Quantum Theory of Light-Matter Interaction



Atom-Light Interaction: 2-Level Approximation

General observation:

- Atoms and mo

lecules often behave as if they

have a single, dominant transition frequency

- We expect this when the freq. of the driving
is resonant with one transition (4,5 — 14, »

and far off res

onance with all others.

Interaction

Vexs = =4t EL¢)

—_n>

State space Lun(E) =2, {M >, 12>] 2oy,

State vector

Schrod. eq.

Interaction

(WD = @,(8) 11 ¢ By (4)12
180y = B0yt Vy 0y +V, By

i@y = E, Og +V, &y tVyy Oy

Vi W) == 0, L(EE, %t ce)
Vy, @) = =1y~ s (EE, %1 c.)

Parity selection rule

Definition: ¥~ ~T is a reflection through the origin

Atomic Hamiltonian H« L ®) H(?)= H (- ¥)
®» Eigenstates () = iq?(d’:) = CP('-T-‘[-T‘])

“+” for even parity  two reflections
“” for odd parity equals the identity

The dipole »% is a vector operator &)
transforms like a vector when V" — — ¥

-~
-

Thus @:CFJ = ef’ :-—zg\’(-r) and

Py ¥- -
Fonm :Id"‘Pw‘rTﬁ @ (¥l +0 only when

®, and @, have opposite parity

. . No dipole moment in
Parity rule: energy eigenstate!

~n

/{11:,'—'“17?“'1% 'f\u :'@.r:
o> The=0 B V= Vyy = 0
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Parity selection rule

Definition: ¥~ ~T is a reflection through the origin

Atomic Hamiltonian HC -'17 » H()= H(-¥)
® Eigenstates (YCF) = iq?[fﬂ = CP(;‘[-T‘J)

“+” for even parity  two reflections
“-” for odd parity equals the identity

The dipole /a‘ is a vector operator &)
transforms like a vector when v — —¥

-
-

Thus /p:'CFj = of :~/g\’(-r) and
- _Id‘ L - -
Ponm = "‘PM("311 @.(F1£0 only when

@®, and ¢, have opposite parity

. . No dipole moment in
Parity rule: energy eigenstate!

—n

. _/_‘.' — -~ X
Ao = <1;1“17; To =
Bz e =0 ® V= Vg = O

We define

E. -
wy,= 2B g oy
s
Wy = 'ﬁ(q_‘ gEo/:BT interaction energy is v
Xy, = Ko sk, /f | ¥ Rabifrequency

S a
Xpg = Fae (GE IRV 4,
Xy = Ay (EE,MY* %X,

Note:

Pluginto 1ha = Hy @ + V& (S.E.)to get

8= (X9 405 ) 0,

Lo ( ~ # it
iGy= Wy, 8y -5 (X e+ ™) g,
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We define

Wy, < Eo-8, £, =0
:&_

C Rabi frequency

X?—l = f\“‘“. éEo/&

Switch to rotating frame (slow variables)

Cole) = A lL)s  C )= (4] '

-

Yoy = ;ﬁ(q_' éEo/»&' } interaction energy is /@D')C

x a
=m . E +-
Note: {X” TPa (5“ AT E Xy,
Xy = Ay CEEJY* X,

Pluginto 1ha = Hy @ + V& (S.E.)to get

Cyt)=- 4 (X, e 2wk ) oy

i) = (- W) G L) - (1, X7 e294)C, )

Rotating Wave Approximation (RWA)

Very important, equivalent to resonant approximation

*i12WE .
Terms <C2 average to zero on time scale

for variations in 61 , c.‘

— -

i, = —’[i (X, e + %5 V%) ay

A A _ ~1 W A il
iGy= Wy, 8y -5 (X e W+ ™) g,

g ! N
’C'[i):"z x“ C,.('tJ A:b\&,"w

ic'2 (+) = AC, (1) - E’ Xy, <, (+) (detuning)

Exactly Solvable !
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Switch to rotating frame (slow variables)

Cole) = GylL)s  C,[)=0,te) ™

o

Cytg)=- L (X e W E ) C o)
iélfi):(wufw)chL)—: Oyt X e X¢)C, (t)

Rotating Wave Approximation (RWA)

Very important, equivalent to resonant approximation

120 E .
Terms «C2 average to zero on time scale

for variations in 61 , C.l

et

o ! 5
iCyl) = =5 Xy, Cy ) A==t

iCyt) = ACH) - £ %,,C, (1) (detuning)

Exactly Solvable !

To simplify, make a global phase choice such that

Xy, = fin-ﬁEo/;é = X isreal (notrequired)
-

Simplest 2-level equations

iC,[4) =-3 XC, (&)
1gte) = AL, ) - 7 XC,(2)

Rabi Solutions for  C,(0)=2C,(0) =0

C, i) = ( cos 2t i L g, J"'f) e

- X NE|  ~1AL)
cl&~(1~—§, l)e =

X: Rabifreq. A : Detuning

X2+Al: Generalized Rabi freq.
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To simplify, make a global phase choice such that

Xy, = 4ty €E,/& = X isreal (not required)

-

Simplest 2-level equations

iC,[4) =-3 XC, ()
1 80tt) = AL ) - 7 xC,(2)

Rabi Solutions for  C,(0)=1, C,(0) =0

A Qt| ~t
C,,[éB:(Cos—%;Evf-/Ig l)g/ld‘ﬁ/l

Cylt = ( JuIp J;*’) o IOt

X: Rabifreq. A : Detuning

X2+Al: Generalized Rabi freq.

