Atom-Light Interaction: Multi-Level Atoms

Starting point — the Hydrogen atom Note: Frequencies for transitions h->n' n"-n"

2 g are very different = near-resonant approx.
P 1 = with a single transition frequency W,

. Levels [vL ) are generally degenerate with
Veu, (FRA) = -2F E(RL) respect to the quantum number M (*), so we
cannot isolate a 2-level system only through

T:relative R :center-of-mass its transition frequency.

We must therefore consider Selection Rules

E
t Interaction matrix element
nea 25 QP 2D }<—aLL UL ndeo b
=ST ' ) * “y - -
NN Ve [n&my o iif D P Ly, (P
Enet-=
nW=2+ 25 2P " Wavefunction parity is even/odd depending on £
S: L= )
P =1 Do (P) = (=06 B, (-F)
p: =2 . i
© { V| ) can be non-zero only if (£- £') is odd.
1S . . . .
n:=14+ — This is the Parity Selection Rule !
(o) 1 2 valve of £
1 3 5 deyeneracy (*) This is not strictly true due to spin-orbit coupling.
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Atom-Light Interaction: Multi-Level Atoms

Note: Frequencies for transitions h >n' n'=n"

are very different = near-resonant approx.
with a single transition frequency W,

Levels [ ) are generally degenerate with
respect to the quantum number M, so we

cannot isolate a 2-level system only through
its transition frequency.

We must therefore consider Selection Rules

Interaction matrix element ’

A
{n'e WIVCKJ.-’“£”‘> o€ J}:S CPWZ‘WU-:)?CFMM(P‘)

Wavefunction parity is even/odd depending on £

CPwEm(m = [~ ”Z C()wem(~F)

© {|V[ )can be non-zero only if (£- £') is odd.

This is the Parity Selection Rule !

Next: We will find selection rules that derive from
the angular symmetry of the matrix element

We need to develop the proper math language
®» spherical basis vectors and harmonics

Consider an arbitrary set of orthonormal basis

- .
Vectors &;, £, ¢&,. We can always write

e - S =] - - - - o~ =
. . ) - - = -
Cartesian basis:  £.=¢&,, &;28,, &, =2,
(real-valued) . ‘ .
£, =£,,= - '\'—1(&,‘-\-:83\
I ‘—\
Spherical basis: £ é'i: :,';_ (é’;»&a)
(complex-valued) -« -
a_e‘:é,a = 82;

Reminder: Scalar products of complex vectors

Dirac notation Regular notation

flay (6> 17} (G+/3)-C
= (Cal-i<hl) ICY =3-C—-ibe
=<ale) -1 <blec

(anti-linear in 15t factor)
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Next: We will find selection rules that derive from
the angular symmetry of the matrix element

We need to develop the proper math language
®» spherical basis vectors and harmonics

Consider an arbitrary set of orthonormal basis

D> 5 o .
Vectors &;, £, &, . We can always write

- P - o - e =
T:r-(Y‘-S.;)S.'f-(’f“id.\i‘)"l-(rtE&) &,

o o - - - ) - -
Cartesian basis:  £,=¢&,, &;28,, &, =2,
(real-valued) . ‘
£| ::2_1': - -\E[c‘_‘x-‘-}éla\
. . X Lo (R
Spherical basis: s R (ax-.aa)
(complex-valued) -« -
8&22_0 - 8%

Reminder: Scalar products of complex vectors

Dirac notation Regular notation
flay+i16> 1] (3+B)- T
= (<al-i<bl) Icy =0.C—ibe

=<aley~1<blcy (anti-linear in 1% factor)

Math Preamble: The Spherical Basis

(1) Prove the relations (Homework)

g - 2 .7 . - .-’ s Q
Eg=lP Gy By Bymdyy B =10y

(2) Show that

=3 > A 4 9>
P=2 (R,)E,= r]%;ZY, &

q_:-.o,tl :olt,
by -t [2 & xi
where Y/ [[acp\—t\/;s:nee P

Y,D(B,CPH/%cose

(Spherical Harmonics)
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Math Preamble: The Spherical Basis

(1) Prove the relations (Homework)

- > @ .7 2 .24 (.9
R T By B B el

(2) Show that

r z (Y SQ_\qu T\]__— ZYQS,Q

@=0%t! Q0%
f et [2 o L
where }; [[e(q)\-t\/;s,mee P

\’,0(9,0)=ch039

(Spherical Harmonics)

Example:
) - =S .
81 VE(S "'leb .?r‘ ":"'Gi(r‘gg',—,?'a\a\

Substitute: (Spherical Coordinates)

= o9 -

rg, = Y‘SZWGCOSCP Y. §°a= V’S’MGQ;MP
@

g, = r-'— [Sinecosd+1Sinesinp)

—V\Fgmez‘?- r\]ﬁ’ Y,'te.@)

Y.

