Begin 01-23-2025

Light-Matter Interaction

Self-consistent, fully classical description

Electromagnetic Field - Atom/Molecule/Solid

Motivation: We will

- Develop <u>Concepts</u> $\mathscr{A}(\omega), \mathscr{N}, \mathscr{X}$
- Develop Intuition
- Classical is often adequate, sometimes accurate
- A Quantum Theory has classical limits Identify/understand <u>regime of validity</u>
- The Classical description is a useful starting point for Nonlinear Optics

The Electromagnetic Field: Basic Eqs. in SI Units

Maxwell's eqs.

(no free charges, currents 🌼 dielectrics)

(i)
$$\nabla \cdot \vec{D} = g = 0$$
 \vec{D} : Dielectric displacement

(iii)
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 \vec{E} : Electric field

(iv) $\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}$ Hagnetic field

 $\vec{\mathbf{R}}$: Magnetic induction

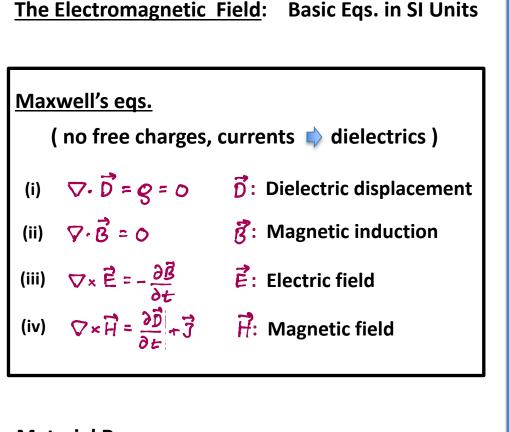
Material Response:

(v)
$$\vec{B} = \mu_0 \vec{H} + \vec{M}$$

(vi) $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$

⊨ Non-magnetic 🛛 📫 🖛 🗩

Info about response in dipole moment density (polarization density)



Material Response:

(v)
$$\vec{B} = \mu_0 \vec{H} + \vec{M}$$

(vi) $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$

Info about response in dipole moment density (polarization density) We need equations that describe:

- the behavior of $\vec{\vec{E}}$ for given $\vec{\vec{P}}$
- the medium response \vec{P} for given \vec{E}

Wave Equation:

Take curl of (iii), then use (iv)

$$\nabla \times (\nabla \times \vec{E}) = -\nabla \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{B}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Next, use the identity

 $\nabla x (\nabla x \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$

to obtain

$$\vec{D} = \nabla (\nabla \cdot \vec{E}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Finally, let $\vec{D} = \mathcal{E}_{0}\vec{E} + \vec{P}$ and use $\mathcal{E}_{0}M_{0} = \frac{1}{C^{2}}$

to obtain

$$-\nabla(\nabla,\vec{E})+\nabla^{2}\vec{E}=\frac{1}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}}+\frac{1}{\xi_{o}c^{2}}\frac{\partial^{2}\vec{p}}{\partial t^{2}}$$

This is the Wave Equation, still exact in this form

We need equations that describe:

- the behavior of $\vec{\mathbf{E}}$ for given $\vec{\mathbf{P}}$
- the medium response \vec{P} for given \vec{E}

Wave Equation:

Take curl of (iii), then use (iv)

 $\nabla \times (\nabla \times \vec{E}) = -\nabla \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{B}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$

Next, use the identity

$$\nabla x (\nabla x \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^{2} \vec{E}$$

to obtain

 $\vec{D} = \nabla (\nabla \cdot \vec{E}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$

Finally, let
$$\vec{D} = \mathcal{E}_{0}\vec{E} + \vec{P}$$
 and use $\mathcal{E}_{0}M_{0} = \frac{1}{C^{2}}$

to obtain

$$-\nabla(\nabla,\vec{E})+\nabla^{2}\vec{E}=\frac{1}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}}+\frac{1}{\varepsilon_{o}c^{2}}\frac{\partial^{2}\vec{p}}{\partial t^{2}}$$

This is the Wave Equation, still exact in this form

Transverse Fields

Definition: a field for which $\nabla \cdot \vec{E} = 0$ is <u>Transverse</u>

Example: a plane wave, $\vec{E}(\vec{r},t) = \vec{E}(t)e^{i\vec{k}\cdot\vec{r}}$, where $\vec{E}(t) \perp \vec{k}$, is transverse. The physical field is $Re[\vec{E}(\vec{r},t)]$

For transverse fields the wave equation simplifies to

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = \frac{1}{\varepsilon_c c^2} \frac{\partial^2}{\partial t^2} \vec{p}$$

This version of the wave equation can be a poor approximation in non-isotropic media!

Transverse Fields

Definition: a field for which $\nabla \cdot \vec{E} = 0$ is <u>Transverse</u>

Example: a plane wave, $\vec{E}(\vec{r},t) = \vec{E}(t) e^{i\vec{k}\cdot\vec{r}}$, where $\vec{E}(t) \perp \vec{k}$, is transverse. The physical field is $Re[\vec{E}(\vec{r},t)]$

For transverse fields the wave equation simplifies to

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = \frac{1}{\varepsilon_0 c^2} \frac{\partial^2}{\partial t^2} \vec{p}$$

This version of the wave equation can be a poor approximation in non-isotropic media!

