Density Matrix Description of 2-Level Atoms

A cooks recipe — interpretations of ©

Step 1 Add N atoms in state [, to bucket A
Add N atoms in state |, to bucket B

-

We now have two ensembles, each of which
consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.
N x “Lg> N x “‘L8>

N = [y, N x 1>

The atom is in a pure state but we

Pick an atom ’ ifitisi
£an at don’t know if it is in [uA> or [\,

Which is The atom is in a mixed state
Correct? [ [
9 = 3 H{AX"['al +5-L“+GXZECG[

02-25-2025

There is no difference!

The two interpretations lead to identical predictions
for any measurement we can do on atoms from C

Quantum Mechanics:
If two descriptions lead to identical predictions
for observable outcomes then they are identical

Loosely, (i) isa frequentist view

(ii) isa Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge
(subjective)




Density Matrix Description of 2-Level Atoms 02-25:2025

More about the Density Matrix
In the orthonormal basis {""'j>] the elements of
a pure density matrix are {«, [¢|n,) =c"a“; .Fora
mixed state, 9:%@&9& , we have gmp*:%mq(f‘ ()%,
Here and elsewhere, the index & indicates members

There is no difference!

The two interpretations lead to identical predictions
for any measurement we can do on atoms from C

Quantum Mechanics:
If two descriptions lead to identical predictions
for observable outcomes then they are identical different preparation or history.

of the ensemble that are distinct due to, e. g.,

Populations:

Loosely, (i) isa frequentist view (real-valued) San Em‘ " Co %lp&l "l

(ii) isa Bayesian view

Single system:  Prob of finding state |4 %
Ensemble: 14 ,% occurs with freq. Q.

Quantum Bayesianism Coherences:

(complex-valued)

(&)Y ¥
iy

Sy W o
gmp &"We n

Quantum States are States of Knowledge :
(subjective) Note: Defining C, = lcqre' .  we have

@) V¥ _ 1 L& A&, HOn 8% ¢ o1 oy (B
(;<) Gy Gy = ICRNC @™ =50 ) I HICE Dy

| It follows that S~ - 9“3‘
* . . . . [ ) P -
(*) Note: The notation .< ?{RIS used on the ?wr\?-pn $ @n8po ® Q- S
following pages to indicate an ensemble Q - Q
with = for pure states ™ ™

average.
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Example: 2-level atom w/random perturbations Time Evolution of the Density Matrix

E a s Challenge: We need “equations of motion” that

12> . —=. 1 Perturbing events cause combine the Schrodinger Equation
random phase shifts 2'® with the effect of processes that can

o> ? > between states. change T € (measure of purity)

> € -V Approach: We do not have time for a rigorous

. derivation, so will rely on plausible

The ensemble average Qm‘l ={Cn Cff e'?)n arguments to justify the equations

is reduced by the randomly fluctuating phase
Schrodinger Evolution: In general, we have

Dipole Radiation: g = —.ef: [H,Q] = —é(Hg—gH)

5 — & o T @u Q| 0 1
>=Trigy] = lr[( o, @ 1\(’& E“)]
HoSw T matrix elements S
= @y 8y fin= 2Re1Cy ] ] 23
Som =& &= (Mot Q1™ G )
For an ensemble of pure states w/different © ' e
29

<> =< Relg® A, !
1 < \ n:f '/(l l7>& 2-Level Atom » { 2 populations Sis ( ') 8y,

Oscillating dipole w/phase that varies between 2 coherences
atoms with different perturbation history e,
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Time Evolution of the Density Matrix

Challenge: We need “equations of motion” that
combine the Schrodinger Equation
with the effect of processes that can
change T €% (measure of purity)

Approach: We do not have time for a rigorous
derivation, so will rely on plausible
arguments to justify the equations

Schrodinger Evolution: In general, we have

g =-+[Hg] =-1(Hg-gH)

matrix elements —J—
- i
gnm - ERZ (H"& 9Qm QM& H&m

=1y

(%)
)

€29

2 populations
2-Level Atom { Pop Qs ( }9:.,
2 coherences

€

02-25-2025

Consider the 2-Level Rabi problem with
- ! 1
H=HtV & V= E&XILZ “Tree

\ - :
o i (X,le:'ut'f )q:elut J

H=A

(X, &b xfe ™) A

£ . _ o~
Set ‘)Cm .—:X' X, = X", substitute Q, = g, ' £
A slow variable
* ~
(Pure state ® Q,,= 4,4, =C,(¢c,& “*))

Substitute in (%) (LHS of the page), make RWA,
and drop ¥ Homework Set 3 Assignment

Rabi Eqgs. for

&= ‘,"{(X@H."X*QNB pure and

. : . mixed states
S = +(%9,-X [

rY . . * [ 4
Q. =14 Gy 1 fzj‘ (8w-¢,) =§9j
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Consider the 2-Level Rabi problem with

H=H,+V & vtfi—&x”_e‘"'“* +C.C.

