Raman Coupling in 3-Level Systems

Consider an atom with this 3-level structure

For simplicity we set $E_1 = E_3$ (no loss of generality)

Fields
$$\begin{cases} \text{at } \omega \text{, coupling } 1 \text{, 12} \text{ w/Rabi freq. } \chi_1 \\ \text{at } \omega + \delta \text{, coupling } 3 \text{, 12} \text{ w/Rabi freq. } \chi_2 \end{cases}$$

The Hamiltonian for this system is (χ_1, χ_2 real)

$$H = \frac{1}{2} \begin{pmatrix} 0 & \chi_1(t) & 0 \\ \chi_1(t) & \omega_0 & \chi_2(t) \\ 0 & \chi_2(t) & 0 \end{pmatrix}$$
where
$$\chi_1(t) = \frac{\chi_1}{2} \left(e^{i\omega t} + e^{-i\omega t} \right)$$

$$\chi_2(t) = \frac{\chi_2}{2} \left(e^{i(\omega + \delta)t} + e^{-i(\omega + \delta)t} \right)$$

Setting $|2+(t)\rangle = a_1(t)|1\rangle + a_2(t)|2\rangle + a_3(t)|3\rangle$ we get a S.E.

$$\hat{a}_{1} = -i \frac{X_{1}}{2} (e^{i\omega t} + e^{-i\omega t}) a_{2}$$

$$\hat{a}_{2} = -i \omega_{0} a_{2} - i \frac{X_{1}}{2} (e^{i\omega t} + e^{-i\omega t}) a_{1}$$

$$-i \frac{X_{2}}{2} (e^{i(\omega t d)t} + e^{-i(\omega t d)t}) a_{3}$$

$$\hat{a}_{3} = -i \frac{X_{2}}{2} (e^{i(\omega t d)t} + e^{-i(\omega t d)t}) a_{2}$$

(5) Finally, the last term $\propto \frac{e^{-i\Delta t}}{\Delta}$ can be ignored because it averages to zero on the timescale on which δ_1 , δ_3 evolve.

Note:

The ground state amplitudes evolve slowly Because $\chi_1/\Delta_1 \chi_2/\Delta \ll 1$, while the excited state amplitude evolves fast and adiabatically follows the instantaneous values of ℓ_1 , ℓ_3

Plug the solution for $\ell_1(\xi)$ into the eqs. for ℓ_1, ℓ_2

$$\dot{b}_{1}(t) = i \frac{\chi_{1}^{2}}{4\Delta} b_{1}(t) + i \frac{\chi_{1} \chi_{2}}{4\Delta} b_{2}(t)$$

$$\dot{b}_{3}(t) = -i \left(\delta - \frac{\chi_{2}^{2}}{4\Delta}\right) b_{3}(t) + i \frac{\chi_{1} \chi_{2}}{4\Delta} b_{1}(t)$$

We simplify by making a final change of variables

$$C_1(t) = b_1(t) e^{-i \frac{\chi_1^2}{4\Delta}t}$$
 $C_3(t) = b_3(t) e^{-i \frac{\chi_1^2}{4\Delta}t}$

$$\dot{C}_{1}(t) = i \frac{\chi_{1}\chi_{2}}{4\Delta} C_{3}(t)$$
These are two-level equations!
$$\dot{C}_{3}(t) = -i \left(\delta + \frac{\chi_{1}^{2} - \chi_{2}^{2}}{4\Delta}\right) C_{3}(t) + i \frac{\chi_{1}\chi_{2}}{4\Delta} C_{1}(t)$$

Physical Discussion: We have an effective 2-level atom with effective Rabi Frequency and detuning.

$$\chi_{\text{eff}} = \frac{\chi_1 \chi_2}{2\Delta}$$
, $\delta_{\text{eff}} = \delta + \frac{\chi_1^2 - \chi_2^2}{4\Delta}$

Note that $\chi_{eff} \sim \chi_{\Delta}^2$ while the excited state population $\chi_{eff} \sim \chi_{\Delta}^2$. This means that for large χ_{eff} we can have large χ_{eff} and no opportunity for spontaneous decay.

Coherent Rabi oscillations and long lived superposition states

(5) Finally, the last term $\propto \frac{e^{-i\Delta t}}{\Delta}$ can be ignored because it averages to zero on the timescale on which δ_1 , δ_3 evolve.