Note: The Rabi Solutions give us the entire state,
in the lab (a’s) and rotating (c’s) frames

-

We have maximum information about the system
and can make any predictions allowed by QM

Probabilities of finding the atomin |17, [2):

)
Ruy=1c,1*= 12(1+~—) X cosnt

@zfé\afclcéxli={-é [4~ o 2t
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Note: The Rabi Solutions give us the entire state,

in the lab (a’s) and rotating (c’s) frames

—_-

We have maximum information about the system

and can make any predictions allowed by QM

Probabilities of finding the atomin |17, [2):

Rty =1eort= 5 (11 4)+

%
R = [yl = ’,‘_‘ 2.(5 [4~cos e ]

Note: All 2-level systems are isomorphic

- Equivalent Observables
- Equivalent Phenomena

- The Rabi problem was first solved in ESR and
NMR, for spin-1/2 particles with a magnetic
moment iX driven by a magnetic field B
with interaction H=/?Z-§

- 2-level systems are now often called qubits

Dressed States
The 2-level egs. in the RWA look like a S.E. with

The eigenstates of HRw p are called Dressed States

The DS are stationary only in the Rotating Frame.

In the Lab Frame (Schrodinger Picture) they are
periodic, oscillating w/frequency (0
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We pick linear polarization so E_F—a is real-valued This gives us
and \/‘1 =V, =V ® The eqs for the a’s are
d* L) o 20 “‘-ﬁ \"4 9 9y
. : o T K> = 2 (a5~ a,!
7310.? = ‘(E«,C{f+v0lf) (dtl o )1 e ([a,(>~1a,!")
. _ LW, o ) 9
%a, = -i(E,0,+v0,) = 22 J (i ) (10 1*- [0y 1Y)
With this we have ’EL =<1 [’((7 [2 : dipole matrix element

Q—afaz = (Gf 6, + 030y )

ot E _E To wrap up, we need to know a bit about real,
= - Q 1 Q*a —~ — (IQ.,[L- Iaz[lj multilevel atoms. (We will revisit this soon)
%f—/
o Pick linear polarization so £ is real-valued.
Differentiating again gives us Pick quantization axis along £ ® ’Ktm = /Ktu__g
& (afay) =~ afay - % (la, 120, ) -
~hd (Y (!a,vhm,r’ﬂ
Apt & AP oy . .
(a—;} wo><"">= Z ([aql'- [02()

Looking at the eq. for < /X\') suggests we should
add the complex conjugate and multiply w ’(—ﬁu
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This gives us

9 ~ )
(EL +w,‘~)<q'ﬁ> = W TnY (1, 1>-[a,/*)

d* &=
2 o (i) (a1~ 10y ]?)

e y({t} (’(‘

;6?(1, =<1 [1{7 2% : dipole matrix element

To wrap up, we need to know a bit about real,
multilevel atoms. (We will revisit this soon)

Pick linear polarization so £ is real-valued.
Pick quantization axis along £ ® i, - /(\u__&»

Compare to Classical Equation of Motion

olL v -—ahé‘*

a1~ 1

The two egs. have the same form if .
lo,["~ 0

This is the case for

N 2R Excitation !

4
Decay rate of 127

AKX Limit of weak
Or when

PR

o

Oscillator Strength | .0 = 1M°°°

Like the classical equation,
but with modified polarizability !



Atom-Light Interaction: Multi-Level Atoms
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Atom-Light Interaction: Multi-Level Atoms

Starting point — the Hydrogen atom Note: Frequencies for transitions h->n' n"-n"

2 g are very different = near-resonant approx.
P 1 = with a single transition frequency W,

. Levels [vL ) are generally degenerate with
Veu, (FRA) = -2F E(RL) respect to the quantum number M (*), so we
cannot isolate a 2-level system only through

T:relative R :center-of-mass its transition frequency.

We must therefore consider Selection Rules

E
| Interaction matrix element
nea 25 QP 2D }<—aLL UL ndeo b
=ST [ Al ) * “y - -
{n'en' [ v, Inkmy o iif D P Ly, (P
E,e€-= l
nW=2+ 25 2P " Wavefunction parity is even/odd depending on £
S: L= ) 0
P: 2=1 CPWQM(F3=[‘13 CPWEM(“‘T)
p: C=21 . .
© {|V| ) can be non-zero only if (£- £') is odd.
1S
n:=14+ — This is the Parity Selection Rule !
(o) 1 2 valve of £

chQ_neraCy (*) This is not strictly true due to spin-orbit coupling.
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