_1(t)]^2 \rangle = \langle [a_1(0)]^2 \rangle e^{-\int_1^2 t}$$

 $g_{12}(t) = \langle [a_2(t)]^2 \rangle = \langle [a_2(0)]^2 \rangle e^{-\int_2^2 t}$

When the populations decay, the averages of the probability amplitudes must decay accordingly,

$$\langle |a_1(\xi)| \rangle = \langle |a_1(0)| \rangle e^{-\frac{\pi}{2} \frac{1}{2} \xi}$$

 $\langle |a_2(\xi)| \rangle = \langle |a_2(\xi)| \rangle e^{-\frac{\pi}{2} \frac{1}{2} \xi}$

Thus, for the coherences

$$911(t)=\langle a_1(t)a_2(t)^*\rangle=\langle a_1(0)a_2(0)^*\rangle e^{-i\sqrt{2}t}e^{-i\sqrt{2}t}$$

This gives us

elastic inelastic $\mathcal{G}_{12} = (\mathcal{G}_{22})_{3.E.} - 1/\mathcal{T} \mathcal{G}_{12} - \frac{\Gamma_1 + \Gamma_2}{2} \mathcal{G}_{12}$

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives the evolution

Step (2) She gives atom B to Bob and asks him to measure if it is in [1] or |2] and keep the result secret forever.

Result: Alice now has a 2-level atom in the state

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives the evolution

Step (2) She gives atom B to Bob and asks him to measure if it is in [1] or |2] and keep the result secret forever.

Result: Alice now has a 2-level atom in the state

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field

Final OPTI 544 Lectures:

$$|\mathcal{L}(0)\rangle = |2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \text{ evolution over time } t$$

$$|\mathcal{L}(t)\rangle = C_{2,0}(t)|2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \sum_{k} C_{1,1k}(t)|1\rangle_{A}|n_{k}=1\rangle_{QEF}$$

$$\text{photon "in the atom"} \qquad \text{photon in field mode } k$$

Cannot recover info in continuum of field modes

Probability $|C_{2,0}(\xi)|^2$ of having no decay

Probability $\sum_{k} |C_{1,1k}(\xi)|^2$ of having decay

No Coherence established between states $|1\rangle$, $|2\rangle$

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field

Final OPTI 544 Lectures:

$$|\mathcal{L}(0)\rangle = |2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \text{ evolution over time } t$$

$$|\mathcal{L}(t)\rangle = C_{2,0}(t)|2\rangle_{A}|\text{Vac}\rangle_{QEF} \Rightarrow \sum_{k} C_{1,1k}(t)|1\rangle_{A}|v_{k}=1\rangle_{QEF}$$

$$\text{photon "in the atom"} \qquad \text{photon in field mode } k$$

Cannot recover info in continuum of field modes

Probability $|C_{2,0}(\xi)|^2$ of having no decay Probability $\sum_{\ell} |C_{1,1,\ell}(\xi)|^2$ of having decay

No Coherence established between states 117,127

Conclusion: Decay moves population $|2\rangle \Rightarrow |1\rangle$ at rate A_{21} , damps coherence at rate $A_{21}/2$

Putting it all together:

$$\dot{g}_{11} = -\Gamma_{1} g_{11} + A_{21} g_{22} - \frac{1}{2} (Xg_{12} - X^{*}g_{21})$$

$$\dot{g}_{22} = -\Gamma_{2} g_{22} - A_{21} g_{22} + \frac{1}{2} (Xg_{12} - X^{*}g_{21})$$

$$\dot{g}_{12} = (i\Delta - \beta) g_{12} + \frac{iX^{*}}{2} (g_{22} - g_{11}) = g_{21}^{*}$$
where $\beta = \frac{1}{T} + \frac{A_{21}}{2} + \frac{\Gamma_{1} + \Gamma_{2}}{2}$

These are our desired

Density Matrix Equations of Motion