‘-V
7% o i‘(xue:aua_r )(':elue)
H = \ ° :
3 (Xe™ e x5e™t) A

Set X,y =X, X,= X7, substitute Q,, = g, et

/’ slow variable
% -~
(Pure state ® Q,=0,0, =C, (¢, & )

Substitute in (%), make RWA, and drop ~

g
‘ ) Rabi Eqgs. f
Sn="1 ( XQy - X*QMB ?oulreqasndor
o N ,‘4
9}_&, = i(x9|;PX g}_r)

mixed states
° . .X'(‘ ot
Q=1 +iy (&y-21) =Sy

Next: Non-Hamiltonian evolution

Types of events

(i)  Elastic collisions: No change in energy

(ii)  Inelastic collisions: Atom loss

(ili) Spontaneous decay: Transition [3) <> !¢

Simple Model of Elastic Collisions

Two atoms near N energy levels shift,
each other free evol. of @, changed

By — . 1
R

Wy Wytd by

IR T S I

14> ~—" 1

Paradigm for perturbations that do
not lead to net change in energy

5



Begin 02-15-2024

Next: Non-Hamiltonian evolution

Density Matrix Description of 2-Level Atoms

Types of events

(i)  Elastic collisions: No change in energy

(ii) Inelastic collisions: Atom loss

(ili) Spontaneous decay: Transition [2) <> !¢

Simple Model of Elastic Collisions

Two atoms near N energy levels shift,
each other free evol. of @, changed

= 199

1272 —. 22
T R
w r"'b 6"11

i [
> —

> &

Paradigm for perturbations that do
not lead to net change in energy

02-25-2025

Evolution of coherence (fast variables)

. < collisional
gl‘). = =1 [Nu + Bc\) ('E\’] ng_ history

v
> Qylt)= gzco\g'%ﬁ ( cte! o0 )

We need the ensemble average of @, (+)

Assumptions:

—  From atom to atom Ju(+) isa
Gaussian Random Variable

— Averaged over the ensemble <5CJU§)%=O

— Collisions have no memory over time,

J :-2- ¢!
@wméwcuzc V.Em £)
‘

Can show that
’ dt’ el _
averaged over time < f 3> T
and the ensemble &



Density Matrix Description of 2-Level Atoms

Evolution of coherence (fast variables)

collisional

gl?. = "“\ [Nu + 50\) “‘.\‘] glz_ history

€
=> Q) =Q,0\e Wyt C,q"-’ e

We need the ensemble average of @), (£)

Assumptions:

—  From atom to atom Jw(t) isa
Gaussian Random Variable

— Averaged over the ensemble 45&1(:‘»'}7&:0

— Collisions have no memory over time,

@wtﬂéw@')};%é(é-e}

-

Can show that, _
averaged over time <2_
and the ensemble

: f:df' 5th‘3> _ ST
&

02-25-2025

It follows that: g, (€)= ©, ) ™™ e T

Add this decay to the equation of motion to get

Gy = (Qlgp t ('éu)e.c_: - (i, - "T)g,

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly,
this is a steady loss of atoms

~— .
Cu=1(8Jse — 1] &, >fy

Qyy = (én)s.e. —M1Q)y  m—11y

This is strange because Tr @(t) is not preserved

Convenient when working with quantities

N (’ﬁ> o N (/ﬁ::.‘gu f /ﬁ‘ll@lﬂ
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It follows that: 9;,_&4)- 9"_(3 "w?.rt '-'é/f

Add this decay to the equation of motion to get

Qi = (-‘ém)s.e, t ('§u>5.c,: - (i, - "T)g,

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly,
this is a steady loss of atoms

- e (1.7

Qu=18)e — 17 & ¥>E

Qo= (G ) ~1Qy ——it?

