Begin 01-23-2025

Classical Theory of Light-Matter Interaction

Self-consistent, fully classical description

Light-Matter Interaction

The Electromagnetic Field: Basic Egs. in Sl Units

Electromagnetic Field ==» Atom/Molecule/Solid

t )

Motivation: We will

Develop Concepts ol(ww), v L

Develop Intuition

Classical is often adequate, sometimes accurate

A Quantum Theory has classical limits &)
Identify/understand regime of validity

The Classical description is a useful starting
point for Nonlinear Optics

Maxwell’s eqgs.

( no free charges, currents &) dielectrics)

(i) S7- 8 =Q =0 5: Dielectric displacement
(ii) V.g =0 g: Magnetic induction
(i) Ux g-- __-1? E’: Electric field
ot
(iv) Qxﬁ = ;—'-D-r:'? F?: Magnetic field

Material Response:

.,

(v) § = o H+ /TA’ < Non-magnetic E> Il7| =0

5 > Info about response in
(vij D=&E + P | %= dipole moment density
(polarization density)




Light-Matter Interaction

The Electromagnetic Field: Basic Egs. in Sl Units

Maxwell’s eqs.

( no free charges, currents ® dielectrics )

(i) 7 6 =Q=0 f)': Dielectric displacement
(ii) V.E =0 g: Magnetic induction
(i) UxE=- _3_@ E; Electric field

ot
(iv) ¢OxH= w«-? Fr’: Magnetic field

We need equations that describe:

- the behavior of E for given ©

- the medium response £ for given B

Wave Equation:

(v) § = pH+ M < Non-magnetic [> ﬂ7l =0

5 . Info about response in
(vi) 8:z5E+P | e dipole moment density
(polarization density)

Take curl of (iii), then use (iv)

- - Bé_— - a\-D
VX(VXE)— an-—"t_-— -—-lea) »'62-

Next, use the identity

Vx(Vx é): V(Dvg)- VLE

to obtain D=v(v.E)= /ul

o5 =

Finally, let p- £,E+ £ anduse 8,/'» ==

to obtain

- ais 1 b‘>~P
—VCV-E)M?"-E:&_ et | £t Ot

This is the Wave Equation, still exact in this form
2



Light-Matter Interaction

We need equations that describe:

- the behavior of E for given £

- the medium response £ for given B

Wave Equation:

Take curl of (iii), then use (iv)

2 bY:] -
Vx(VxE)=- Vs = - zwa) %L

Next, use the identity
Vx(VxE)= (0 B)- V' E

to obtain D=vy(v. E)_-/A v
t

5

Finally, let 5= E,E+ P and use £a/ll, = =

to obtain

- E 1 2%
“7(‘7'5)*‘723‘& e T gt BEr

This is the Wave Equation, still exact in this form

Transverse Fields

-
Definition: a field for which V- E =0
is Transverse

A 5

Example: a plane wave, E['r"é) 2 E[ﬂ ',
where EH—)_I?, is transverse.
The physical field is Re [E (7 4]

For transverse fields the wave equation
simplifies to

2
2"”_5_5_%_1_ 2t
VIE-535uf Tigha -8

This version of the wave equation can be a
poor approximation in non-isotropic media!



Light-Matter Interaction

Transverse Fields Isotropic Media
-~
Definition: a field for which V-E =0 Absent a preferred direction, the mduced P
is Transverse must be parallel to the driving field £
- - o Linear response, most general case:
Example: a plane wave, E(7 )= E(¢)e'* ",
= - ., = =» —
where E(#_L K, is transverse. O(t) = £°El£) + P(%)

The physical field is Re [E(7 ] - s Bl)es [;, RV Ere)
= & 0 )

-0

. . where the response function R(£-+') is a scalar
For transverse fields the wave equation

simplifies to and we have R(T)=0 for T<XO

E _ _'-L ,_a__ 3 Take 7-on botbh sides, divide by &, & use M.E. (i)
T E ot 9¢

31!0,1,

V2E- 2

= £
VD)= -Bit)re, [ o' Rut-¢)9.Ele)=0
-0

This version of the wave equation can be a - + -
poor approximation in non-isotropic media! » V- E%) =~f d¢'R(£-4)V-£(¢) forall £
~D

It follows that - E(£) = 0 ( transverse) for all £
OR RIT)=-L1[T)




Light-Matter Interaction

Isotropic Media

-
Absent a preferred direction, the indt_uged P
must be parallel to the driving field E

