Classical Theory of Light-Matter Interaction

Self-consistent, fully classical description

Electromagnetic Field Atom/Molecule/Solid

Motivation: We will

- Develop <u>Concepts</u> ແພງ, ທຸ %
- Develop Intuition
- Classical is often adequate, sometimes accurate
- A Quantum Theory has classical limits Identify/understand regime of validity
- The Classical description is a useful starting point for Nonlinear Optics

The Electromagnetic Field: Basic Eqs. in SI Units

Maxwell's eqs.

(no free charges, currents | dielectrics)

(i)
$$\nabla \cdot \vec{D} = g = 0$$

(i) $\nabla \cdot \vec{D} = g = 0$ \vec{D} : Dielectric displacement

(ii) $\nabla \cdot \vec{\mathcal{B}} = 0$ $\vec{\mathcal{B}}$: Magnetic induction

(iii)
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 \vec{E} : Electric field

(iv)
$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial E} + \vec{J}$$
 \vec{H} : Magnetic field

Material Response:

(v)
$$\vec{B} = \mu_0 \vec{H} + \vec{M}$$

(v) $\vec{B} = \mu_0 \vec{H} + \vec{M}$
Non-magnetic $\vec{N} = 0$ (vi) $\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$
Info about response in dipole moment density (polarization density)

The Electromagnetic Field: Basic Eqs. in SI Units

Maxwell's eqs.

(no free charges, currents | dielectrics)

(i)
$$\nabla \cdot \vec{D} = Q = 0$$

(i) $\nabla \cdot \vec{D} = g = 0$ \vec{D} : Dielectric displacement

(ii) $\nabla \cdot \vec{B} = 0$ \vec{g} : Magnetic induction

(iii)
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 \vec{E} : Electric field

(iv)
$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial E} + \vec{J}$$
 \vec{H} : Magnetic field

Material Response:

(vi)
$$\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$$

(polarization density)

We need equations that describe:

- the behavior of \vec{E} for given $\vec{\rho}$
- the medium response 🔁 for given 🖹

Wave Equation:

Take curl of (iii), then use (iv)

$$\nabla \times (\nabla \times \vec{E}) = -\nabla \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{B}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Next, use the identity

$$D \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$$

to obtain
$$\vec{D} = \nabla (\nabla \cdot \vec{E}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Finally, let $\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$ and use $\mathcal{E}_0 N_0 = \frac{1}{2}$

to obtain

$$-\nabla(\nabla \cdot \vec{E}) + \nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} + \frac{1}{\xi_0 c^2} \frac{\partial^2 \vec{p}}{\partial t^2}$$

This is the Wave Equation, still exact in this form

We need equations that describe:

- the behavior of \vec{E} for given \vec{o}
- the medium response 💆 for given 🖹

Wave Equation:

Take curl of (iii), then use (iv)

$$\nabla \times (\nabla \times \vec{E}) = -\nabla \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{B}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Next, use the identity

$$D \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$$

to obtain

$$\vec{D} = \nabla (\nabla \cdot \vec{E}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Finally, let $\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$ and use $\mathcal{E}_0 N_0 = \frac{1}{C^2}$

to obtain

$$-\nabla(\nabla \cdot \vec{E}) + \nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} + \frac{1}{\xi_0 c^2} \frac{\partial^2 \vec{p}}{\partial t^2}$$

This is the Wave Equation, still exact in this form

Transverse Fields

Definition: a field for which $\nabla \cdot \vec{E} = 0$ is <u>Transverse</u>

Example: a plane wave, $\vec{E}(\vec{r},t) = \vec{E}(t) e^{i\vec{k}\cdot\vec{r}}$, where $\vec{E}(t) \perp \vec{k}$, is transverse.

The physical field is $\text{Re}\left[\vec{E}(\vec{r},t)\right]$

For transverse fields the wave equation simplifies to

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = \frac{1}{\mathcal{E}_{,C}^2} \frac{\partial^2}{\partial t^2} \vec{\beta}$$

This version of the wave equation can be a poor approximation in non-isotropic media!