Isotropic Media

Absent a preferred direction, the induced \vec{P} must be parallel to the driving field \vec{E}

Linear response, most general case:

$$\vec{D}(t) = \varepsilon_0 \vec{E}(t) + \vec{P}(t)$$
$$= \varepsilon_0 \vec{E}(t) + \varepsilon_0 \int_{-\infty}^{t} dt' R(t - t') \vec{E}(t')$$

where the response function $\mathcal{R}(t-t')$ is a scalar and we have $\mathcal{R}(\mathcal{T}) = 0$ for $\mathcal{T} < 0$

Take ∇ - on both sides, divide by \mathcal{E}_{ρ} & use M.E. (i)

 $\nabla \cdot \vec{D}(t) = \mathcal{E}_{o} \nabla \cdot \vec{E}(t) + \mathcal{E}_{o} \int_{-\infty}^{t} dt' \mathcal{R}(t - t') \nabla \cdot \vec{E}(t') = 0$ $\Rightarrow \nabla \cdot \vec{E}(t) = -\int_{-\infty}^{t} dt' \mathcal{R}(t - t') \nabla \cdot \vec{E}(t') \text{ for all } t$

It follows that $\nabla \cdot \vec{E}(t) = 0$ (transverse) for all tOR $\mathcal{R}(\mathcal{I}) = -2\delta(\mathcal{I})$

Isotropic Media

Absent a preferred direction, the induced \vec{P} must be parallel to the driving field \vec{E}

Linear response, most general case:

 $\vec{D}(t) = \varepsilon_0 \vec{E}(t) + \vec{P}(t)$ $= \varepsilon_0 \vec{E}(t) + \varepsilon_0 \int_{-\infty}^{t} dt' R(t-t') \vec{E}(t')$

where the response function R(t-t') is a scalar and we have R(T) = 0 for T<0

Take $\nabla \cdot$ on both sides, divide by \mathcal{E}_{o} & use M.E. (i) $\nabla \cdot \vec{D}(t) = \mathcal{E}_{o} \nabla \cdot \vec{E}(t) + \mathcal{E}_{o} \int_{-\infty}^{t} dt' \mathcal{R}(t - t') \nabla \cdot \vec{E}(t') = 0$ $\Rightarrow \nabla \cdot \vec{E}(t) = -\int_{-\infty}^{t} dt' \mathcal{R}(t - t') \nabla \cdot \vec{E}(t')$ for all t

It follows that $\nabla \cdot \vec{E}(t) = 0$ (transverse) for all t

 $OR \qquad R(T) = -2\delta(T)$

Note: if $\mathcal{R}(\mathcal{T}) \propto \delta(\mathcal{T})$ (instantaneous response) then

The case $\mathcal{R}(\mathcal{T}) = -2\delta(\mathcal{T})$ is an example of negative susceptibility, $\mathcal{X} < 0$, which only occurs in certain engineered metamaterials.

(including the vacuum)

Wave Equation in free space

$$\nabla^2 \vec{E} - \frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

Note: if $\mathcal{R}(\tau) \propto \delta(\tau)$ (instantaneous response) then

 $\mathcal{E}_{\bullet}\int_{-\infty}^{t} dt' \mathcal{R}[t-t']\vec{E}(t') = \mathcal{E}_{\circ} \times \vec{E}(t)$ f = susceptibility

The case $\mathcal{R}(\mathcal{T}) = -2\delta(\mathcal{T})$ is an example of negative susceptibility, $\mathcal{X} < 0$, which only occurs in certain engineered metamaterials.

Electric fields are transverse in linear, isotropic dielectric media

(including the vacuum)

Wave Equation in free space

$$\nabla^2 \vec{E} - \frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

Monochromatic trial solution $\vec{E}(\vec{r},t) = \vec{E}_{r}(\vec{r}) e^{-iNt}$

$$\nabla^2 \vec{E}_{o}(\vec{r}) e^{-i\omega t} + \frac{\omega^2}{c^2} \vec{E}_{o}(\vec{r}) e^{-i\omega t} = 0$$

Equation for the spatial component alone:

 $\nabla^2 \vec{E}_0(\vec{r}) + |\vec{k}|^2 \vec{E}_0(\vec{r}) = 0, |\vec{k}| = \frac{\omega}{c}$

Plane wave solutions

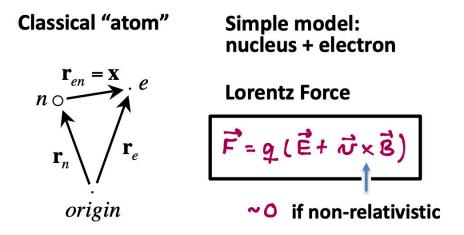
$$\vec{E}_{o}(\vec{r}) = \vec{\epsilon} E_{o} e^{i\vec{k}\cdot\vec{r}}, |\vec{\kappa}| = \omega/c$$

Optical Cavities: Here we need to solve the wave equation subject to boundary conditions. See, e. g., Millony & Eberly for examples such as rectangular cavities, Fabryt-Perot etalons, and spherical mirror resonators.