Linear response, most general case:
- -
D) = &,Elt)+ Pl)

" t
= goEli)Jraofdt'R&-t')E[{')

-0
where the response function R (£ -+ ) is a scalar
and we have R(T)=0 for T<O

Take V- on both sides, divide by & & use M.E. (i)

- g
VOl =s Z-Ew)+e, [ db' Rit-t1)9.Elw)=0
-0
. + .
» V-EW® ="f dt' R -4 )V-£(¢) forall £
~

It follows that - E(£) = 0 ( transverse) for all £
OR RI(T)=-19[T)

Note: if R(T)« 3(T) (instantaneous response) then

£, d{: R[£-¢ElY) = & (xeze)
L susceptibility

The case R[T) =-24(T) is an example of negative
susceptibility, %< 0 , which only occurs in certain
engineered metamaterials.

-

Electric fields are transverse in linear,
isotropic dielectric media

(including the vacuum)

p
(e

Wave Equation in vE-L
free space cl

A
e




Light-Matter Interaction

Note: if R(T)« 3(T) (instantaneous response) then

g, dﬁ R[E- t‘)l'—_'(i') E‘XE('&J

L susceptibility

The case R[T) =-24(T) is an example of negative
susceptibility, %< 0 , which only occurs in certain

engineered metamaterials.

-

Electric fields are transverse in linear,
isotropic dielectric media

(including the vacuum)

Wave Equation in V3E -
free space

|1
(e

Lot g
C! ¢

Monochromatic trial solution E(#+}= E(V') i

-
V2E (P s Ecrs Wt

Equation for the spatial component alone:
VE, 7 +IRPE (M =0, IR =%
I

Plane wave solutions

Optical Cavities: Here we need to solve the
wave equation subject to boundary conditions.
See, e. g., Millony & Eberly for examples such
as rectangular cavities, Fabryt-Perot etalons,
and spherical mirror resonators.




Light-Matter Interaction
Theory of Atomic Response

Newton:
2
So far, we have a model for the field. Next, we . - - —
need a model of how the constituents of the (i) ”al 2 "'H"] =—eEll, 4)- ’:e-nlrQ.n ’-L)
medium responds to the field.

-

d"
(ii) Me i el6)= e E(7, )¢ F, (e,,ﬂ

This will allow us to find the polarization density
-

P as function of the field E

This is a standard 2-body problem which we can
re-cast as in terms of relative and COM motion.

Classical “atom”

Simple model: We define:
nucleus + electron o . ", ™
l'en=x e X=fénsrb-?ﬂ Wl::—e' n cvme
no—>4 Lorentz Force Mot M
-5 v =
= B+ OxB R= Hefet Huln M= em ~m,
e\ /T =g (E+ U? 2) M
c. . A .
origin ~ 0 if non-relativistic X Relative coord. M  Reduced mass

-9
R Center-of-mass M Total mass




Light-Matter Interaction

Sub into (i), (ii) and rewrite:

Newton:
(I) - o(" (-&]-— Q’E‘(;' -l:) E‘['-_n 'i) Md.’-.. (2+Mn?+) D/~ Mp ~
ngy2'm " en' enI At =€ [ m E(R ;Vl_.x't)]
(ii) Mz;:;re‘(.é) Q.E(r -£)-rf? (e t) dl- -~ W
ny S Hr]
ma R=g E(me 2-&)+ E( e x,+)]
+B K¢ L(m,- Q
This is a standard 2-body problem which we can « 27" %3#2

re-cast as in terms of relative and COM motion.
Basic result, no approximations !

We define:
X = ;'Z,,, = Fo‘?:. m = ::& ~ W, Milloni & Eberly, Set R P X Mo
+m . .
o Wt T ) main text Throw away eq. for @
- .‘- n'n o=
R = c.[-\A M= Wle'-f- m, o~ m,
Electric Dipole approximation

Relative coord. M Reduced mass
Atomic dimensions Optical Wavelength

X
)
R Center-of-mass M  Total mass (%]~ 18 & A~ 10¥A




Light-Matter Interaction

Sub into (i), (ii) and rewrite:

mgk;z z Q[E(ii-g—"-?l-é)— E(R- ""’-?t)]

%’52 = E(R+M"2-L)+ E(2- ""’—3<‘,+)]

PR L m-m ) 2

Basic result, no approximations !

