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Problem I
(a) This is entirely about the spatial dependence of the field. Thus, it suffices to show that
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and thus E (F,t) = 8E,e @9 ig transverse if and only if k-£=0
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(b) Equation of motion:

Plug in trial solution  x(f) = de”®* where a is constant and to be determined:
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Cancelling out the exponential and rearranging terms gives us
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(c) We have p=0E=0EE e’ =|o|eE E e @)

Taking E, as real, the complex polarizability leads to a detuning-dependent phase lag
between p and €. To make the math a little less cumbersome, we can shift the origin of
the time axis by an amount 8¢, so thate?e®% =1. This allows us to once again write
p=|a| € Eye"®* , where p| &, and the motion of p is identical to the motion of &

(except for the phase lag).
Let € =€, and let p; be the physical dipole. Then

Pz =Re[p]o< Re[€,e7 @] =€, cos(wt — kz)

This is a dipole oscillating along €, with frequency @ .

Next, assume W
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From this we see that p; rotates counter-clockwise in the > x

x-y plane when viewed from the +z direction, with angular
frequency @ . The rotation of py lags the rotation of E by
the phase ¢.




Problem II

(a)

(b)
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Let where w,— @ .

The phase delay induced by the optical medium at A=0 is proportional to the real index
of refraction, here n; =1. There is thus no extra phase delay relative to vacuum.

Extinction coefficient:
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Transmission: T = e = 00mx35369m" =1 57x 1077 . The cell is totally opague!

The gas contains subsets of atoms (velocity classes). Consider an atom moving with
velocity v along the axis of wave propagation, such that the apparent resonance frequency
1S W = w,+ kv in the lab frame.

The probability distribution over velocity is P(v) = 21 - e2% where
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And the corresponding probability distribution over frequencies is
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Now let the plane wave frequency be @;. The number density of atoms with apparent
resonance frequency @ in the lab frame is N(w)= N X P(w), and each velocity class
contributes to the total complex index of refraction according to number density and
detuning. Thus, we have

a(w;) = T P(w)a(w—-w,) do
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where a(w—w;) =

Note:  a(w;) is maximum when ®; lies at the peak of the frequency distribution P(w),
i. e., when w; = w,. Thus, to find the minimum transmission we need to compute

a(wy) = T P(w) a(w—w,) do

Noting that § << &, , we can approximate a(w — @,) with a d -function in the integral,
which gives us
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Minimum Transmission: T =e@=0.031 ~ 3%

This is still a small fraction of the light, but the cell is not completely opaque. Besides,
small variations in the total number density of atoms and the temperature can make a
significant difference.



Problem III

We model aluminum as a free electron gas, which is approximated by a collection of electron
oscillators with @, — 0.

In that case the medium is transparent above the plasma frequency Wp=

First we estimate N. The number density of Aluminum atoms is

_ 2700kgm” _ N v _
N o= s g = 603X 10%m™ = N =N, =181x10%m
Thus Wp=240x1015 = /1,,:2((7)“:78.53nm.
P

Our model suggests aluminum is reflective for wavelengths above A, .

In practice aluminum is a good reflector above 200nm. The exact behavior of the reflectivity
depends on the oxidation of the metal surface, among other things. And of course aluminum is
not transparent below A, , due to its non-zero conductivity at optical frequencies.
“Transparency” is an artifact of our electron oscillator model because we ignored losses when
setting B~0.



Problem IV

(a)

(b)

(c)

ng(w)
dispersion
From the notes on the electron oscillator model:
1 o\ 28
Thus n,; >1 occurs when @ < @, .
From the same notes, we have in general
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n(w)y*= 1+ (w-wy)/B

The index of refraction is real-valued when ‘ ﬁa)‘ << |a)§ — a)2| = |(a)0 +w)(w,— o) , 1. €., in

the large detuning limit. In that case
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Combining results from (b) and (c) we get
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Then 8237 x 10

and Ao = 2me _ 95.3nm.
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