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Raman Coupling in 3-level Atoms
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Raman Coupling in 3-level Atoms
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(5) Finally, the last term EA— can be ignored

because it averages to zero on the timescale
on which 2@1 X 153 evolve.

Note:
The ground state amplitudes evolve slowly
Because X,/A,X,/A< 1, while the excited

state amplitude evolves fast and adiabatically
follows the instantaneous values of ,(91 Ay

Plug the solution for b, (£ into the eqs. for /61,/53
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We simplify by making a final change of variables

L X X
C,(4) = Byt Y oy = byue st

P

Xy Xo These are two-level
C— () =1 1= 2 Co(£) equations!
Xlz'yz X X,
= 2 e, (d Ml
Cylt) =~ (6+ " ) NOEH = Cy(£)

Physical Discussion: We have an effective 2-level
atom with effective Rabi Frequency and detuning.

¥ X, )
Xefs = ;ZAQ-, 5eu=5+—q‘a‘l

Note that 7, ~ X/ while the excited state population
(P X/Ai This means that for large X, /\ we can have
large ). and no opportunity for spontaneous decay.

P

Coherent Rabi oscillations and long lived
superposition states
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We simplify by making a final change of variables
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These are two-level
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C ) =1 L= C (4) ions!
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Cylt) =— (5+%)c3m+ f;zz C,(4)

Physical Discussion: We have an effective 2-level
atom with effective Rabi Frequency and detuning.
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Note that 7, ~ X/ while the excited state population
R~ X/i This means that for large X', A we can have

large ). and no opportunity for spontaneous decay.
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Coherent Rabi oscillations and long lived
superposition states
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Note also: The effective Raman detuning is shifted.

HW Set 2: Dressed-states of a 2-level atom
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3-level system ®» ground state shifts ZEZ' ?Z
X2 Xy
®» Differential ground state shift —'LFZ—%-

Final note: The atomic dipole (zﬁ) will have

components that match the frequency and
polarization of both driving fields, with
amplitudes that depend on both fields.

.

Non-Linear wave mixing,
Breakdown of superposition principle
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Note also: The effective Raman detuning is shifted.
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Final note: The atomic dipole (zﬁ) will have

components that match the frequency and
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Example: Velocity dependent Raman Coupling

m' = O
F'=1
o, o-
\ 5
_______ v
F=1 —¢f—
m= -1 O 1 A
- >
O+ e+ o L
AL EEN —e —
&)_[_ _
field fregs. in velocity dependent
co-moving frame Raman detuning
W, = W+t kar
: } » 5. 2ko
C_= W - b
Applications:

— Doppler velocimetry

— Raman Cooling by velocity selective
momentum transfer

— What if we apply a 7/ Raman pulse?
— Atom Interferometry
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Numerical integration of the equations for the probability
amplitudes in a 3-level Lambda system with zero Raman
Detuning (6= 0).



Density Matrix Description of 2-Level Atoms

Mental Warmup: What is a probability?

(1) Example: Coin toss

— We can describe physical states by
probability distributions

— Probabilities are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, probability distributions are
subjective ( states of knowledge)

(2) Example: Quincunx

https://www.mathsisfun.com/data/quincunx.html

— We can describe physical states by
probability distributions

— Probabilities are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, probability distributions are
subjective ( states of knowledge)

This is the Bayesian
Interpretation of Probability

Begin 02-18-2025

(3) Example: Quantum Quincunx

— We can describe physical states by
guantum wavefunctions (state vectors)

— Quantum states are assigned based on
prior knowledge, updated when
additional info becomes available

— As such, quantum states are
subjective ( states of knowledge)

(4) Mixed Quantum & Classical Case

— We can easily envision a hybrid Quincunx
that is part classical, part quantum.

— Physics needs an efficient description
these kinds of intermediate situations
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(3) Example: Quantum Quincunx (5) Example: Quantum Trajectories

— Ensemble of 2-level atoms undergoing

— We can describe physical states by Rabi oscillation with random decays

qguantum wavefunctions (state vectors)

— Quantum states are assigned based on ®  Atom#l B Atom #2 P Atom #3 ...
prior knowledge, updated when a A )

additional info becomes available \
— As such, quantum states are /\éﬂ/J A/\/%j /%/E/\
subjective ( states of knowledge) S > >
-

Average

(4) Mixed Quantum & Classical Case By

— We can easily envision a hybrid Quincunx
that is part classical, part quantum.

— Physics needs an efficient description
these kinds of intermediate situations

v

Definition: A system for which we know only
the probabilities 414, of finding the system in
state (1, is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state
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(5) Example: Quantum Trajectories

— Ensemble of 2-level atoms undergoing
Rabi oscillation with random decays

% atom#l P Atom #2 R Atom #3 ...