Relations for g = 0, -1 follow similarly.

>
=
¢=0%l =0t |

End Math Preamble
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Example:

- | - . —- 2 .]_ - =S e N
5 (Etig) > PRE=~§F (FE+iPE,)

Substitute:

(Spherical Coordinates)

o < - . .

V-8,=¥smecosP Y-8, r<$ingsing
N

r.§’1 = r—\l%.:. [SEMBCOSCP'F;SI'WGS["‘P)

vl @ _  Jor 1
=vLinee® = 4Ty 'e,p)

Relations for g = 0, -1 follow similarly.

T
r= Z(Y 89_\8 =Y rrZyag
4 Ezo,t11 ?

@=0=I

End Math Preamble

Back to the Dipole Matrix Elements. First:

o =

Vo= — @7 E(£) < Hermitian

E(‘b) - é’Eo( nc.)-l:_,_ga‘ e'wt)

- 2 ¢
IEO(E:CWLTH) EQQU )

electric field polarization
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Back to the Matrix Elements. First: The matrix element = overlap integral
Voo™ ~ e E) Vo = An'lemt | gy [N
'
E@)=LE 8 gt . koLt o o et ‘) “
B R I P W e e
clp (2 Fwl &z
=1 E, (€™ 1 (1) EQQ )
'f where @, [¥)=R,p(r) }{ZM(G.LP)
electric field polarization
T
& % ) Vzl = <'\'£'Wl‘ I \/c.,(,b_[t'lim)
Vorr = ‘(-4 , . :
et _ - Q KI(DLJL (Yéﬁ)*(xqe:'ubi-(“’BQX,-q@(uq qu
J—/_;Q,Er(z )(E, c:wf; (- I)QE IGJ'{:) 7‘ 74 _ )
9’ T 9- ; rl; ?ggi?zlll angular integral
9'e.
G Thus, to within a constant factor

VC)C-g o T ( y;'le:"wt . [_I)Q.X—ﬂelw{') Vu=<2rm,[\/1ﬁ-e:iwt"_(,_l)gx-2e?wclem>____V’:-
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The matrix element = overlap integral

= {n'Lwm' | Vg [nLMD

y

qu%‘r O F) (VI WE (Y 5 E) L )

where @, [7)= R, ()Y, (8.9)

B —

= 'l wm' | Vg [nEMD

= R« J oo (Yo ) T (v o -0y Gty g
4

r

N 7/
~

i;?ggi?;l angular integral

Thus, to within a constant factor

V= (ym,[yﬁ- -t (- ,)Qy-ieiwc'e‘m):v’;—

Resonant terms:

—_f_— 12> = IE'M'> -sr—- 34 |Q'Wl'>
-1k piWt
' 115 = [Bm> ——J‘— 45 = [2m>

Recall from 2-level system:

;&1 - "'%_ ( X[L@Nwt + P(;:- Z‘wtj a:’_

a =~ ( ~t # it
Gy = wy 8y -5 (Xye W +30 ™),

-

)= -4 (X, e ) ¢
iyt = (oo~ w) Gy -4 (6, X ), )

- (RWA)

icylg) = =3 Xy Cy Y

iCyt#) = AGH) - Xy, C, ()
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Resonant terms:

—5— 12> = 10'm> —T Y = [&'m)

AT iwt

L1y - |8 > b 15 = [2m>

Recall from 2-level system:

. a. = ( ~10 # il
18y = wy By -5 (Xy e +30 ™),

e

Cyt)=- 4 (X, e 2@k ) Co e

i) = (W) GU) - (1, +X7F e294)C, )

. (RWA)

icyl) = =3 Xy Cy

iCyl4) = ACH) - 7 %y, Cy ()