Theory of Atomic Response

So far, we have a model for the field. Next, we need a model of how the constituents of the medium responds to the field.

This will allow us to find the polarization density \vec{p} as function of the field \vec{E}



Newton:

(i)
$$m_n \frac{d^2}{dt^2} \vec{r}_n(t) = -e\vec{E}(\vec{r}_n, t) - \vec{F}_{en}(\vec{r}_{en}, t)$$

(ii) $m_e \frac{d^2}{dt^2} \vec{r}_e(t) = e\vec{E}(\vec{r}_e, t) + \vec{F}_{en}(\vec{r}_{en}, t)$

This is a standard 2-body problem which we can re-cast as in terms of relative and COM motion.

We define:

$$\vec{x} = \vec{r}_{en} = \vec{r}_{e} - \vec{r}_{n}$$
$$\vec{R} = \frac{m_{e}\vec{r}_{e} + m_{n}\vec{r}_{n}}{M}$$

$$m = \frac{m_{e}m_{n}}{m_{e}+m_{n}} \sim m_{e}$$
$$M = m_{e}+m_{n} \sim m_{n}$$

- XRelative coord.MZCenter-of-massM
 - M Reduced mass
 - M Total mass

Newton:

(i)
$$m_n \frac{d^2}{dt^2} \vec{r}_n(t) = -e\vec{E}(\vec{r}_n, t) - \vec{F}_{en}(\vec{r}_{en}, t)$$

(ii) $m_e \frac{d^2}{dt^2} \vec{r}_e(t) = e\vec{E}(\vec{r}_e, t) + \vec{F}_{en}(\vec{r}_{en}, t)$

This is a standard 2-body problem which we can re-cast as in terms of relative and COM motion.

We define:

$$\vec{x} = \vec{r}_{en} = \vec{r}_{e} - \vec{r}_{n} \qquad m = \frac{m_{e}m_{n}}{m_{e} + m_{n}} \sim m_{e}$$
$$\vec{R} = \frac{m_{e}\vec{r}_{e} + m_{n}\vec{v}_{n}}{M} \qquad M = m_{e} + m_{n} \sim m_{n}$$

 \vec{x} Relative coord.

center-of-mass

M Total mass

Sub into (i), (ii) and rewrite:

$$M \frac{d^{2}}{dt^{2}} \vec{R} = e \left[\vec{E} \left(\vec{R} + \frac{m_{n}}{M} \vec{X}_{i} t \right) - \vec{E} \left(\vec{R} - \frac{m_{e}}{M} \vec{X}_{i} t \right) \right]$$

$$m \frac{d^{2}}{dt^{2}} \vec{X} = \frac{e}{2} \left[\vec{E} \left(\vec{R} + \frac{m_{n}}{M} \vec{X}_{i} t \right) + \vec{E} \left(\vec{R} - \frac{m_{e}}{M} \vec{X}_{i} t \right) \right]$$

$$+ \vec{F}_{en}(\vec{X}) + \frac{1}{2} (m_{n} - m_{e}) \frac{d^{2}}{dt^{2}} \vec{R}$$

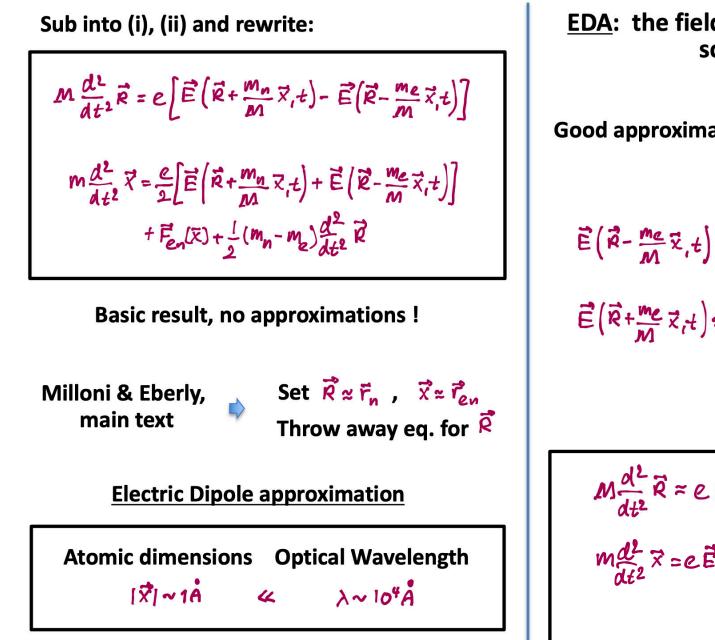
Basic result, no approximations !

