Peein 0130202 Quantum Theory of Light-Matter Interaction

Completed:
— Fully classical description of fields & Atoms

Next Step:

. . . Classical field
— Semiclassical description

Quantum atoms

Self-Consistent Description

Electromagnetic Field — Atom/Molecule/Solid
A |

Needed: Quantum theory of atomic response

analogous to classical

Note: In QM the dipole is an Observable
Observable = Hermitian operator

Classical Field = C-valued vector

Cannot plug into Wave Eq. for classical field !

Wave Equation w/classical field & atoms

(v2- L2~ )1::’:—1——?1‘ p P=NE

How do we solve the mismatch?

Repeated measurements of /'ﬁ[-{,)

. -
Quantum fluctuations {l‘[-&\'—'— (lﬁfi)) +A{l('0

n A T
where {ARHEY> = Q)72 146€)) mean

fluctuations

. = -
Note: Given |y (+=0)) and E, the mean (/(l(-t))
follows from the Schrédinger Eq.,

radiates coherently like classical /'il»lt)

(7‘1”&)) is a Real-valued vector (more later)
®» we can plug it into the Wave Eq.
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Quantum Theory of Light-Matter Interaction

Wave Equation w/classical field & atoms

Wave Equation w/classical field & atoms

(v*—i@il)é’:—L—?f P, PN

How do we solve the mis-match?

Repeated measurements of /ft’l-{,)

- .
Quantum fluctuations 1”(‘[{\'—: (/XT&))*'AT('Q

(ﬁ(ﬁ%&g(@[%[qw» mean T

where .
fluctuations

=4 =
Note: Given |y (+=0)) and E the mean (/(llt)}
follows from the Schrodinger Eq.,
radiates coherently like classical /ﬁ(t)

(7{1”[{,)) is a Real-valued vector (more later)
®» we can plug it into the Wave Eq.

Note: - The Equations look very similar

- Polarizability, index of refraction, etc
will be very different in some regimes

- Notably, the model is no longer linear
in and will lead to phenomena like
saturation and wave mixing

- represents quantum fluctuations
driven by the empty modes of the EM
field, a process also responsible for
spontaneous decay.

Note: Do not identify ()ﬁ) and with
Stimulated and spontaneous emission.
Those labels are not meaningful here.
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Quantum Theory of Light-Matter Interaction

Wave Eq. w/classical field & quantum atoms

° _'_89- =3 ._'L_BL'" - -
(V _02529.)5 "gaci.azp ’ P=“<T>

Note: - The Equations look very similar

- Polarizability, index of refraction, etc
will be very different in some regimes

- Notably, the model is no longer linear
in and will lead to phenomena like
saturation and wave mixing

- represents quantum fluctuations
driven by the empty modes of the EM
field, a process also responsible for
spontaneous decay.

Note: Do not identify ()ﬁ") and with
Stimulated and spontaneous emission.
Those labels are not meaningful here.

Atom-field interaction

Hamiltonian:

time-independent atomic Hamiltonian

: time-dependent driving term,
non necessarily a perturbation

Question: Time evolution of the atomic system?
Is there a steady state?

Schrodinger Eq.:

Expand in basis of eigenstates of

4y =2 0, 1@, Hl>=E,d>
n



Quantum Theory of Light-Matter Interaction

Atom-field interaction

Hamiltonian:

time-independent atomic Hamiltonian

: time-dependent driving term,
non necessarily a perturbation

Question: Time evolution of the atomic system?
Is there a steady state?

Schrodinger Eq.:

Expand in basis of eigenstates of

4y =2 0,8 1@, Hl8>=E,d>
n

Pluginto S.E. »

Take scalar product w/ on both sides »

On vector-matrix form this can be written

« S.E.in rep.
Still exact!