And thus in the RWA we get ((Yé")*= (-1)" Yéh" )

Vi o <2 Ve em)
Vig o <Lm| (~|\'°'V'{g ' 2w’y

~ YRR (-0
V;,"‘jd&(\/g')*ﬁg’\/e“ < (1,95 Lm] L'
Vo [d0 (Y & Ctegs D om )

]

Clebsch-Gordan coefficients

Next: We can understand this as conservation of
angular momentum when a photon is absorbed

or emitted :

Selection Rules for Electric Dipole
Transitions
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And thus in the RWA we get Revisit: Addition of Angular Momenta
Vyp < <Z'M'\\/f€.";°"'&[2vvu> - > - Ig,m&
) let J=3,+3, = eigenstates < [4,m,7

Vg o< <2Ml[~l\g‘yf‘ e'm[JZ'IM'> lgm?

We can write [gm) in the basis [4,M,> 140,

-

identity

I3m> = 2, 13,m; damd< g g 3ym l15m

([ VVI,'ML

('3 ™
Vi o (%) VY o« (g em|2'm! Y .
( mtX - m' Dr Wl'lWlL 4\
\4&‘4d&(>/6 ) yi Qy' « <1"Q‘JP mr] ‘Zm) Clebsch-Gordan coefficients
Clebsch-Gordan coefficients CG’s are non-zero when 13- 3 o1 € 3 '3 Q"l'*ﬂ‘ﬁ
( Conservation of )
Angular Momentum My+M, =M
Next: We can understand this as conservation of
angular momentum when a photon is absorbed
or emitted N Going back to the matrix element, V,, = © where
) o [19.> combined w/|€m’ is consistent w/|¢'m' >
Selection Rules for Electric Dipole A A Y

Transitions “photon” AM  ground state AM excited state AM
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Revisit: Addition of Angular Momenta

141 M,>

-5 - =D .
Let J- 3y =) eigenstates |3,_Wl,_)
lgm?

We can write [3m) in the basis [4,m,> [4,m,)

identity

lgmy =2 I4,m, Ay X4 M5 by my [1gm >

VVl, IML
=D Ly Fomy [3wd Taemy; quwy
Wl.lIML
Clebsch-Gordan coefficients

CG’s are non-zero when

( Conservation of )
Angular Momentum

\3-3a! ééi Q"'*Q"l
My+M, =M

Going back to the matrix element, V, = © when

“9r> combined w/ | 2m?% is consistent w/|¢'m' >

4 4 4
“photon” AM  ground state AM excited state AM

The corresponding Selection Rules are
L'-2 =0,t1 ,m-m=0, 3=0,%1

Combining this with the Parity Rule we get

Electric Dipole Selection Rules

L-L=t1,m-m=g,0:0*1

Remarkably:

(%) These selection rules generalize to complex
many - electron atoms, and after we include
both electron and nuclear spins in the theory.

(k) From a physics perspective, this reflects the
conservation of angular momentum in
rotationally invariant systems, and therefore
transitions that do not conserve angular
momentum are forbidden

(%) To find the Clebsch-Gordan coefficients for
different transitions we would need to use
the Wigner-Eckart theorem, the proof of
which is beyond this course.
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The corresponding Selection Rules are
L-2 =011 ,m-m=¢,3=0%1

Combining this with the Parity Rule we get

Electric Dipole Selection Rules

L-L=t1, m-m=g,6Q=0*1

Remarkably:

(%k) These selection rules generalize to complex
many — electron atoms, and after we include

both electron and nuclear spins in the theory.

(k) From a physics perspective, this reflects the
conservation of angular momentum in
rotationally invariant systems, and therefore
transitions that do not conserve angular
momentum are forbidden

(%) To find the Clebsch-Gordan coefficients for
different transitions we would need to use
the Wigner-Eckart theorem, the proof of
which is beyond this course.

General ED Selection Rules

AL = %1 L: total e orbital A. M.

AF =0,*t1 £: total orbital + spin A. M.

Amc =q =0,t1 Q: polarization of EM field

Clebsch-Gordan coefficients ( Eg.,,t > Eeme)
(P mo I VIFmeha {19, Fm | # mp?

{Rome| VIF med < L4 -9, F'me | Fme)
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