Milloni & Eberly, main text

Set
$$\vec{R} \approx \vec{r}_n$$
, $\vec{X} \approx \vec{r}_{en}$
Throw away eq. for \vec{R}

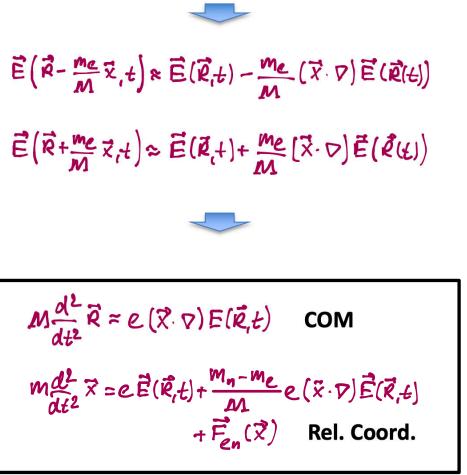
Electric Dipole approximation

Atomic dimensions Optical Wavelength $[\vec{x}] \sim 1\dot{A} \ll \lambda \sim 10^{4} \dot{A}$



EDA: the field is <u>nearly constant</u> on the scale of an atom

Good approximation: 1^{st} order expansion in \vec{x}



EDA: the field is <u>nearly constant</u> on the scale of an atom

Good approximation: 1^{st} order expansion in \vec{x}

 $\vec{E}\left(\vec{R}-\frac{m_{e}}{M}\vec{x}_{i}t\right)\approx\vec{E}\left(\vec{R}_{i}t\right)-\frac{m_{e}}{M}\left(\vec{X}\cdot\nabla\right)\vec{E}\left(\vec{R}_{i}t\right)$ $\vec{E}\left(\vec{R}+\frac{m_{e}}{M}\vec{x}_{i}t\right)\approx\vec{E}\left(\vec{R}_{i}t\right)+\frac{m_{e}}{M}\left[\vec{X}\cdot\nabla\right]\vec{E}\left(\vec{R}_{i}t\right)$

 $M \frac{d^{2}}{dt^{2}} \vec{R} = e(\vec{X} \cdot \nabla) E(\vec{R}, t) \quad \text{COM}$ $m \frac{d^{2}}{dt^{2}} \vec{X} = e\vec{E}(\vec{R}, t) + \frac{m_{n} - m_{e}}{M} e(\vec{X} \cdot \nabla) \vec{E}(\vec{R}, t)$ $+ \vec{F}_{en}(\vec{X}) \quad \text{Rel. Coord.}$

Physical Interpretation:

 $\vec{n} = e\vec{x}$: electric dipole moment of the atom

$$M \frac{d^{2}}{dt^{2}} \vec{R} \approx (\vec{p} \cdot \nabla) \vec{E} (\vec{R}_{l}t) = \vec{F} = -\nabla_{R} \vee (\vec{x}_{l} \vec{R}_{l}t)$$

$$m \frac{d^{2}}{dt^{2}} \vec{x} = e \vec{E} (\vec{R}_{l}t) + \vec{F}_{en} (\vec{x}) = -\nabla_{x} \vee (\vec{x}_{l} \vec{R}_{l}t)$$
where $\vee (\vec{x}_{l} \vec{R}_{l}t) = -\vec{p} \cdot \vec{E} (\vec{R}_{l}t)$
electric-dipole interaction

<u>Note</u>: The COM Eq. is the foundation for a range of laser Atom Traps and Optical Tweezers. We will not explore this further in OPTI 544 lectures, but good review articles can be found in the published literature.

Physical Interpretation:

 $\frac{1}{\sqrt{2}} = e^{\frac{1}{\sqrt{2}}}$: electric dipole moment of the atom

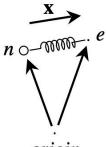
The Eqs. Of motion can then be recast as

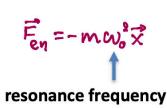
$$M \frac{d^{2}}{dt^{2}} \vec{R} \approx (\vec{\eta} \cdot \nabla) \vec{E} (\vec{R}_{l}t) = \vec{F} = -\nabla_{R} \vee (\vec{x}_{l} \vec{R}_{l}t)$$
$$m \frac{d^{2}}{dt^{2}} \vec{x} = e \vec{E} (\vec{R}_{l}t) + \vec{F}_{en} (\vec{x}) = -\nabla_{x} \vee (\vec{x}_{l} \vec{R}_{l}t)$$
$$where \quad \sqrt{(\vec{x}_{l} \vec{R}_{l}t)} = -\vec{\eta} \cdot \vec{E} (\vec{R}_{l}t)$$
$$electric-dipole interaction$$

<u>Note</u>: The COM Eq. is the foundation for a range of laser Atom Traps and Optical Tweezers. We will not explore this further in OPTI 544 lectures, but good review articles can be found in the published literature.

The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:

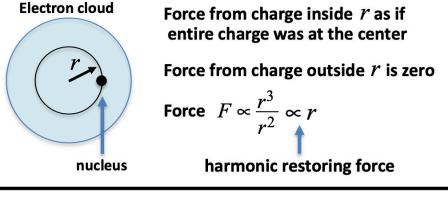




origin

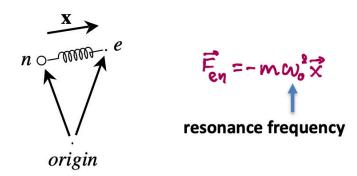
This is meant as a model of the atomic <u>response</u>, not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a point-like nucleus and a spherical electron cloud



The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:



This is meant as a model of the atomic <u>response</u>, not a model of the atom itself.