Note:

The ground state amplitudes evolve slowly Because $\chi_1/\Delta_1 \chi_2/\Delta \ll 1$, while the excited state amplitude evolves fast and adiabatically follows the instantaneous values of ℓ_1 , ℓ_3

Plug the solution for $\ell_1(\xi)$ into the eqs. for ℓ_1, ℓ_2

$$\dot{b}_{1}(t) = i \frac{\chi_{1}^{2}}{4\Delta} b_{1}(t) + i \frac{\chi_{1} \chi_{2}}{4\Delta} b_{2}(t)$$

$$\dot{b}_{3}(t) = -i \left(\delta - \frac{\chi_{2}^{2}}{4\Delta}\right) b_{3}(t) + i \frac{\chi_{1} \chi_{2}}{4\Delta} b_{1}(t)$$

We simplify by making a final change of variables

$$C_1(t) = b_1(t) e^{-i\frac{\chi_1^2}{4\Delta}t}$$
 $C_3(t) = b_3(t) e^{-i\frac{\chi_1^2}{4\Delta}t}$

$$\dot{C}_{1}(t) = i \frac{\chi_{1}\chi_{2}}{4\Delta} C_{3}(t)$$
These are two-level equations!
$$\dot{C}_{3}(t) = -i \left(\delta + \frac{\chi_{1}^{2} - \chi_{2}^{2}}{4\Delta}\right) C_{3}(t) + i \frac{\chi_{1}\chi_{2}}{4\Delta} C_{1}(t)$$

Physical Discussion: We have an effective 2-level atom with effective Rabi Frequency and detuning.

$$\chi_{\text{eff}} = \frac{\chi_1 \chi_2}{2\Delta}$$
, $\delta_{\text{eff}} = \delta + \frac{\chi_1^2 - \chi_2^2}{4\Delta}$

Note that $\chi_{eff} \sim \chi_{\Delta}^2$ while the excited state population $\chi_{eff} \sim \chi_{\Delta}^2$. This means that for large χ_{eff} we can have large χ_{eff} and no opportunity for spontaneous decay.

Coherent Rabi oscillations and long lived superposition states

We simplify by making a final change of variables

$$C_1(t) = b_1(t) e^{-i \frac{\chi_1^2}{4\Delta}t}$$
 $C_3(t) = b_3(t) e^{-i \frac{\chi_1^2}{4\Delta}t}$

$$\dot{C}_{1}(t) = i \frac{\chi_{1}\chi_{2}}{4\Delta} C_{3}(t)$$
These are two-level equations!
$$\dot{C}_{3}(t) = -i \left(\delta + \frac{\chi_{1}^{2} - \chi_{2}^{2}}{4\Delta}\right) C_{3}(t) + i \frac{\chi_{1}\chi_{2}}{4\Delta} C_{1}(t)$$

Physical Discussion: We have an effective 2-level atom with effective Rabi Frequency and detuning.

$$\chi_{\text{eff}} = \frac{\chi_1 \chi_2}{2\Delta}$$
, $\delta_{\text{eff}} = \delta + \frac{\chi_1^2 - \chi_2^2}{4\Delta}$

Note that $\chi_{eff} \sim \chi_{\Delta}^2$ while the excited state population $\chi_{\Delta} \sim \chi_{\Delta}^2$. This means that for large χ_{Δ} we can have large χ_{eff} and no opportunity for spontaneous decay.

Coherent Rabi oscillations and long lived superposition states

Note also: The effective Raman detuning is shifted.

HW Set 2: Dressed-states of a 2-level atom

12>
$$\frac{12+}{\hbar\omega_0}$$
 $\frac{\hbar\chi^2}{4\Delta}$

12> $\frac{\hbar\omega_0}{\hbar\omega_0}$ $\frac{\hbar\chi^2}{2\Delta}$

11> $\frac{1}{4\Delta}$

12-> $\frac{\hbar\chi^2}{4\Delta}$

3-level system \Rightarrow ground state shifts $\frac{\chi_1^2}{4\Delta}$, $\frac{\chi_2^2}{4\Delta}$

Final note: The atomic dipole () will have components that match the frequency and polarization of both driving fields, with amplitudes that depend on both fields.

Non-Linear wave mixing,
Breakdown of superposition principle

Note also: The effective Raman detuning is shifted.