This is strange because Tr @(t) is not preserved

Convenient when working with quantities

N<AT> o N ({18, * Tai€i)

02-25-2025

Effect on probability amplitudes
Populations are ensemble averages of the type
&, [4) = <10,60%> =< g lorye T
Oy, 1) = 18,1V = L[y (0 F

When the populations decay, the averages of the
probability amplitudes must decay accordingly,

{a,ey=d0,@re 4t
Logey=(aane e

Thus, for the coherences

S’l&('é'\ {0 (.'(:\al({\*> <a1 (o‘)al(o)i.?e [! - 2/—{,—
This gives us elastic inelastic
Y |
f7+h
?rs." (912\3 a. /f ,.__’: N
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Effect on probability amplitudes
Populations are ensemble averages of the type

g, ) = <1a,06V*> :({0,1[0)[1>Z~E'£

Quy 1) = 18, ()% = L[ay (0D F

When the populations decay, the averages of the
probability amplitudes must decay accordingly,

{a,16]y=<10, > 2t
Logly=a,ane 4T

Thus, for the coherences

This gives us elastic inelastic
g \
N +P9_
Qrs." [912\3 e. e O~ 3 S

02-25-2025

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

[, ©3(=

atom-field
interaction

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives
the evolution

19,1195 == @, 115,119 + 4, 125,125,

Step (2) She gives atom B to Bob and asks him to
measure if it is in (17, or 125, and keep
the result secret forever.

Result: Alice now has a 2-level atom in the state

9= (0,12 112,4<4]+ [0y *1255,<2
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Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

Ory(=0)

atom-field
interaction

125
Ay
117

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives
the evolution

1194117 == 0y 11D, 1175+ 4, [19, 125,
Step (2) She gives atom B to Bob and asks him to

measure if it is in (Oeor l2>13 and keep
the result secret forever.

Result: Alice now has a 2-level atom in the state

§= (0,12 112,,<2]+ [0y H123g,<2

02-25-2025

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

Oy(=0)

atom-field
interaction

12>
Ay,
117

Final OPTI 544 Lectures:

[ (0)>=(3 Ve pe,

[EL)=C, ) ILY, V0C Der B D C, oV, =D
A I A

photon in field mode &

» evolution over time ¢

photon “in the atom”

Cannot recover info in continuum of field modes

P

Probability |C, o (£)|* of having no decay
Probability > Ic, 1, (+)I* of having decay
%

No Coherence established between states [17,[27

10




Density Matrix Description of 2-Level Atoms 02-25:2025

Spontaneous Decay Conclusion: Decay moves population [27 <> [1D
This process occurs due to interaction between the at rate A,/ , damps coherence at rate A,,/2
Atom and the Quantized Electromagnetic Field w-w
129 . .
[ O3() | [Tk
[
® o
T = - A?. = *
117 atom-field 912. "§:’ Qli 92-1
interaction

Final OPTI 544 Lectures: Putting it all together:

[‘lF (0)>=3 ')A IVae )& EF » evolution over time ¢
» = Q +A ~L[X®,, -X*

) )=C, ,10) riga Vo Yggr B D_Cp g1, 0= e Q=1 Gyt AuGy—1 (X2, -X"gy, )

e A o .
photon “in the atom” photon in field mode & Qu = rg_ 99_9_"/'\3_, @9_2 S -;—_ ( X ?l& - X *g!.l >
o - . s XX‘ 8 H
Cannot recover info in continuum of field modes Qi 'CIA-F’) St 'II‘ (6n-2u)=%y
where /3:%_+§£’+r%¥2—
Probability |C; o (£)|* of having no decay

Probability Z’Cq,u(‘b”z of having decay
%

. Density Matrix
These are our desired . .
No Coherence established between states |17,[27 Equations of Motion

11
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More about the Density Matrix
Let[%) =5 ¢;1m;> , where {|w;7] is a basis and

3
the index £ labels members of the ensemble

Populations:

(real-valued)

(A
Qnn= < Clm) C&.Qx?&:- <|C§mlz>&

Bayesianist:
Single system: Q- is prob of observing the state 14,

Frequentist:
Ensemble: The state |4, occurs with frequency G

Coherences:

— / ~ll) (R _ OX
gnil"<cv, Cf‘ > ’ ?.(M"' g."m

(complex-valued)

Note: Defining CQ."' lcq_re_ieﬁ we have

bl _ mll)
N B I ER iR PN A TN

It follows that Qe - 9;43\
CopSns SmSpg Q= | 1 o

with = for pure states Gn *°° %

02-25-2025

Example: 2-level atom w/random perturbations

E? >
12> . —=. 1 Perturbing events cause
random phase shifts '€
1Y W 11> between states.
>t P

The ensemble average Q,,‘. ={Cn C: e'(?)ﬂ

is reduced by the randomly fluctuating phase

Dipole Radiation: _
Go=Tried]=T[( o ol ™))

= Qu:(\\u* g.u/f\u" lﬂet‘gnmf‘v.l'_'

For an ensemble of pure states w/different ©
A ) —
> = <R‘3Y§t(a.j "(‘u7>&

Oscillating dipole w/phase that varies between
atoms with different perturbation history

12
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More about the Density Matrix
Let[%) =5 ¢;1m;> , where {|w;7] is a basis and

3
the index £ labels members of the ensemble

Populations:

(real-valued)

(A
Qnn= < Clm) C&.Qx?&:- <|C§mlz>&

Bayesianist:
Single system: Q- is prob of observing the state 14,

Frequentist:
Ensemble: The state |4, occurs with frequency G

Coherences:

— / ~ll) (R _ OX
gnil"<cv, Cf‘ > ’ ?.(M"' g."m

(complex-valued)

Note: Defining CQ."' lcq_re_ieﬁ we have

bl _ mll)
N B I ER iR PN A TN

It follows that Qe - 9;43\
CopSns SmSpg Q= | 1 o

with = for pure states Gn *°° %

02-25-2025

Example: 2-level atom w/random perturbations

E? >
12> . —=. 1 Perturbing events cause
random phase shifts '€
1Y W 11> between states.
>t P

The ensemble average Q,,‘. ={Cn C: e'(?)ﬂ

is reduced by the randomly fluctuating phase

Dipole Radiation: _
Go=Tried]=T[( o ol ™))

= Qu:(\\u* g.u/f\u" lﬂet‘gnmf‘v.l'_'

For an ensemble of pure states w/different ©
A ) —
> = <R‘3Y§t(a.j "(‘u7>&

Oscillating dipole w/phase that varies between
atoms with different perturbation history

13
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Example: 2-level atom w/random perturbations Time Evolution of the Density Matrix

E a s Challenge: We need “equations of motion” that

12> . —=. 1 Perturbing events cause combine the Schrodinger Equation
random phase shifts 2'® with the effect of processes that can

o> ? > between states. change T € (measure of purity)

> € -V Approach: We do not have time for a rigorous

. derivation, so will rely on plausible

The ensemble average Qm‘l ={Cn Cff e'?)n arguments to justify the equations

is reduced by the randomly fluctuating phase
Schrodinger Evolution: In general, we have

Dipole Radiation: g = —.ef: [H,Q] = —é(Hg—gH)

5 — & o T @u Q| 0 1
>=Trigy] = lr[( o, @ 1\(’& E“)]
HoSw T matrix elements S
= @y 8y fin= 2Re1Cy ] ] 23
Som =& &= (Mot Q1™ G )
For an ensemble of pure states w/different © ' e
29

<> =< Relg® A, !
1 < \ n:f '/(l l7>& 2-Level Atom » { 2 populations Sis ( ') 8y,

Oscillating dipole w/phase that varies between 2 coherences
atoms with different perturbation history e,

14



Density Matrix Description of 2-Level Atoms

Time Evolution of the Density Matrix
Challenge: We need “equations of motion” that
combine the Schrodinger Equation

with the effect of processes that can
change T €% (measure of purity)

Approach: We do not have time for a rigorous
derivation, so will rely on plausible
arguments to justify the equations

Schrodinger Evolution: In general, we have
& =- i lHg] =-i(ng-gH)
matrix elements ‘-V
- - i
gnm - E (H"’t 9&;-. u& H& \
Sag

2 populations
2-Level Atom { Pop Qs ( }9:.,
2 coherences

(%)