AN

Definition: A system for which we know only

the probabilities 41y, of finding the system in
state (1, ) is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

Begin 02-18-2025

Definition: Density Operator for pure states

QW) = 1) X u()|

Definition: Density Matrix
Iy (1)) = g_c,,(m.u,.» o
Con [4) = <Ml OLH | > = Col) Cpt (L)

Definition: Density Operator for mixed states

QW) =2 Ay @), € =1, () Ky )|
)

Note: A pure state is just a mixed state for
which one 4lg =1 and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably

11
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Definition: Density Operator for pure states

QW) = 1%t ) X WL)|

Definition: Density Matrix
14 (4)) = 2;, Col&) 1> ®
Con [4) =M QL) [ M, = Cold) C L)
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Let A be an observable w/eigenvalues 0,

Let & be the projector on the eigen-subspace of O

For a pure state, Q(£) = |1 ) X y(£)| , we have

Definition: Density Operator for mixed states

o) = Z Mo Qplt), G =[y, Ry 4]
%

Note: A pure state is just a mixed state for
which one 4lg =1 and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably

() T Q&)= Q=D I¢ I =1
(x) (A= Cple)lA ) =}:<'4m [A X[

-Z<M |eXYaI AT up> -—Z< wletoalu
—W[Q@B}A] (> basns in )

(%) Let ), be the projector on eigensubspace of Q,

Pg,) =488, [ty =Tr[QHP,]

(k) S = IR (E Q)+ I X!
—-~Hm&)xucfe3[~ r»,cce)mw[H

-4 1ugl

12




Density Matrix Description of 2-Level Atoms

Let A be an observable w/eigenvalues 0,

Let & be the projector on the eigen-subspace of O

For a pure state, Q(£) = |1t ) X y(£)| , we have

Begin 02-18-2025

Let A be an observable w/eigenvalues 0,

Let £, be the projector on the eigen-subspace of O,

For a mixed state, Q(£) =) 4y, Qu(t) » €=U, (£)X Yy (4)]
%

(%) Tr Q&)= %_'g,mce) =§ic,,l‘=i

(%) (A= CEOIAILEY = CHATA X gl
=Z<M,,\zgm><tfté)l Afu{b =Z< tplotElatlan)
=£)F[gc¢m] 4

(%) Let ©, be the projector on eigensubspace of Q,

Pa,) =488, [ty =Tr QP ]

“MP> basis in i)

(k) S = IR+ X!
= Hmmxu&a['-;-% X H

ALr]

() Tro(t) = %ma"rrg&cﬂ =4
(%) <A>=% m@&cumm&p:% e Trlg D

="Ir[®)A]

(%) Let &, be the projector on eigensubspace of Q,

Pla,) =%m<zﬁ<ﬂl R I%,0) =T [QhIR]

(%) Gt =%\&(hpfax1w{+npzemﬁﬂ )
=.&Zm -7 CHTE X0~ Tenoget) H)

Density Operator

= [He]

formalism is general !
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Let A be an observable w/eigenvalues 0,

Let £, be the projector on the eigen-subspace of O,

For a mixed state, Q(+) :ZIM lt) » €p =ty (4)XYg (£)]
%

W) Teglt) = S, Tgu) =1
() <AY=) e (oAl = % 1R TrLQUEAD

="Ir[@@)A]

(%) Let f, be the projector on eigensubspace of a,

Pla.,) =%m<1&(ﬂl D19, = Tr[QHIR,]

(%) QL) Q&?{\&(uﬁaxm\f-rhp&wzp&n)
=th -7 (HIHa X~ et H)

Density Operator
formalism is general !

=1
- e [H.g]
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Important properties of the Density Operator

(1) QisHermitian, "= ) o is an observable

®» 3 basis in which © is diagonal

In this basis a pure state has one
diagonal element = 1 , therest =

(2) Test for purity.
Pure: Gg*:=gQ ® T gt =1
g

(3) Schrodinger evolution does not change the A

{ Tr Q' is conserved

pure states stay pure

mixed states stay mixed

Changing pure ® mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D, & E,;,

14
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Important properties of the Density Operator

(1) O isHermitian, Q*=g ® © is an observable

® J basis in which © is diagonal

In this basis a pure state has one
diagonal element = 1 , therest =

(2) Test for purity.
Pure: Gg*:=Q ®» ¢

X =1

e
Mixed: ©*%+gQ ® Trgtcl

(3) Schrodinger evolution does not change the A

Tr g‘ is conserved
L pure states stay pure

mixed states stay mixed

Changing pure ® mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D, & E;,
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A cooks recipe — interpretations of ©

Step 1 Add N atoms in state [, to bucket A
Add N atoms in state |V, to bucket B

P

We now have two ensembles, each of which
consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.

N = [4,>

Pick an atom
from C
Which is
Correct?