HW Set 2: Dressed-states of a 2-level atom

3-level system \Rightarrow ground state shifts $\frac{\chi_1^2}{4\Delta}$, $\frac{\chi_2^2}{4\Delta}$

Differential ground state shift $\frac{\chi_1^2 - \chi_2^2}{4\Delta}$

Final note: The atomic dipole () will have components that match the frequency and polarization of both driving fields, with amplitudes that depend on both fields.

Non-Linear wave mixing,
Breakdown of superposition principle

Example: Velocity dependent Raman Coupling

$$F'=1$$

$$F'=1$$

$$M=\frac{\delta}{1}$$

$$\frac{\delta}{k}$$

$$\frac{\delta}{k}$$

field freqs. in co-moving frame

-moving frame)₊ = ω+ kv) ___

$$\omega_{+} = \omega + k \sigma$$

$$\omega_{-} = \omega - k \sigma$$

velocity dependent Raman detuning

Applications:

- Doppler velocimetry
- Raman Cooling by velocity selective momentum transfer
- What if we apply a π/₂ Raman pulse?
- Atom Interferometry

2/19/25

Numerical integration of the equations for the probability amplitudes in a 3-level Lambda system with zero Raman Detuning (δ = 0).

Mental Warmup: What is a probability?

(1) Example: Coin toss

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

(2) Example: Quincunx

https://www.mathsisfun.com/data/quincunx.html

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

This is the Bayesian Interpretation of Probability

(3) Example: Quantum Quincunx

- We can describe physical states by quantum wavefunctions (state vectors)
- Quantum states are assigned based on prior knowledge, updated when additional info becomes available
- As such, quantum states are subjective (states of knowledge)

(4) Mixed Quantum & Classical Case

- We can easily envision a hybrid Quincunx that is part classical, part quantum.
- Physics needs an efficient description these kinds of intermediate situations

2/19/25

Mental Warmup: What is a probability?

(1) Example: Coin toss

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

(2) Example: Quincunx

https://www.mathsisfun.com/data/quincunx.html

- We can describe physical states by probability distributions
- Probabilities are assigned based on prior knowledge, updated when additional info becomes available
- As such, probability distributions are subjective (states of knowledge)

This is the Bayesian Interpretation of Probability

(3) Example: Quantum Quincunx

- We can describe physical states by quantum wavefunctions (state vectors)
- Quantum states are assigned based on prior knowledge, updated when additional info becomes available
- As such, quantum states are subjective (states of knowledge)

(4) Mixed Quantum & Classical Case

- We can easily envision a hybrid Quincunx that is part classical, part quantum.
- Physics needs an efficient description these kinds of intermediate situations

(3) Example: Quantum Quincunx

- We can describe physical states by quantum wavefunctions (state vectors)
- Quantum states are assigned based on prior knowledge, updated when additional info becomes available
- As such, quantum states are subjective (states of knowledge)

(4) Mixed Quantum & Classical Case

- We can easily envision a hybrid Quincunx that is part classical, part quantum.
- Physics needs an efficient description these kinds of intermediate situations

(5) Example: Quantum Trajectories

 Ensemble of 2-level atoms undergoing Rabi oscillation with random decays

Definition: A system for which we know only the probabilities $\{ \chi_k \}$ of finding the system in state $\{ \chi_k \}$ is said to be in a statistical mixture of states. Shorthand: mixed state.

Shorthand for non-mixed state: <u>pure state</u>

(5) Example: Quantum Trajectories

 Ensemble of 2-level atoms undergoing Rabi oscillation with random decays

Definition: A system for which we know only the probabilities $\{1, 4, 6\}$ of finding the system in state $\{1, 4, 6\}$ is said to be in a statistical mixture of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

<u>Definition</u>: Density Operator for pure states

Definition: Density Matrix

$$|4(t)\rangle = \sum_{n} C_{n}(t)|.u_{n}\rangle \Rightarrow$$

 $Q_{pn}(t) = \langle u_{p}|Q(t)|u_{n}\rangle = C_{p}(t)C_{n}^{*}(t)$

Definition: Density Operator for mixed states

$$g(t) = \sum_{k} n_k g_k(t), g_k = [4_k(t) \times 4_k(t)]$$

Note: A pure state is just a mixed state for which one 1st and the rest are zero.