€

02-25-2025

Consider the 2-Level Rabi problem with
H=HotV & Vy=ph,& @ rce

\ - :
o i (X,le:'ut'f )q:elut J

H=A

,l_(x,_,b"""’ X e:wLB A

i~ . - Y 10
Set X,y =X, X,=X", substitute Q, = &, e
A slow variable
*® -~
(Pure state ® Q,=0,0,=C,(¢,& wi))

Substitute in (%) (LHS of the page), make RWA,
and drop ~

Rabi Eqgs. for

&= ‘,"{(X@H."X*QNB pure and

. : . mixed states
S = +(%9,-X [

rY . . * [ 4
Q. =14 Gy 1 fzj‘ (8w-¢,) =§9j

15
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Consider the 2-Level Rabi problem with

H=H+V & \/mz;_—,&xu_a‘"'“* FC.C.

-
7% o i‘(xue:aua_r )(':elue)
H = \ ° :
s (X, &9 xSt A

Set X,y =X, X,= X7, substitute Q,, = g, et

/’ slow variable
% -~
(Pure state ® Q,=0,0, =C, (¢, & )

Substitute in (%), make RWA, and drop ~

g
‘ ) Rabi Eqgs. f
Sn="1 ( XQy - X*QMB ?oulreqasndor
o N ,‘4
9}_&, = i(x9|;PX g}_r)

mixed states
° . .X'(‘ ot
Q=1 +iy (&y-21) =Sy

02-25-2025

Next: Non-Hamiltonian evolution

Types of events

(i)  Elastic collisions: No change in energy

(ii)  Inelastic collisions: Atom loss

(ili) Spontaneous decay: Transition [3) <> !¢

Simple Model of Elastic Collisions

Two atoms near N energy levels shift,

each other free evol. of @, changed
EN ) . — 1
N
Wy Wytd
I N
liy " 11y

Paradigm for perturbations that do
not lead to net change in energy

16



Begin 02-15-2024

Next: Non-Hamiltonian evolution

Density Matrix Description of 2-Level Atoms

Types of events

(i)  Elastic collisions: No change in energy

(ii) Inelastic collisions: Atom loss

(ili) Spontaneous decay: Transition [2) <> !¢

Simple Model of Elastic Collisions

Two atoms near N energy levels shift,
each other free evol. of @, changed

= 199

1272 —. 22
T R
w r"'b 6"11

i [
> —

> &

Paradigm for perturbations that do
not lead to net change in energy

02-25-2025

Evolution of coherence (fast variables)

. < collisional
gl‘). = =1 [Nu + Bc\) ('E\’] ng_ history

v
> Qylt)= gzco\g'%ﬁ ( cte! o0 )

We need the ensemble average of @, (+)

Assumptions:

—  From atom to atom Ju(+) isa
Gaussian Random Variable

— Averaged over the ensemble <5CJU§)%=O

— Collisions have no memory over time,

J :-2- ¢!
@wméwcuzc V.Em £)
‘

Can show that
’ dt’ el _
averaged over time < f 3> T
and the ensemble &

17



Density Matrix Description of 2-Level Atoms

Evolution of coherence (fast variables)

collisional

gl?. = "“\ [Nu + 50\) “‘.\‘] glz_ history

€
=> Q) =Q,0\e Wyt C,q"-’ e

We need the ensemble average of @), (£)

Assumptions:

—  From atom to atom Jw(t) isa
Gaussian Random Variable

— Averaged over the ensemble 45&1(:‘»'}7&:0

— Collisions have no memory over time,

@wtﬂéw@')};%é(é-e}

-

Can show that, _
averaged over time <2_
and the ensemble

: f:df' 5th‘3> _ ST
&

02-25-2025

It follows that: g, (€)= ©, ) ™™ e T

Add this decay to the equation of motion to get

Gy = (Qlgp t ('éu)e.c_: - (i, - "T)g,

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly,
this is a steady loss of atoms

~— .
Cu=1(8Jse — 1] &, >fy

Qyy = (én)s.e. —M1Q)y  m—11y

This is strange because Tr @(t) is not preserved

Convenient when working with quantities

N (’ﬁ> o N (/ﬁ::.‘gu f /ﬁ‘ll@lﬂ

18



Density Matrix Description of 2-Level Atoms

It follows that: 9;,_&4)- 9"_(3 "w?.rt '-'é/f

Add this decay to the equation of motion to get

Qi = (-‘ém)s.e, t ('§u>5.c,: - (i, - "T)g,

Simple Model of Inelastic Collisions

As modeled by, e. g., Milloni & Eberly,
this is a steady loss of atoms

- e (1.7

Qu=18)e — 17 & ¥>E

Qo= (G ) ~1Qy ——it?