Transverse Fields

Definition: a field for which ∇⋅ € = 0 is <u>Transverse</u>

Example: a plane wave, $\vec{E}(\vec{r},t) = \vec{E}(t) e^{i\vec{k}\cdot\vec{r}}$, where $\vec{E}(t) \perp \vec{k}$, is transverse.

The physical field is $\text{Re}\left[\vec{E}(\vec{r},t)\right]$

For transverse fields the wave equation simplifies to

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = \frac{1}{\varepsilon_0 c^2} \frac{\partial^2}{\partial t^2} \vec{\rho}$$

This version of the wave equation can be a poor approximation in non-isotropic media!

Isotropic Media

Absent a preferred direction, the induced properties must be parallel to the driving field because it is a second control of the driving field because it is a second control

Linear response, most general case:

$$\vec{D}(t) = \mathcal{E}_0 \vec{E}(t) + \vec{P}(t)$$

$$= \mathcal{E}_0 \vec{E}(t) + \mathcal{E}_0 \int_{-\infty}^{t} dt' R(t - t') \vec{E}(t')$$

where the response function R(t-t') is a scalar and we have R(t) = 0 for t < 0

Take ∇- on both sides, divide by & use M.E. (i)

$$\nabla \cdot \vec{D}(t) = \mathcal{E}_{0} \nabla \cdot \vec{E}(t) + \mathcal{E}_{0} \int_{-\infty}^{t} dt' R(t-t') \nabla \cdot \vec{E}(t') = 0$$

It follows that $\nabla \cdot \vec{E}(t) = 0$ (Transverse) for all t

$$OR$$
 $R(T) = -2\delta(T)$

Isotropic Media

Absent a preferred direction, the induced property must be parallel to the driving field because of the

Linear response, most general case:

$$\vec{D}(t) = \varepsilon_0 \vec{E}(t) + \vec{P}(t)$$

$$= \varepsilon_0 \vec{E}(t) + \varepsilon_0 \int_{-\infty}^{t} dt' R(t-t') \vec{E}(t')$$

where the response function R(t-t') is a scalar and we have R(t) = 0 for t<0

Take ♥ on both sides, divide by & use M.E. (i)

$$\nabla \cdot \vec{D}(t) = \mathcal{E}_{0} \nabla \cdot \vec{E}(t) + \mathcal{E}_{0} \int_{-\infty}^{t} dt' R(t-t') \nabla \cdot \vec{E}(t') = 0$$

It follows that $\nabla \cdot \vec{E}(t) = 0$ (Transverse) for all t

OR
$$R(T) = -2\delta(T)$$

Note: if $R(\tau) \propto \delta(\tau)$ (instantaneous response) then

$$\mathcal{E}_{\bullet} \int_{-\infty}^{t} dt' \, \mathcal{R}[t-t'] \vec{E}(t') = \mathcal{E}_{\bullet} \times \vec{E}(t)$$

$$\text{susceptibility}$$

The case $\mathcal{R}(\mathcal{T}) = -2\delta(\mathcal{T})$ is an example of negative susceptibility, $\mathcal{X} < 0$, which only occurs in certain engineered metamaterials.

Electric fields are transverse in linear, isotropic dielectric media

(including the vacuum)

Wave Equation in free space

$$\nabla^2 \vec{E} - \frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

Note: if $R(\tau) \propto \delta(\tau)$ (instantaneous response) then

The case $\mathcal{R}(\mathcal{T}) = -2\delta(\mathcal{T})$ is an example of negative susceptibility, $\mathcal{X} < 0$, which only occurs in certain engineered metamaterials.

Electric fields are transverse in linear, isotropic dielectric media

(including the vacuum)

Wave Equation in free space

$$\nabla^2 \vec{E} - \frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

Monochromatic trial solution $\vec{E}(\vec{r}, t) = \vec{E}_{o}(\vec{r}) e^{-i\omega t}$

Equation for the spatial component alone:

$$\nabla^2 \vec{E}_0(\vec{r}) + |\vec{k}|^2 \vec{E}_0(\vec{r}) = 0$$
, $|\vec{k}| = \omega/c$

Plane wave solutions

Optical Cavities: Here we need to solve the wave equation subject to boundary conditions. See, e. g., Millony & Eberly for examples such as rectangular cavities, Fabryt-Perot etalons, and spherical mirror resonators.