The terms Density Operator and Density Matrix are used interchangeably

Definition: Density Operator for pure states

Definition: Density Matrix

$$|\mathcal{L}(t)\rangle = \sum_{n} C_{n}(t) |u_{n}\rangle \Rightarrow$$

$$\mathcal{L}_{pn}(t) = \langle u_{p}|\mathcal{L}(t)|u_{n}\rangle = C_{p}(t) C_{n}^{*}(t)$$

Definition: Density Operator for mixed states

$$g(t) = \sum_{k} n_k g_k(t), g_k = [4_k(t) \times 4_k(t)]$$

Note: A pure state is just a mixed state for which one 15 and the rest are zero.

The terms Density Operator and Density Matrix are used interchangeably

Let \bigcap be an observable w/eigenvalues \bigcap _n Let \bigcap be the projector on the eigen-subspace of \bigcap _n

For a <u>pure</u> state, $Q(\ell) = | \psi(\ell) \times \psi(\ell) |$, we have

(*) Tr
$$g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{2} = 1$$

(*)
$$\langle A \rangle = \langle \chi(t) | A | \chi(t) \rangle = \sum_{p} \langle \chi(t) | A | \mu_{p} \times \mu_{p} | \chi(t) \rangle$$

$$= \sum_{p} \langle \mu_{p} | \chi(t) \times \chi(t) | A | \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \chi(t) | A | \mu_{p} \rangle$$

$$= \text{Tr}[\chi(t) | A] \quad (|\mu_{p}\rangle \text{ basis in } \mathcal{X})$$

(*) Let \mathcal{P}_n be the projector on eigensubspace of α_n $\mathcal{P}(\alpha_n) = \langle \psi(t) | \mathcal{P}_n | \psi(t) \rangle = \text{Tr}[g(t) \mathcal{P}_n]$

(*)
$$g(t) = |\chi(t) \times \chi(t)| + |\chi(t) \times \chi(t)|$$

 $= \frac{1}{18} |\chi(t) \times \chi(t)| - \frac{1}{18} |\chi(t) \times \chi(t)| + |\chi(t) \times \chi(t)$

Let \mathcal{A} be an observable w/eigenvalues \mathcal{A}_n Let \mathcal{C}_n be the projector on the eigen-subspace of \mathcal{C}_n For a <u>pure</u> state, $g(t) = |\psi(t) \times \psi(t)|$, we have

(*) Tr
$$g(t) = \sum_{n} g_{nn}(t) = \sum_{n} |C_{n}|^{2} = 1$$

(*)
$$\langle A \rangle = \langle \psi(t) | A | \psi(t) \rangle = \sum_{p} \langle \psi(t) | A | \mu_{p} \times \mu_{p} | \psi(t) \rangle$$

$$= \sum_{p} \langle \mu_{p} | \psi(t) \times \psi(t) | A | \mu_{p} \rangle = \sum_{p} \langle \mu_{p} | \psi(t) | A | \mu_{p} \rangle$$

$$= Tr[\psi(t) | A] \quad (|\mu_{p}\rangle \text{ basis in } \mathcal{H})$$

(*) Let \mathcal{P}_n be the projector on eigensubspace of a_n $\mathcal{P}(a_n) = \langle \psi(t) | \mathcal{P}_n | \psi(t) \rangle = \text{Tr}[g(t) \mathcal{P}_n]$

(*)
$$g(t) = |4(t) \times 4(t)| + |4(t) \times 4(t)|$$

 $= \frac{1}{18} [4(t) \times 4(t)| - \frac{1}{18} |4(t) \times 4(t)| H$
 $= \frac{1}{18} [4,8]$

Let \mathcal{A} be an observable w/eigenvalues \mathcal{A}_{n} Let \mathcal{C}_{n} be the projector on the eigen-subspace of \mathcal{A}_{n} For a <u>mixed</u> state, $\mathcal{C}(t) = \sum_{s} \mathcal{N}_{k} \mathcal{C}_{k}(t)$, $\mathcal{C}_{k} = [\mathcal{C}_{k}(t) \times \mathcal{C}_{k}(t)]$

(*)
$$Trg(t) = \sum_{k} \eta_{k} Trg_{k}(t) = 1$$

(*)
$$\langle A \rangle = \sum_{k} \eta_{k} \langle \psi_{k}(t) | A | \psi_{k}(t) \rangle = \sum_{k} \gamma_{k} Tr[g_{k}(t) A],$$

$$= Tr[g(t) A]$$

(*) Let \mathcal{P}_n be the projector on eigensubspace of α_n $\mathcal{P}(\alpha_n) = \sum_{k} \gamma_k \langle \gamma_k(t) | \mathcal{P}_n | \gamma_k(t) \rangle = \text{Tr}[g(t)\mathcal{P}_n]$

(*)
$$g(t) = \sum_{k} \gamma_{k} (|\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$

$$= \sum_{k} \gamma_{k} \frac{1}{2} (|\psi(t) \times \psi(t)| - |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$

$$= \frac{1}{2} [H, S]$$
Density Operator formalism is general!