Atom-Light Interaction: 2-Level Approximation

General observation: Parity selection rule

- Atoms apd moIecuI.es often b(i:l'!ave as if they Definition: ¥~ —¥ is a reflection through the origin
have a single, dominant transition frequency

- We expect this when the freq. of the driving Atomic Hamiltonian H«& ‘_1 » H(#)= H(-¥)
is resonant with one transition . . . .
and far off resonance with all others. » Eigenstates ((F) = ’—;‘CP(J) = C?(}‘ (1)

“+” for even parity  two reflections
“” for odd parity equals the identity

Interaction The dipole  is a vector operator B
transforms like a vector when V" — —T
— 1>
* Thus and
State space , {h D, 12>] Fedy,
~L s only when

and have opposite parity

State vector

No dipole moment in

Schraod. eq. Parity rule: energy eigenstate!

i ét;oe“'“’£+ ce)
o3 (EE,& % c) »

Vi (&) = -
V,, ) = -

1=

=)

Interaction

=




Atom-Light Interaction: 2-Level Approximation

Parity selection rule
Definition: ¥~ ~T is a reflection through the origin

Atomic Hamiltonian H '—f- » H(F)= H(-¥)

» Eigenstates ((7) = ‘iCP(:ﬂ = C?(}‘["FJ)

“+” for even parity  two reflections
“” for odd parity equals the identity

The dipole s a vector operator B

. ouly [
transforms like a vector when v — —Y

Thus and

only when

and have opposite parity

No dipole moment in

Parity rule: energy eigenstate!

We define

E, ~
w)_':"ﬂ-Ef E

] ’

597 1
Wy = 'l—’?(q_‘ éEo/& } interaction energy is v
XL! = )X‘AQ.[' éEo/’&

=D

L Rabi frequency

x a
Xag = far- (EE YT %X,
Koy = Qg CEE MY %X,y

Note:

Plug into (S. E.) to get

i, = —.;__ (X e™E+ X5 ™) a,y

Lo ( ~ # it
tGy = (l\)y_lal" 3 (:'Xy_{@ we +><122" >a4




Atom-Light Interaction: 2-Level Approximation

We define

w, < FamBq g, =0
:&_

C Rabi frequency

X?—l = ﬂ\“‘“. éEo/&

Switch to rotating frame (slow variables)

Cole) = A lL)s  C )=y (4] '™

-

Yoy = ;ﬁ(q_' éEo/»&' } interaction energy is /@D')C

x a
=m . E +-
Note: {X” TPa (5“ AT E Xy,
Xy = g CEEJY* X,

Plug into (S. E.) to get

Cyt)=- 4 (X, e 2wk ) o)

i) = (- W) G L) - (1, +X7F e294)C, ()

Rotating Wave Approximation (RWA)

Very important, equivalent to resonant approximation

+120
Termsocz' &

for variations in

average to zero on time scale

— -

i, = —’[i (X, e + %5 V%) ay

‘A A _ ~1 W A il
iGy= Wy, By -5 (X e W+ ™) g,

i (detuning)

Exactly Solvable !




Atom-Light Interaction: 2-Level Approximation

Switch to rotating frame (slow variables)

Cole) = GylL)s  C,[)=0,te) ™

P

Cyte)=- L (X e W E X C o)
iélfi):(wufw)chL)—: (g X e X¢)C, (t)

Rotating Wave Approximation (RWA)

Very important, equivalent to resonant approximation

+120
Terms <c2*' 2V E

for variations in

P

average to zero on time scale

i (detuning)

Exactly Solvable !