Theory of Atomic Response

So far, we have a model for the field. Next, we need a model of how the constituents of the medium responds to the field.

This will allow us to find the polarization density \vec{p} as function of the field \vec{E}

Classical "atom"

Simple model: nucleus + electron

Lorentz Force

Newton:

(i)
$$m_n \frac{d^2}{dt^2} \vec{r}_n(t) = -e \vec{E}(\vec{r}_n, t) - \vec{F}_n(\vec{r}_n, t)$$

(ii)
$$m_e \frac{d^2}{dt^2} \vec{r}_e(t) = e \vec{E}(\vec{r}_e,t) + \vec{F}_{en}(\vec{r}_{en},t)$$

This is a standard 2-body problem which we can re-cast as in terms of relative and COM motion.

We define:

$$\vec{X} = \vec{r_e} = \vec{r_e} - \vec{r_n}$$
 $m = \frac{m_e m_n}{m_e + m_n} \sim m_e$

$$\vec{R} = \frac{m_e \vec{r}_e + m_n \vec{r}_n}{M} \qquad M = m_e + m_n \sim m_n$$

Newton:

(i)
$$m_n \frac{d^2}{dt^2} \vec{r}_n(t) = -e \vec{E}(\vec{r}_n, t) - \vec{F}_{en}(\vec{r}_{en}, t)$$

(ii) $m_e \frac{d^2}{dt^2} \vec{r}_e(t) = e \vec{E}(\vec{r}_e, t) + \vec{F}_{en}(\vec{r}_{en}, t)$

This is a standard 2-body problem which we can re-cast as in terms of relative and COM motion.

We define:

$$\vec{x} = \vec{r_e} = \vec{r_e} - \vec{r_n}$$
 $m = \frac{m_e m_n}{m_e + m_n} \sim m_e$

Relative coord.

M Reduced mass

Center-of-mass

M Total mass

Sub into (i), (ii) and rewrite:

$$M\frac{d^{2}}{dt^{2}}\vec{R} = e\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}_{i}t\right) - \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}_{i}t\right)\right]$$

$$m\frac{d^{2}}{dt^{2}}\vec{x} = \frac{e}{2}\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}, t\right) + \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}, t\right)\right]$$

$$+ \vec{F}_{en}(\vec{X}) + \frac{1}{2}(m_{n} - m_{e})\frac{d^{2}}{dt^{2}}\vec{R}$$

Basic result, no approximations!

main text

Electric Dipole approximation

Atomic dimensions Optical Wavelength

Sub into (i), (ii) and rewrite:

$$M\frac{d^{2}}{dt^{2}}\vec{R} = e\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}_{i}t\right) - \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}_{i}t\right)\right]$$

$$m\frac{d^{2}}{dt^{2}}\vec{x} = \frac{e}{2}\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}, t\right) + \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}, t\right)\right]$$

$$+ \vec{F}_{en}(\vec{X}) + \frac{1}{2}(m_{n} - m_{e})\frac{d^{2}}{dt^{2}}\vec{R}$$

Basic result, no approximations!

Milloni & Eberly, main text

Electric Dipole approximation

Atomic dimensions Optical Wavelength

EDA: the field is <u>nearly constant</u> on the scale of an atom

Good approximation: 1st order expansion in \$\vec{x}\$

$$\vec{E}(\vec{R} - \frac{m_e}{M}\vec{x}, t) \approx \vec{E}(\vec{R}, t) - \frac{m_e}{M}(\vec{x} \cdot \vec{r}) \vec{E}(\vec{R}(t))$$

$$\vec{E}(\vec{R} + \frac{me}{M}\vec{x}, t) \approx \vec{E}(\vec{R}, t) + \frac{me}{M}(\vec{X} \cdot \nabla) \vec{E}(\vec{R}(t))$$

$$M \frac{d^2}{dt^2} \vec{R} \approx e(\vec{X} \cdot \nabla) E(\vec{R}, t)$$
 COM