Force from charge inside r as if

entire charge was at the center

Force $F \propto \frac{r^3}{r^2} \propto r$

Force from charge outside r is zero

harmonic restoring force

Nevertheless: QM suggest the atom consists of a point-like nucleus and a spherical electron cloud

Electron cloud

Now substitute $\vec{F}_{en} = -m\omega_{en}^{2} \vec{x}$ into eq. for \vec{x}

$$\frac{\partial L}{\partial t^2} \vec{x} + \omega_0^2 \vec{x} = \frac{e}{m} \vec{E}(\vec{R}, t)$$

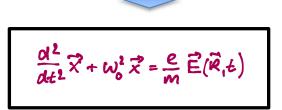
Combine with $\vec{P} = N\vec{r}$, $\vec{r} = e\vec{x}$ where N is the number density of atoms. This relates the macroscopic \vec{P} to the microscopic \vec{x}

We now have

Maxwell's Equations The Lorentz model

Maxwell-Lorentz Equations We can seek self-consistent solutions to wave propagation

Now substitute $\vec{F}_{en} = -m\omega_e^2 \vec{x}$ into eq. for \vec{x}



Combine with $\vec{P} = N\vec{n}$, $\vec{r} = e\vec{x}$ where N is the number density of atoms. This relates the macroscopic \vec{P} to the microscopic \vec{x}

We now have

Maxwell's Equations The Lorentz model

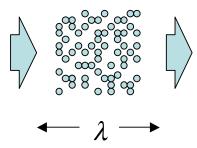
Maxwell-Lorentz Equations We can seek self-consistent solutions to wave propagation

Classical Model of Absorption & Dispersion

Maxwell's Eqs: Oscillating dipole loses energy

Solution Must include damping in Eq, of Motion

Note: In perfectly homogeneous media the coherently scattered light from a collection of Lorentz oscillators interferes constructively only in the forward direction \Rightarrow



No energy loss for a propagating fields (See note set "Classical Light-Matter")

QM to the rescue: Part of the radiation from quantum mechanical atoms is incoherent.

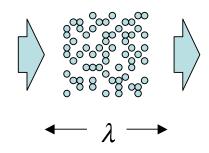
For now we add damping "by hand"

Classical Model of Absorption & Dispersion

Maxwell's Eqs: Oscillating dipole loses energy

Must include damping in Eq, of Motion

Note: In perfectly homogeneous media the coherently scattered light from a collection of Lorentz oscillators interferes constructively only in the forward direction is



No energy loss for a propagating fields (See note set "Classical Light-Matter")

QM to the rescue: Part of the radiation from quantum mechanical atoms is incoherent.

For now we add damping "by hand"

The Lorentz Model with Damping

We add an ad hoc friction term w/ $\beta \ll \omega_0$

damping rate

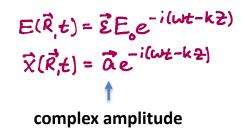
This gives us our basic equation for the atomic response:

$$\frac{d^2}{dt}\vec{x} + 2\beta\frac{d}{dt}\vec{x} + \omega_0^2\vec{x} = \frac{e}{m}\vec{E}(\vec{R},t)$$

This type of differential equation generally has both oscillating and decaying terms. Solutions without source terms generally decay as $e^{-\beta t}$

We adopt a trial solution

Driving Field Response



The Lorentz Model with Damping

We add an ad hoc friction term w/ $\beta \ll \omega_0$

damping rate

This gives us our basic equation for the atomic response:

 $\frac{\partial^{1}}{\partial t}\vec{x} + 2\beta\frac{\partial}{\partial t}\vec{x} + \omega_{0}^{2}\vec{x} = \frac{e}{m}\vec{E}(\vec{R},t)$

This type of differential equation generally has both oscillating and decaying terms. Solutions without source terms generally decay as $e^{-\beta t}$

We adopt a trial solution

Driving Field

Response

$$E(\vec{R},t) = \vec{z}E_{e}e^{-i(\omega t - k2)}$$

$$\vec{\chi}(\vec{R},t) = \vec{\alpha}e^{-i(\omega t - k2)}$$

complex amplitude

Solution for $\vec{\mathbf{\alpha}}$:

$$\vec{a} = -\vec{\epsilon} \frac{(c/m)E_o}{\omega^2 - \omega_o^2 + 2i\beta\omega}$$

Physical Quantities:

Field $Re[\vec{E}(\vec{R},t)] = \vec{E}E_{cos}(\omega t)$ Dipole ($\vec{\epsilon}$ real) $Re[\vec{n}(\vec{R},t)] = Re[e\vec{X}(\vec{R},t)]$ $= \vec{z} E_{0} \frac{e^{2}}{m} \frac{(\omega_{0}^{2} - \omega^{2}) \cos(\omega_{0} + \kappa_{2}) + 2\beta \omega \sin(\omega_{0} + \kappa_{2})}{(\omega_{0}^{2} - \omega^{2}) + 4\beta^{2} \omega^{2}}$ <u>Note</u>: \vec{n} and \vec{E} generally oscillate out of phase $\omega \ll \omega_0 \Rightarrow \vec{7} \& \vec{E}$ in-phase $\omega = \omega_0 \Rightarrow \pi \operatorname{lags} \vec{\mathsf{E}} \operatorname{by} \pi/2$ $\omega \gg \omega_{0} \Rightarrow \vec{n}$ Lags \vec{E} by \mathcal{T}

Best to stick with complex notation !