Milloni & Eberly, Set RaF, , X=1,

main text

Electric Dipole approximation

Throw away eq. for g

EDA: the field is nearly constant on the
scale of an atom

Good approximation: 15t order expansion in X

-
E(R- 223 ¢)x E(24) - 2e (R v) E ()
E(Reyet)s E(@4)+ Me (X v)E(Lw)
—_-

Atomic dimensions Optical Wavelength
(R~v18  « A~ 10%4

oA 5
— R = : M
M 5 e (R 9)Elet) co

w@’*? eB@Byr 2 o (7.7) B .4)

+E, (?) Rel. Coord.




Light-Matter Interaction

EDA: the field is nearly constant on the
scale of an atom

Good approximation: 1%t order expansion in X'

Physical Interpretation:

,f.“ =eX : electric dipole moment of the atom

-

The Egs. Of motion can then be recast as

AL 5
— R = :
M s e (R 9)Elt) com

Wld'z'? e,ﬁ(KQH-r e_(x V)F'((éj
—rFe”(?) Rel. Coord.

Mg_ 2 (-P)ERE) = F= -V, V(X L4
0%1? e E@y)+ R, (= -R V(R RA)

where V(% @ +)=- /'o"\-E{i‘-L)
1

i
electric-dipole interaction

Note: The COM Eq. is the foundation for a range

of laser Atom Traps and Optical Tweezers. We will
not explore this further in OPTI 544 lectures, but
good review articles can be found in the published
literature.

10




Light-Matter Interaction

Physical Interpretation:

17.‘ =eX : electric dipole moment of the atom

~_-.

The Egs. Of motion can then be recast as

a2 2l t) = F= % €
MEZzn'" (-P)ERE) = F= -V, V(X € +)

mgi;y =0 B(@u)+ R, ()=~ V(R & 4)

where \/(5?‘5,-&) =- f\-étfé'-k)
¢

The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:

X

”
.e
n oW = YIS
\ Y
resonance frequency
origin

This is meant as a model of the atomic response,
not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a

i
electric-dipole interaction

Note: The COM Eq. is the foundation for a range
of laser Atom Traps and Optical Tweezers. We will
not explore this further in OPTI 544 lectures, but
good review articles can be found in the published
literature.

point-like nucleus and a spherical electron cloud

Electron cloud Force from charge inside 7 as if

entire charge was at the center

Force from charge outside 7 is zero
’,3
Force F' o< S ocr

ot

nucleus harmonic restoring force

11




Light-Matter Interaction

The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:

X
”
.e
n o~ T F - 2>
en Mc})o X
resonance frequency
origin

This is meant as a model of the atomic response,
not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a
point-like nucleus and a spherical electron cloud

Electron cloud Force from charge inside 7 as if

entire charge was at the center

Force from charge outside 7 is zero

3
Force FOCr—zocr

"t

nucleus harmonic restoring force

Now substitute £, =-mw,% into eq. for X

Combine with 3—-1\!7‘{ /}{ -ex where N is the
number densnty of atoms. This relates the
macroscopic P to the microscopic ¥

Maxwell’s Equations

W h
€ now have The Lorentz model

.

Maxwell-Lorentz Equations
We can seek self-consistent
solutions to wave propagation

12



Light-Matter Interaction

Now substitute E;,, =-mw, ¥ into eq. for X Classical Model of Absorption & Dispersion
= Maxwell’s Eqs: Oscillating dipole loses energy
2 - ® Must include damping in Eq, of Motion
gz,_?d- W% =L E(R )
Note: In perfectly homogeneous media the

coherently scattered light from a collection of

] T T - . Lorentz oscillators interferes constructively

number density of atoms. This relq_.t.es the
macroscopic P to the microscopic ¥

0.0
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08O
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Maxwell’s Equations

We now have
The Lorentz model «— ) —

- No energy loss for a propagating fields

(See note set “Classical Light-Matter”)
Maxwell-Lorentz Equations
We can seek self-consistent

solutions to wave propagation QM to the rescue: Part of the radiation from

qguantum mechanical atoms is incoherent.

For now we add damping “by hand”




Light-Matter Interaction

Classical Model of Absorption & Dispersion

Maxwell’s Eqs: Oscillating dipole loses energy

® Must include damping in Eq, of Motion

Note: In perfectly homogeneous media the
coherently scattered light from a collection of
Lorentz oscillators interferes constructively
only in the forward direction ®»

o
3

8
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o
go
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o
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O
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o

No energy loss for a propagating fields
(See note set “Classical Light-Matter”)

QM to the rescue: Part of the radiation from
guantum mechanical atoms is incoherent.