This is strange because Tr @(t) is not preserved

Convenient when working with quantities

N<AT> o N ({18, * Tai€i)

02-25-2025

Effect on probability amplitudes
Populations are ensemble averages of the type
&, [4) = <10,60%> =< g lorye T
Oy, 1) = 18,1V = L[y (0 F

When the populations decay, the averages of the
probability amplitudes must decay accordingly,

{a,ey=d0,@re 4t
Logey=(aane e

Thus, for the coherences

S’l&('é'\ {0 (.'(:\al({\*> <a1 (o‘)al(o)i.?e [! - 2/—{,—
This gives us elastic inelastic
Y |
f7+h
?rs." (912\3 a. /f ,.__’: N

19



Density Matrix Description of 2-Level Atoms

Effect on probability amplitudes
Populations are ensemble averages of the type

g, ) = <1a,06V*> :({0,1[0)[1>Z~E'£

Quy 1) = 18, ()% = L[ay (0D F

When the populations decay, the averages of the
probability amplitudes must decay accordingly,

{a,16]y=<10, > 2t
Logly=a,ane 4T

Thus, for the coherences

This gives us elastic inelastic
g \
N +P9_
Qrs." [912\3 e. e O~ 3 S

02-25-2025

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

[, ©3(=

atom-field
interaction

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives
the evolution

19,1195 == @, 115,119 + 4, 125,125,

Step (2) She gives atom B to Bob and asks him to
measure if it is in (17, or 125, and keep
the result secret forever.

Result: Alice now has a 2-level atom in the state

9= (0,12 112,4<4]+ [0y *1255,<2

20



Density Matrix Description of 2-Level Atoms

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

Ory(=0)

atom-field
interaction

125
Ay
117

Warm-up: A Bayesian recipe for Mixed States

Alice has two 2-level atoms in the ground state.

Step (1) She applies a Hamiltonian that drives
the evolution

1194117 == 0y 11D, 1175+ 4, [19, 125,
Step (2) She gives atom B to Bob and asks him to

measure if it is in (Oeor l2>13 and keep
the result secret forever.

Result: Alice now has a 2-level atom in the state

§= (0,12 112,,<2]+ [0y H123g,<2

02-25-2025

Spontaneous Decay

This process occurs due to interaction between the
Atom and the Quantized Electromagnetic Field

Oy(=0)

atom-field
interaction

12>
Ay,
117

Final OPTI 544 Lectures:

[ (0)>=(3 Ve pe,

[EL)=C, ) ILY, V0C Der B D C, oV, =D
A I A

photon in field mode &

» evolution over time ¢

photon “in the atom”

Cannot recover info in continuum of field modes

P

Probability |C, o (£)|* of having no decay
Probability > Ic, 1, (+)I* of having decay
%

No Coherence established between states [17,[27

21
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Spontaneous Decay Conclusion: Decay moves population [27 <> [1D
This process occurs due to interaction between the at rate A,/ , damps coherence at rate A,,/2
Atom and the Quantized Electromagnetic Field w-w
129 . .
[ O3() | [Tk
[
® o
T = - A?. = *
117 atom-field 912. "§:’ Qli 92-1
interaction

Final OPTI 544 Lectures: Putting it all together:

[‘lF (0)>=3 ')A IVae )& EF » evolution over time ¢
» = Q +A ~L[X®,, -X*

) )=C, ,10) riga Vo Yggr B D_Cp g1, 0= e Q=1 Gyt AuGy—1 (X2, -X"gy, )

e A o .
photon “in the atom” photon in field mode & Qu = rg_ 99_9_"/'\3_, @9_2 S -;—_ ( X ?l& - X *g!.l >
o - . s XX‘ 8 H
Cannot recover info in continuum of field modes Qi 'CIA-F’) St 'II‘ (6n-2u)=%y
where /3:%_+§£’+r%¥2—
Probability |C; o (£)|* of having no decay

Probability Z’Cq,u(‘b”z of having decay
%

. Density Matrix
These are our desired . .
No Coherence established between states |17,[27 Equations of Motion
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