Let \mathcal{A} be an observable w/eigenvalues \mathcal{A}_n Let \mathcal{C}_n be the projector on the eigen-subspace of \mathcal{A}_n

For a mixed state, $g(t) = \sum_{k} \gamma_{k} g_{k}(t)$, $g_{k} = [4_{k}(t) \times 4_{k}(t)]$

(*)
$$Trg(t) = \sum_{k} \eta_{k} Trg_{k}(t) = 1$$

(*)
$$\langle A \rangle = \sum_{k} \eta_{k} \langle y_{k}(t) | A | y_{k}(t) \rangle = \sum_{k} \gamma_{k} Tr[g_{k}(t) A],$$

$$= Tr[g(t) A]$$

(*) Let \mathbb{R} be the projector on eigensubspace of \mathfrak{a}_{N}

$$(P(a_n) = \sum_{k} \gamma_k \langle y_k(t) | P_n | y_k(t) \rangle = \text{Tr}[g(t)P_n]$$

(*)
$$g(t) = \sum_{k} p_{k}(|\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$

$$= \sum_{k} p_{k} \frac{1}{|\xi|} (|\psi(t) \times \psi(t)| - |\psi(t) \times \psi(t)| + |\psi(t) \times \psi(t)|)$$

$$= \frac{1}{|\xi|} [|\xi|, g]$$
Density Operator formalism is general!

Important properties of the Density Operator

- (1) g is Hermitian, $g^+ = g \Rightarrow g$ is an observable $\Rightarrow \exists$ basis in which g is diagonal In this basis a pure state has one diagonal element = 1, the rest = 0
- (2) Test for purity.

Pure: $g^2 = g \Rightarrow \text{Tr } g^2 = 1$

Mixed: $g^1 \neq g \Rightarrow \text{Tr } g^1 < 1$

(3) Schrödinger evolution does not change the Mg

Tr g¹ is conserved
 pure states stay pure
 mixed states stay mixed

Changing pure

mixed requires non-Hamiltonian evolution − see Cohen Tannoudji D_{III} & E_{III}

Important properties of the Density Operator

- (1) g is Hermitian, $g^+ = g \Rightarrow g$ is an observable $\Rightarrow \exists$ basis in which g is diagonal In this basis a pure state has one
 - In this basis a pure state has <u>one</u> diagonal element = 1, the rest = 0
- (2) Test for purity.

Pure: $g^2 = g \Rightarrow \text{Tr } g^2 = 1$

Mixed: $g^1 \neq g \Rightarrow \text{Tr } g^1 < 1$

(3) Schrödinger evolution does not change the Mg

Tr g¹ is conserved
 pure states stay pure
 mixed states stay mixed

Changing pure

mixed requires non-Hamiltonian evolution − see Cohen Tannoudji D_{III} & E_{III}

A cooks recipe – interpretations of 9

Step 1 Add N atoms in state $|\Psi_A\rangle$ to bucket A Add N atoms in state $|\Psi_a\rangle$ to bucket B

We now have two ensembles, each of which consist of **N** atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.

Pick an atom from C Which is Correct? The atom is in a pure state but we don't know if it is in $|\Psi_A\rangle$ or $|\Psi_B\rangle$

The atom is in a mixed state

$$9 = \frac{1}{2} | \psi_A \times \psi_A | + \frac{1}{2} | \psi_C \times \psi_C |$$

A cooks recipe – interpretations of 9

Step 1 Add N atoms in state $|\Psi_A\rangle$ to bucket A Add N atoms in state $|\Psi_a\rangle$ to bucket B

We now have two ensembles, each of which consist of **N** atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.

Pick an atom from C Which is Correct? The atom is in a pure state but we don't know if it is in $|\Psi_A\rangle$ or $|\Psi_a\rangle$

The atom is in a mixed state

$$9 = \frac{1}{2} | 4_A \times 4_A | + \frac{1}{2} | 4_C \times 4_C |$$

There is no difference!