For now we add damping “by hand”

The Lorentz Model with Damping
We add an ad hoc friction term w/ 2 &« ),
T

damping rate

This gives us our basic equation for the atomic
response:

This type of differential equation generally has
both oscillating and decaying terms. Solutions
without source terms generally decay as ¢~ **

E) We adopt a trial solution

Driving Field ER ¢)= EEO@';‘W"ki)
- -1 =k
Response x(l?,-é)= e (we-k2]
t

complex amplitude



Light-Matter Interaction

The Lorentz Model with Damping
We add an ad hoc friction term w/ 2 « ),
t

damping rate

This gives us our basic equation for the atomic
response:

This type of differential equation generally has
both oscillating and decaying terms. Solutions
without source terms generally decay as ¢

¥ We adopt a trial solution

Driving Field ER ¢)= EEO@'”W"-"‘ki)
- -1 =k
Response x(l?;é)= e (we-k2]
T

complex amplitude

- - > _ - CC/M) Eo
Solution for o : QA= w‘-w,’-+2i,@w
Physical Quantities:

Field
Re[E(R:4)] = £E,cos(ove)

Dipole ('§ real)
Re[filRt))= Re[eR(R4)]

P & (W) cos (i) 28 Sinfoie-e)
25 (02- o)y 3%est

)

3]

Note: % and £ generally oscillate out of phase

wLw, » /'(F &E in-phase
w=w, ® i lags E by T2
WP, » 5(_(: LagsE by T

Best to stick with complex notation !

15



Light-Matter Interaction

. = -~ - - (C/M\ Eo
Solution for & : a=-£ w‘-w,"-!-li,@w

Physical Quantities:

Field
Re[E(R:4)] = £E,cos(ooe)

Dipole (E real)
Re[ {7tz Re[eX(R4)]

P & (W0t cos (ue-ic)+ 2w Sn(ove-ke)

Note: % and £ generally oscillate out of phase

wLw, » ﬁ &E in-phase
w=w, ® i lags E by T2
WD, » % Lagsg by T

Best to stick with complex notation !

Video of driven — damped harmonic oscillator

https://www.youtube.com/watch?v=aZNnwQ8HJHU

Driven Mechanical
Oscillator

Complex polarizability:

) --' -~ -OJ "k

elim ot Wy-wt+ 280
Ty et-2iaR M (o - %) 1 8%0°




Light-Matter Interaction

Video of driven — damped harmonic oscillator

https://www.youtube.com/watch?v=aZNnwQ8HJHU

Driven Mechanical
Oscillator

Complex polarizability:

) -/ -, -00 "k
;gt:ex=c'52 HIx" k&)E“(w)EEO&r[ £-\g)

elim et Wy~ + 21R0
y ~0dt~2i000 M (W:--Na)l-_,_tfﬁzwz

xlev) =

Easy to show that if E('R"t) =S Eoef;(“"t’kz)
Ty |
and Pcl\!p

then the wave equation reduces to

2— ' —
(_K +'&Lc")£ Ee =

] ilede-
_RL K)o it -ue)

cr go 0

= plane wave solutions with k= n[w)w/c
where

Complex index of refraction



Light-Matter Interaction

Easy to show that if E(ﬁ't) = gEoe,
- b~
and P=Npu

then the wave equation reduces to

= plane wave solutions with k= nfw) e
where

- i1(wt-k2)

T N (w 1
itz %[H— )]=%"—me3

Complex index of refraction

Complex Index of Refraction — Physical
discussion

et | Nlw)= Nylw)+in, ()

- W
Plane wave propagation <= N(w) Ve
E[&ﬂ;) - é‘ E,C’:" (Wt -k3)

=2F e-:(%—[n(w)w/cjg)

(-]
g E, e_—ﬂ;(w)co%/c e—;w[-é—ng(w)a&;)

We can now identify

C
eon; lw)

C
Nalw)

- attenuation length

<« phase velocity

18



Light-Matter Interaction

Complex Index of Refraction — Physical
discussion

Let | Nlw)= Nylw)+in, ()

- W
Plane wave propagation = "(w) Ve

E[&'ﬁ) £E ~1 (Wt k)
:E:‘E —i(we - [n(w)ic]2)

___:g:E -1 (W) &Rl -nelw)2le)

We can now identify

C
Lon: (w)

C
Va(w)

- attenuation length

«—= phase velocity

Absorption

The intensity of a plane wave field E is

T, (2)= 3 Nolud) c&plEle 2 = T [0) & il 2/
=T, o Gwi2

where the absorption coefficient is

- 260 N Lw)

Possibility of gain?