To simplify, make a global phase choice such that

Xy, = fin-ﬁEo/;é = X isreal (not required)
-

Simplest 2-level equations

iC,[4) =-3 ¥C, (&)
1gte) = AL, ) - 7 XC,(2)

Rabi Solutions for  C,(0)=2C,(0) =0

C, 14 = ( cos 2t i L g, J"'f) e

- X Ne|  ~1AL)
cl&~(1~—§, l)e =

X: Rabifreq. A : Detuning

X2+Al: Generalized Rabi freq.
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Atom-Light Interaction: 2-Level Approximation

To simplify, make a global phase choice such that

Xy, = 4ty €E,/% = X isreal (not required)

3

Simplest 2-level equations

iC,[4) =-3 XC, ()
180tt) = AL ) - 7 xC, ()

Rabi Solutions for  C,(0)=1, C,(0) =0

A Qt| ~t
C,,[éB:(Cos—%;Ed-/Ig l)g/lé‘ﬁ/l

Cylt = ( Uiy J;*’) o1t

X: Rabifreq. A : Detuning

X2+Al: Generalized Rabi freq.

Note: The Rabi Solutions give us the entire state,
in the lab (a’s) and rotating (c’s) frames

— -

We have maximum information about the system
and can make any predictions allowed by QM

Probabilities of finding the atomin |17, [2):

)
Riy=1c,1*= 12(1+~—) L X cosnt

@7_(-6\3[59_6£311=';:—>% [4~ o 2t




Atom-Light Interaction: 2-Level Approximation

Note: The Rabi Solutions give us the entire state, Note: All 2-level systems are isomorphic
in the lab (a’s) and rotating (c’s) frames

— -

We have maximum information about the system

Equivalent Observables
Equivalent Phenomena

The Rabi problem was first solved in ESR and

and can make any predictions allowed by QM NMR, for spin-1/2 particles with a magnetic
moment X driven by a magnetic field B
Probabilities of finding the atomin |17, [2): with interaction H =/ZZ-

- 2-level systems are now often called qubits

Dressed States
The 2-level egs. in the RWA look like a S.E. with

The eigenstates of HRw p are called Dressed States

The DS are stationary only in the Rotating Frame.

In the Lab Frame (Schrodinger Picture) they are
periodic, oscillating w/frequency (0
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Atom-Light Interaction: 2-Level Approximation

We pick linear polarization so E_F—a is real-valued This gives us
and \/‘1 =V, =V ® The egs for the a’s are
d* L) o 20 “‘-ﬁ \"4 9. 9y
. : o T K> = 20 (a5~ a,!
7310.? = ‘(E«,C{f+v0lf) (dtl o )T = ([a,>~1a,!")
. _ LW, o ) 9
%a, = -i(E,0,+v0,) = 22 Ji (i ) (1a1M- [0y 1Y)
With this we have ’EL =<1 [’((7 [2% : dipole matrix element

Q—afaz = (Gf 6, + 030y )

ot E _E To wrap up, we need to know a bit about real,
= - Q 1 Q*a —~ — (IQ.,[L IQZ[’LJ multilevel atoms. (We will revisit this soon)
%f—/
o Pick linear polarization so £ is real-valued.
Differentiating again gives us Pick quantization axis along £ ® ’Ktm = /Ktu__g
& (afay) =-uw afay - % (la, 120, ) -
~hd (Y (!a,vhm,r’ﬂ
Agl & AP oy . .
(a—;} Wo><"">= y> ([aql— [02()

Looking at the eq. for < /X\') suggests we should
add the complex conjugate and multiply w ’(—ﬁu
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Atom-Light Interaction: 2-Level Approximation

This gives us

9 ~ -
(EL +w,‘~)<ﬁ> = e ToY (g 1%~ a,l*)

dt* =
2 o (i) (a2~ 10y ]?)

- e y({t} (’(‘

;6?(1, =<1 [1{7 2% : dipole matrix element

To wrap up, we need to know a bit about real,
multilevel atoms. (We will revisit this soon)

Pick linear polarization so £ is real-valued.
Pick quantization axis along £ ® i, - /(\u__&»

Compare to Classical Equation of Motion

olL v -—ahé"’

L
la, -~ 1

The two egs. have the same form if .
lo,["~ 0

This is the case for

AKX Limit of weak
Or when

N 2R Excitation !
4

Decay rate of 127

Oscillator Strength | .0 = 1M°°°

{n

Like the classical equation,
but with modified polarizability !
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