N x %>

The atom is in a pure state but we
don’t know if it is in WA> or [V,

The atom is in a mixed state
Q= 3 e Xtql +3 14X Y, |

15



Density Matrix Description of 2-Level Atoms

A cooks recipe — interpretations of ©

Step 1 Add N atoms in state [, to bucket A
Add N atoms in state |, to bucket B

-

We now have two ensembles, each of which
consist of N atoms in a known pure state

Step 2 Add buckets A and B to bucket C and stir.
N x “Lg> N x “‘L8>

N = [y, N x 1>

The atom is in a pure state but we

Pick an atom ’ ifitisi
£an at don’t know if it is in [uA> or [\,

Which is The atom is in a mixed state
Correct? [ [
9 = 3 H{AX"['al +5-L“+GXZECG[
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There is no difference!

The two interpretations lead to identical predictions
for any measurement we can do on atoms from C

Quantum Mechanics:
If two descriptions lead to identical predictions
for observable outcomes then they are identical

Loosely, (i) isa frequentist view

(ii) isa Bayesian view

Quantum Bayesianism

Quantum States are States of Knowledge
(subjective)

16
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More about the Density Matrix
Let|U) =Zcé lu;> , where {[w;?] is a basis and

3
the index £ labels members of the ensemble

Populations:

(real-valued)

b
an_—_(cfm\ csl‘.)*)&: <IC.§L)]9.>&

Bayesianist:
Single system: Q- is prob of observing the state 14,

Frequentist:
Ensemble: The state |4, occurs with frequency G

Coherences:

— / ~ll) (R _ OX
gnil"<cv, Cf‘ > ’ ?.(M"' g."m

(complex-valued)

Note: Defining CQ."' lcq_re_ieﬁ we have

bl _ mll)
N B I ER iR PN A TN

It follows that Qe - 9;43\
CopSns SmSpg Q= | 1 o

with = for pure states Gn *°° %

Begin 02-18-2025

Example: 2-level atom w/random perturbations

E? >
12> . —=. 1 Perturbing events cause
random phase shifts '€
1Y W 11> between states.
>t P

The ensemble average Q,,‘. ={Cn C: e'(?)ﬂ

is reduced by the randomly fluctuating phase

Dipole Radiation: _
Go=Tried]=T[( o ol ™))

= Qu:(\\u* g.u/f\u" lﬂet‘gnmf‘v.l'_'

For an ensemble of pure states w/different ©
A ) —
> = <R‘3Y§t(a.j "(‘u7>&

Oscillating dipole w/phase that varies between
atoms with different perturbation history

17
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Example: 2-level atom w/random perturbations Time Evolution of the Density Matrix

E a s Challenge: We need “equations of motion” that

12> . —=. 1 Perturbing events cause combine the Schrodinger Equation
random phase shifts 2'® with the effect of processes that can

o> ? > between states. change T € (measure of purity)

> € -V Approach: We do not have time for a rigorous

. derivation, so will rely on plausible

The ensemble average Qm‘l ={Cn Cff e'?)n arguments to justify the equations

is reduced by the randomly fluctuating phase
Schrodinger Evolution: In general, we have

Dipole Radiation: g = —.ef: [H,Q] = —é(Hg—gH)

5 — & o T @u Q| 0 1
>=Trigy] = lr[( o, @ 1\(’& E“)]
HoSw T matrix elements S
= @y 8y fin= 2Re1Cy ] ] 23
Som =& &= (Mot Q1™ G )
For an ensemble of pure states w/different © ' e
29

<> =< Relg® A, !
1 < \ n:f '/(l l7>& 2-Level Atom » { 2 populations Sis ( ') 8y,

Oscillating dipole w/phase that varies between 2 coherences
atoms with different perturbation history e,
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Spontaneous Decay Conclusion: Decay moves population [27 <> [1D
This process occurs due to interaction between the at rate A,/ , damps coherence at rate A,,/2
Atom and the Quantized Electromagnetic Field w-w
129 . .
[ O3() | [Tk
[
® o
T = - A?. = *
117 atom-field 912. "§:’ Qli 92-1
interaction

Final OPTI 544 Lectures: Putting it all together:

[‘lF (0)>=3 ')A IVae )& EF » evolution over time ¢
» = Q +A ~L[X®,, -X*

) )=C, ,10) riga Vo Yggr B D_Cp g1, 0= e Q=1 Gyt AuGy—1 (X2, -X"gy, )

e A o .
photon “in the atom” photon in field mode & Qu = rg_ 99_9_"/'\3_, @9_2 S -;—_ ( X ?l& - X *g!.l >
o - . s XX‘ 8 H
Cannot recover info in continuum of field modes Qi 'CIA-F’) St 'II‘ (6n-2u)=%y
where /3:%_+§£’+r%¥2—
Probability |C; o (£)|* of having no decay

Probability Z’Cq,u(‘b”z of having decay
%

. Density Matrix
These are our desired . .
No Coherence established between states |17,[27 Equations of Motion
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Emission and Absorption — Population Rate Equations