EDA: the field is <u>nearly constant</u> on the scale of an atom

Good approximation: 1st order expansion in \$\vec{x}\$

$$M \frac{d^2}{dt^2} \vec{R} \approx e(\vec{X} \cdot \nabla) E(\vec{R}, t)$$
 COM

$$m \frac{d^{2}}{dt^{2}} \vec{x} = e \vec{E}(\vec{R}, t) + \frac{m_{n} - m_{e}}{M} e(\vec{x} \cdot \vec{V}) \vec{E}(\vec{R}, t) + \vec{F}_{en}(\vec{x}) \quad \text{Rel. Coord.}$$

Physical Interpretation:

ポコピス: electric dipole moment of the atom

The Eqs. Of motion can then be recast as

$$M \frac{d^{2}}{dt^{2}} \vec{R} \approx (\vec{\eta} \cdot \nabla) \vec{E}(\vec{R}_{i}t) = \vec{F} = -\nabla_{R} V(\vec{x}_{i} \vec{R}_{i}t)$$

$$m \frac{d^{2}}{dt^{2}} \vec{x} = e \vec{E}(\vec{R}_{i}t) + \vec{F}_{en}(\vec{x}) = -\nabla_{x} V(\vec{x}_{i} \vec{R}_{i}t)$$

$$where \qquad V(\vec{x}_{i} \vec{r}_{i}t) = -\vec{\eta} \cdot \vec{E}(\vec{r}_{i}t)$$

electric-dipole interaction

Note: The COM Eq. is the foundation for a range of laser Atom Traps and Optical Tweezers. We will not explore this further in OPTI 544 lectures, but good review articles can be found in the published literature.

Physical Interpretation:

 $\vec{n} = e\vec{x}$: electric dipole moment of the atom

The Eqs. Of motion can then be recast as

$$M \frac{d^{2}}{dt^{2}} \vec{R} \approx (\vec{\eta} \cdot \nabla) \vec{E}(\vec{R}_{i}t) = \vec{F} = -\nabla_{R} V(\vec{x}_{i}\vec{R}_{i}t)$$

$$M \frac{d^{2}}{dt^{2}} \vec{x} = e \vec{E}(\vec{R}_{i}t) + \vec{F}_{en}(\vec{x}) = -\nabla_{x} V(\vec{x}_{i}\vec{R}_{i}t)$$

$$\text{where} \quad V(\vec{x}_{i}\vec{r}_{i}t) = -\vec{\eta} \cdot \vec{E}(\vec{r}_{i}t)$$

electric-dipole interaction

Note: The COM Eq. is the foundation for a range of laser Atom Traps and Optical Tweezers. We will not explore this further in OPTI 544 lectures, but good review articles can be found in the published literature.

The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:

This is meant as a model of the atomic <u>response</u>, not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a point-like nucleus and a spherical electron cloud

Force from charge inside r as if entire charge was at the center

Force from charge outside r is zero

Force
$$F \propto \frac{r^3}{r^2} \propto r$$

harmonic restoring force

Now substitute $\vec{F}_{e\eta} = -m\omega_o^2 \vec{x}$ into eq. for \vec{x}

$$\frac{\partial^2}{\partial t^2} \vec{X} + \omega_0^2 \vec{X} = \frac{e}{m} \vec{E}(\vec{R}, t)$$

Combine with $\overrightarrow{P} = N\overrightarrow{p}$, $\overrightarrow{r} = e\overrightarrow{x}$ where N is the number density of atoms. This relates the macroscopic \overrightarrow{P} to the microscopic \overrightarrow{x}

We now have

Maxwell's Equations
The Lorentz model

Maxwell-Lorentz Equations We can seek self-consistent solutions to wave propagation

Now substitute $\vec{F}_{e\eta} = -m\omega_o^2 \vec{x}$ into eq. for \vec{x}

$$\frac{d^2}{dt^2} \vec{X} + \omega_0^2 \vec{x} = \frac{e}{m} \vec{E}(\vec{R}_1 t)$$

Combine with $\vec{P} = N\vec{p}$, $\vec{r} = e\vec{x}$ where N is the number density of atoms. This relates the macroscopic \vec{P} to the microscopic \vec{x}

We now have

Maxwell's Equations
The Lorentz model

Maxwell-Lorentz Equations We can seek self-consistent solutions to wave propagation

Classical Model of Absorption & Dispersion