The two interpretations lead to identical predictions for any measurement we can do on atoms from C

Quantum Mechanics:

If two descriptions lead to identical predictions for observable outcomes then they are <u>identical</u>

Loosely, (i) is a frequentist view

(ii) is a *Bayesian view*

Quantum Bayesianism

Quantum States are States of Knowledge (subjective)

More about the Density Matrix

Let $|4\rangle = \sum_{i} c_{i} |u_{i}\rangle$, where $\{|u_{i}\rangle\}$ is a basis and the index & labels members of the ensemble

Populations:

$$g_{nn} = \langle c_n^{(k)} c_n^{(k)*} \rangle_{k} = \langle |c_j^{(4)}|^2 \rangle_{k}$$

(real-valued)

Bayesianist:

Single system: Q_{nn} is prob of observing the state $|\mathcal{M}_n\rangle$

Frequentist:

Ensemble: The state $|u_n\rangle$ occurs with frequency g_n

Coherences: (complex-valued)
$$S_{nn} = \langle c_n^{(k)} c_n^{(k)n} \rangle_k$$
, $S_{pn} = S_{pn}^*$

Note: Defining $C_{\underline{a}} = |C_{\underline{a}}| e^{i\theta_{\underline{a}}}$ we have

It follows that
$$S_{nn}S_{nn} \leq S_{nn}S_{nn}$$
with = for pure states
$$S_{nn} \leq S_{nn} \leq S_{nn} \leq S_{nn}$$

Example: 2-level atom w/random perturbations

The ensemble average

is reduced by the randomly fluctuating phase

Dipole Radiation:

$$\langle \hat{\vec{r}} \rangle = \text{Tr} \left[g \hat{\vec{r}} \right] = \text{Tr} \left[\begin{pmatrix} g_{11} & g_{12} \\ g_{11} & g_{12} \end{pmatrix} \begin{pmatrix} 0 & \vec{r}_{11} \\ \vec{r}_{21} & 0 \end{pmatrix} \right]$$

$$= g_{12} \vec{r}_{21} + g_{21} \vec{r}_{12} = 2 \text{Re} \left[g_{12} \vec{r}_{21} \right]$$

For an ensemble of pure states w/different 😊

Oscillating dipole w/phase that varies between atoms with different perturbation history

Example: 2-level atom w/random perturbations

The ensemble average

is reduced by the randomly fluctuating phase

Dipole Radiation:

For an ensemble of pure states w/different Θ

Oscillating dipole w/phase that varies between atoms with different perturbation history

Time Evolution of the Density Matrix

Challenge: We need "equations of motion" that combine the Schrödinger Equation with the effect of processes that can change Tr g2 (measure of purity)

Approach: We do not have time for a rigorous derivation, so will rely on plausible arguments to justify the equations

Schrödinger Evolution: In general, we have

$$\dot{g} = -\frac{1}{4}[H_1g] = -\frac{1}{4}(Hg - gH)$$

matrix elements

2-Level Atom
$$\Rightarrow$$

$$\begin{cases} 2 \text{ populations} \\ 2 \text{ coherences} \end{cases}$$

Spontaneous Decay

This process occurs due to interaction between the Atom and the Quantized Electromagnetic Field

Final OPTI 544 Lectures:

Cannot recover info in continuum of field modes

Probability $|C_{2,0}(\xi)|^2$ of having no decay Probability $\sum_{\ell} |C_{1,1,\ell}(\xi)|^2$ of having decay

No Coherence established between states 17, 12>

Conclusion: Decay moves population $|2\rangle \Rightarrow |1\rangle$ at rate A_{21} , damps coherence at rate $A_{21}/2$

Putting it all together:

$$\dot{S}_{11} = -\Gamma_{1} S_{11} + A_{21} S_{22} - \frac{1}{2} (X S_{12} - X^{*} S_{21})$$

$$\dot{S}_{22} = -\Gamma_{2} S_{22} - A_{21} S_{22} + \frac{1}{2} (X S_{12} - X^{*} S_{21})$$

$$\dot{S}_{12} = (i\Delta - \beta) S_{12} + \frac{iX^{*}}{2} (S_{22} - S_{11}) = S_{21}^{*}$$
where
$$\beta = \frac{1}{L} + \frac{A_{21}}{2} + \frac{\Gamma_{1} + \Gamma_{2}}{2}$$

These are our desired

Density Matrix Equations of Motion

Emission and Absorption – Population Rate Equations