Solution for $\vec{\alpha}$:

Physical Quantities:

Field

 $Re[\vec{E}(\vec{R},t)] = \vec{E}E_{cos}(\omega t)$

Dipole (\vec{z} real) Re[$\vec{\eta}(\vec{R},t)$]= Re[$e\vec{x}(\vec{R},t)$] = $\vec{z}E_{o}\frac{e^{2}}{m}\frac{(\omega_{b}^{2}-\omega^{2})\cos(\omega t-kz)+2\beta\omega\sin(\omega t-kz)}{(\omega_{o}^{2}-\omega^{2})+4\beta^{2}\omega^{2}}$

 $\vec{a} = -\vec{\varepsilon} \frac{(C/m)E_o}{\omega^2 - \omega_o^2 + 2i\beta\omega}$

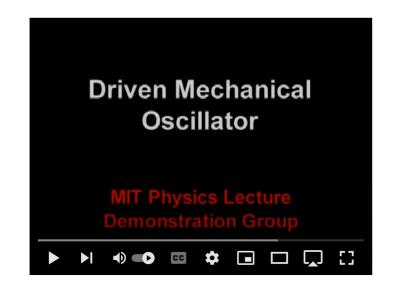
<u>Note</u>: \vec{r} and \vec{E} generally oscillate out of phase

 $\omega \ll \omega_{0} \implies \vec{r} \& \vec{E} \quad \text{in-phase} \\ \omega = \omega_{0} \implies \vec{r} \text{ lags } \vec{E} \text{ by } \texttt{T}/2 \\ \omega \gg \omega_{0} \implies \vec{r} \text{ Lags } \vec{E} \text{ by } \texttt{T}$

Best to stick with complex notation !

Video of driven – damped harmonic oscillator

https://www.youtube.com/watch?v=aZNnwQ8HJHU



Complex polarizability:

$$\vec{\eta} = e\vec{x} = e\vec{\alpha}e^{-i(\omega t - k2)} \equiv \alpha(\omega)\vec{z}E_0e^{-i(\omega t - k2)}$$
$$\alpha(\omega) = \frac{e^{2/m}}{\omega_0^2 - \omega^2 - 2i\beta\omega} = \frac{e^2}{m}\frac{\omega_0^2 - \omega^2 + 2i\beta\omega}{(\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2}$$

<section-header>

Complex polarizability:

$$\vec{r} = e\vec{x} = e\vec{a}e^{-i(\omega t - kt)} \equiv \alpha(\omega)\vec{z}E_0e^{-i(\omega t - kt)}$$
$$\alpha(\omega) = \frac{e^{2/m}}{\omega_0^2 - \omega^2 - 2i\beta\omega} = \frac{e^2}{m}\frac{\omega_0^2 - \omega^2 + 2i\beta\omega}{(\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2}$$

Easy to show that if $\vec{E}(\vec{R},t) = \vec{z} \vec{E}_{e}e^{-i(\omega t - kz)}$ and $\vec{P} = N\vec{p}$

then the wave equation reduces to

$$-\kappa^{2} + \frac{\omega^{2}}{c^{2}} \hat{\varepsilon} = e^{i(\omega t - \kappa^{2})} = -\frac{\omega^{2}}{c^{2}} \frac{N \alpha(\omega)}{\varepsilon_{o}} \hat{\varepsilon} = e^{-i(\omega t - \kappa^{2})}$$

⇒ plane wave solutions with $k = n(\omega)^{\omega/c}$ where

$$K^{2} = \frac{\omega^{2}}{c^{2}} \left[1 + \frac{N \kappa(\omega)}{\varepsilon_{o}} \right] = \frac{\omega^{2}}{c^{2}} N(\omega)$$

Complex index of refraction

Easy to show that if $\vec{E}(\vec{R},t) = \vec{z}E_{e}e^{-i(\omega t - kz)}$ and $\vec{P} = N\vec{n}$

then the wave equation reduces to

$$\left(-\kappa^{2}+\frac{\omega^{2}}{c^{2}}\right)\vec{\varepsilon} \in \vec{\varepsilon} e^{-i(\omega t-\kappa 2)} = -\frac{\omega^{2}}{c^{2}}\frac{N\alpha(\omega)}{\varepsilon_{0}}\vec{\varepsilon} \in \vec{\varepsilon} e^{-i(\omega t-\kappa 2)}$$

⇒ plane wave solutions with $k = n(\omega)^{\omega/c}$ where

$$K^{2} = \frac{\omega^{2}}{c^{2}} \left[1 + \frac{N \kappa(\omega)}{\varepsilon_{o}} \right] \equiv \frac{\omega^{2}}{c^{2}} N(\omega)$$

Complex index of refraction

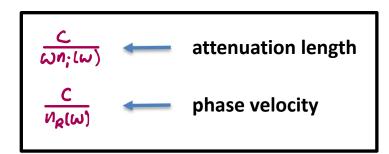
Complex Index of Refraction – Physical discussion