No — there is no energy source!

19



Light-Matter Interaction

Absorption and Dispersion in Gases

Approximations:

Let

lw,~wl<«<w) W nearresonance

V)]~ 1 weakly polarizable

6\’:-"5\)2' e [Wa.’-w> [wd-w\ 'glﬁ)[o\k- U)

_ eYimw
w:—w’-—.‘l..' W %—w"lﬁ

(4

el &L-—w-f-.ﬁ

Furthermore

Noelev)

Ny = 4+ 5
o

= 1+£8,8«1

Expand to 1% order (11-53'(2 S+ eé

Putting it together

Net W,~¢)

$E,M0) (L el 13’

dispersive line shape

nacw) = 1¢

Net 2
NOE 3. 8
$EMW [y )+ B

Lorentzian line shape

General behavior:

He (@)

n ()

dispersion

absorption

-10 -5

10



Light-Matter Interaction

Putting it together

Nc’- 000 -cJ
$E,M0 (Lo oof-F f;’

dispersive line shape

V\.RCD»)) = 1¢f

Net 8
V':!:(""J = 3. 2
$&,m0 s oy p

Lorentzian line shape

General behavior:

He (@)

n (o)

/\ dispersion | 3 absorption
']

-10 -5

10

: : i
dispersion o<
for (Wa'w)

(W~ |> 2

Note:

absorption c< 3
(0v,-c)

© We can have loss-less dispersive media

Note: If we introduce the detuning A= (w;w)
we can rewrite nacw), VIT_(N) as

Net A
ﬂg[AX =1{f %’,Mw A’--f[},'
Net 8

15(8)= g m A+ 8

From the above we see that

C
()

MWKy for W>w, ®» »C

Superluminal propagation?

21



Light-Matter Interaction

1
(w,,—w) for

1 (W~ 2
(0,0}

dispersion o<

Note:

absorption cc

© We can have loss-less dispersive media

Note: If we introduce the detuning A= [wo-w)
we can rewrite nncw), VI:E(NJ‘as

Ne A
Lfgomw A"'['ﬁz'
_Net 8

i $8,m0 A?"f-ﬁL

Vlg[AX""l'f‘

n{a)

From the above we see that

C
Ng(w)

Ne(w)KL for L) w, ® »C

Superluminal propagation?

End 01-23-2025

Free Electrons

Consider the limit &) > w,

© effectively unbound electrons

This is a reasonable model of plasmas & metals

In this limit we have
eYm v
o) = — — -
W -‘\)"'lo () L)

(4
N(x Net Y+
- {._l N ~_Ne- _ __~p
alw) = \/1 : V1 Fmat =)/ o

We introduce the . o= Net
Plasma Frequency ° p- £m

22




Light-Matter Interaction

Free Electrons

Consider the limit &) > w,

© effectively unbound electrons

This is a reasonable model of plasmas & metals

In this limit we have
eYm

()= v -
x )- N"-ll (Y] M [>

/L / Net / Wp
N(w) = 1+ mf,.)?- "E

We introduce the . Net
Plasma Frequency * Eom

Let

End 01-23-2025

W, & W & Wp Nlcw) purely imaginary

0,~ w5 R - but no loss!

We now have

where

A100
< 954

0) 90 4
C 85 4
+ 804
Q 754
-

o 01

¥ 65

2(2.4- 26 e._-:wu- n(W)2/c)

- EEO e:';ﬁd't ei(a'/C) \’wl,ué

= e—-lw'&e—b(w)%

Reflection at surface,
penetration depth

~ 1/blw)

Metallic Coatings
Unpolarized Light, 45° AOI

1 .
Wavelength (pm)

23



End 01-23-2025

Examples of this kind of medium includes plasmas, and metals such as aluminum,

silver and gold which are known to be excellent mirrors for visible and IR
radiation.

Metallic Coatings
Unpolarized Light, 45° AOI

':100
\ 4
- 951
0 9.
g 85 _: === JV-Enhanced Aluminum (-F01, 250 nm - 450 nm)
M 4 ~— Protected Silver (-P01, 450 nm - 20 um)
46 80 — Protected Aluminum (-G01, 450 nm - 20 um)
Q 75- ~—Protected Gold (-M01, 800 nm - 20 um)
= 1 == Unprotected Gold (-M 03, 800 nm - 20 um)
0, 70 o
I 65 NS TN E— |
0.2 10 20

1
Wavelength (pm)

24