Let
$$n(\omega) = n_{R}(\omega) + i n_{i}(\omega)$$

Plane wave propagation
$$k = n(\omega)^{\omega/c}$$

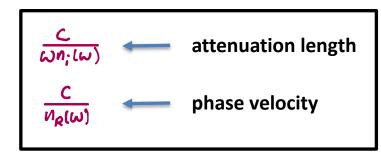
 $\vec{E}(z,t) = \vec{z} E_{o} e^{-i(\omega t - kz)}$
 $= \vec{z} E_{o} e^{-i(\omega t - [n(\omega)\omega/c]z)}$
 $= \vec{z} E_{o} e^{-n;(\omega)\omega z/c} e^{-i\omega[t - n_{R}(\omega)z/c]}$

We can now identify



Complex Index of Refraction – Physical discussion Let $n(\omega) = n_{R}(\omega) + i n_{i}(\omega)$ Plane wave propagation $k = n(\omega)^{\omega/c}$ $\vec{E}(z_{i}t) = \vec{z} E_{o}e^{-i(\omega t - kt)}$ $= \vec{z} E_{o}e^{-i(\omega t - (n(\omega))\omega/c)t}$ $= \vec{z} E_{o}e^{-i(\omega t - (n(\omega))\omega/c)t}$

We can now identify



Absorption

The intensity of a plane wave field \mathbf{E} is

 $I_{\omega}(2) = \frac{1}{2} n_{R}(\omega) C \mathcal{E}_{0} [E(C,2)]^{2} = I_{0}(0) e^{-2n_{1}(\omega) \omega 2/c}$ $\equiv T_{0} e^{-A(\omega)2}$

where the absorption coefficient is

$$A(\omega) \equiv 2n_{\rm T}(\omega)^{\omega}/_{\rm C} = \frac{2\omega}{c} \operatorname{Tm}\left[\left(1 + \frac{N\kappa(\omega)}{\varepsilon_{\rm o}}\right)^{\prime /_{\rm T}}\right]$$

Possibility of gain?

Absorption and Dispersion in Gases

Approximations:

$ \omega_0-\omega \ll\omega_0,\omega$	near resonance
In(w)]~1	weakly polarizable

Let
$$\omega_{b}^{2} - \omega_{c}^{2} = (\omega_{o} + \omega)(\omega_{o} - \omega) \approx 2\omega(\omega_{o} - \omega)$$

 $\alpha(\omega) = \frac{e^{2}/m}{\omega_{o}^{2} - \omega^{2} - 2i\beta\omega} = \frac{e^{2}/2m\omega}{\omega_{o} - \omega - i\beta}$
 $= \frac{e^{2}}{2m\omega} \frac{\omega_{o} - \omega + i\beta}{(\omega_{o} - \omega)^{2} + \beta^{2}}$

Furthermore

$$n(\omega)^2 = 1 + \frac{N\alpha(\omega)}{\varepsilon_0} = 1 + \varepsilon, \varepsilon \ll 1$$

Expand to 1st order $(1+\mathcal{E})^{\frac{1}{2}} \approx 1+\frac{\mathcal{E}}{2}$

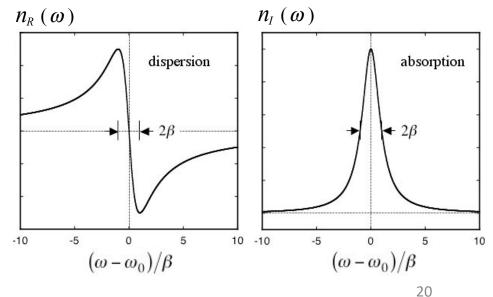
Putting it together

$$n_{R}(\omega) = 1 + \frac{Ne^{2}}{4\epsilon_{o}m\omega} \frac{\omega_{o}-\omega}{(\omega_{o}-\omega)^{2}+\beta^{2}}$$

dispersive line shape
$$N_{T}(\omega) = \frac{Ne^{2}}{4\epsilon_{o}m\omega} \frac{\beta}{(\omega_{o}-\omega)^{2}+\beta^{2}}$$

Lorentzian line shape

General behavior:



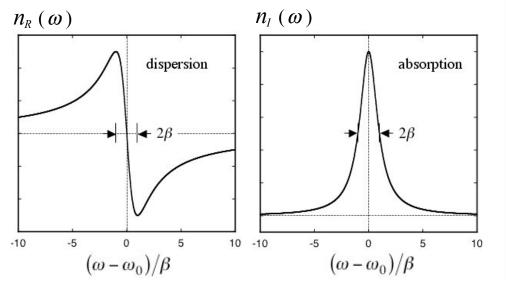
Putting it together

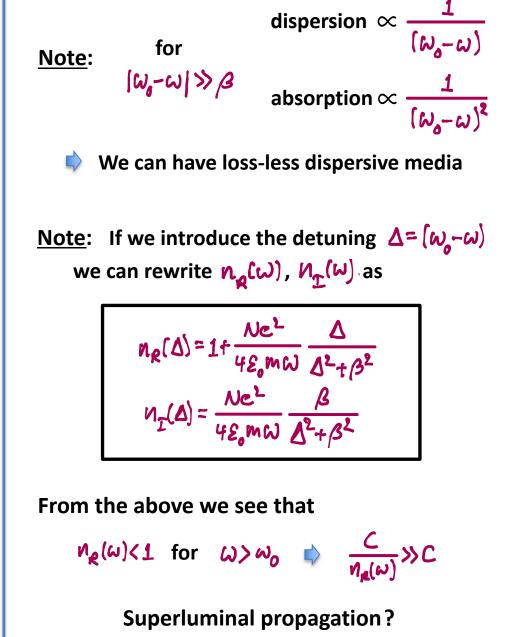
$$n_{R}(\omega) = 1 + \frac{Ne^{2}}{4\epsilon_{o}} \frac{\omega_{o} - \omega}{(\omega_{o} - \omega)^{2} + \beta^{2}}$$

dispersive line shape
$$N_{T}(\omega) = \frac{Ne^{2}}{4\epsilon_{o}} \frac{\beta}{(\omega_{o} - \omega)^{2} + \beta^{2}}$$

Lorentzian line shape

General behavior:





 $\frac{\text{dispersion}}{\text{Note:}} \propto \frac{1}{(\omega_o - \omega)} \qquad \text{for}$ $\frac{1}{(\omega_o - \omega)^2} \qquad [\omega_o - \omega] \gg \beta$

- We can have loss-less dispersive media
- <u>Note</u>: If we introduce the detuning $\Delta = (\omega_0 \omega)$ we can rewrite $n_0(\omega)$, $N_{T}(\omega)$ as

$$n_{R}(\Delta) = 1 + \frac{Ne^{2}}{4\varepsilon_{o}m\omega} \frac{\Delta}{\Delta^{2} + \beta^{2}}$$
$$n_{I}(\Delta) = \frac{Ne^{2}}{4\varepsilon_{o}m\omega} \frac{\beta}{\Delta^{2} + \beta^{2}}$$

From the above we see that

 $n_{R}(\omega) < 1$ for $\omega > \omega_{0} \Rightarrow \frac{C}{n_{R}(\omega)} \gg C$

Superluminal propagation?

Free Electrons

Consider the limit $\omega \gg \omega_0$

effectively unbound electrons

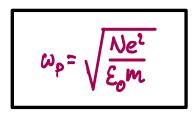
This is a reasonable model of plasmas & metals

In this limit we have

$$\alpha(\omega) = \frac{e^{2}/m}{\omega_{0}^{2} - \omega^{2} - 2i\beta\omega} \approx -\frac{e^{2}}{m\omega} \implies$$

$$n(\omega) = \sqrt{1 + \frac{N(\alpha)}{\varepsilon_{0}}} \approx \sqrt{1 - \frac{Ne^{2}}{\varepsilon_{0}m\omega^{2}}} \equiv \sqrt{1 - \frac{\omega_{p}^{2}}{\omega^{2}}}$$

We introduce the . <u>Plasma Frequency</u>



Free Electrons

Consider the limit $\omega \gg \omega_0$

effectively unbound electrons

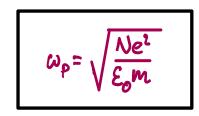
This is a reasonable model of plasmas & metals

In this limit we have

$$\alpha(\omega) = \frac{e^{2}/m}{\omega_{0}^{2} - \omega^{2} - 2i\beta\omega} \approx -\frac{e^{2}}{m\omega} \implies$$

$$n(\omega) = \sqrt{1 + \frac{N(\alpha)}{\varepsilon_{0}}} \approx \sqrt{1 - \frac{Ne^{2}}{\varepsilon_{0}m\omega^{2}}} \equiv \sqrt{1 - \frac{\omega_{p}^{2}}{\omega^{2}}}$$

We introduce the Plasma Frequency



Let
$$\left.\begin{array}{c} \omega_{0} \ll \omega \ll \omega_{\rho} \\ |\omega_{0} - \omega| \gg \beta \end{array}\right\}$$

ທ(ພ) purely imaginary - but no loss!

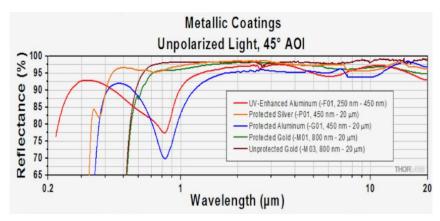
We now have

$$\vec{z}(z,t) = \vec{z}E_{0}e^{-i\omega[t-n(\omega)z/c]}$$
$$= \vec{z}E_{0}e^{-i\omega t}e^{i(z/c)}\sqrt{\omega^{2}-\omega_{p}^{2}}$$
$$= \vec{z}E_{0}e^{-i\omega t}e^{-b(\omega)z}$$

where

 $b(\omega) = -\frac{i}{c}\sqrt{\omega^2 - \omega_p^2}$

Reflection at surface, $\sim 1/b(\omega)$ penetration depth



Examples of this kind of medium includes plasmas, and metals such as aluminum, silver and gold which are known to be excellent mirrors for visible and IR radiation.

