Light-Matter Interaction

Classical Theory of Light-Matter Interaction

Self-consistent, fully classical description

The Electromagnetic Field: Basic Egs. in Sl Units

Electromagnetic Field ==» Atom/Molecule/Solid

t |

Motivation: We will

Develop Concepts ol(ww), v L

Develop Intuition

Classical is often adequate, sometimes accurate

A Quantum Theory has classical limits ®
Identify/understand regime of validity

The Classical description is a useful starting
point for Nonlinear Optics

Maxwell’s eqgs.

( no free charges, currents ® dielectrics )

(i) S7- 8 =Q =0 5: Dielectric displacement
(i) V.g =0 g: Magnetic induction
(i) Ux g-- __-1? E’: Electric field
ot
(iv) Qxﬁ = ;—'-D-r:'? F?: Magnetic field

Material Response:

.,

(v) § = o H+ /TA’ < Non-magnetic » Il7| =0

Info about response in
<« dipole moment density

(vi) B=eE+P
(polarization density)
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Light-Matter Interaction

The Electromagnetic Field: Basic Egs. in Sl Units

Maxwell’s eqs.

( no free charges, currents ® dielectrics )

(i) 6 Q=0 f)': Dielectric displacement
(i) &- 8 O g: Magnetic induction
i) UxE=-028 E: Electric field

ot
(iv) ©UxH= @4-? Fr’: Magnetic field

We need equations that describe:

- the behavior of E for given ©

- the medium response £ for given B

Wave Equation:

()
< Non-magnetic » M=o

Info about response in
< dipole moment density
(polarization density)

Take curl of (iii), then use (iv)

- - Bé_— - a\-D
VX(VXE)— an-—"t_-— -—-lea) »'62-

Next, use the identity
Ux(VxE)=p (0 B)-OLE
to obtain

B=v(v.E) =-/A,%£§

o5 =

Finally, let p- £,E+ £ anduse 8,/'» ==

to obtain

- ais 1 b‘>~P
—VCV-E)M?"-E:&_ et | £t Ot

This is the Wave Equation, still exact in this form
3



Light-Matter Interaction

We need equations that describe:

- the behavior of E for given £

- the medium response £ for given B

Wave Equation:

Take curl of (iii), then use (iv)

2 bY:] -
Vx(VxE)=- Vs = - zwa) %L

Next, use the identity
Vx(VxE)= (0 B)- V' E

to obtain D=vy(v. E)_-/A v
t

5

Finally, let 5= E,E+ P and use £a/ll, = =

to obtain

- E 1 2%
“7(‘7'5)*‘723‘& e T gt BEr

This is the Wave Equation, still exact in this form

Transverse Fields

-
Definition: a field for which V- E =0
is Transverse

A 5

Example: a plane wave, E['r"é) 2 E[ﬂ ',
where EH—)_I?, is transverse.
The physical field is Re [E (7 4]

For transverse fields the wave equation
simplifies to

2
2"”_5_5_%_1_ 2t
VIE-535uf Tigha -8

This version of the wave equation can be a
poor approximation in non-isotropic media!



Light-Matter Interaction

Transverse Fields Isotropic Media
-~
Definition: a field for which V- E =0 Absent a preferred direction, the mduced P
is Transverse must be parallel to the driving field £
- - o Linear response, most general case:
Example: a plane wave, E(7 )= E(¢)e'* ",
= - ., = =» —
where E(#_L K, is transverse. O(t) = £°Elﬁ) + P(%)

The physical field is Re [E(7 ] - s Bl)es [;, RV Ere)
= & 0 )

-0

_ . where the response function R(£-+') is a scalar
For transverse fields the wave equation

simplifies to and we have R(T)=0 for T<XO

E _ _'-L ,_a__ 3 Take 7-on botbh sides, divide by &, & use M.E. (i)
T E ot 9¢

31!0,1,

V2E- 2

= £
VD)= -Bit)re, [ o' Rut-¢)9.Ele)=0
-0

This version of the wave equation can be a - + -
poor approximation in non-isotropic media! » V- E%) =~f d¢'R(£-4)V-£(¢) forall £
~D

It follows that V- é(-&] =0 (Transverse) for all €
OR RIT)=-L19[T)




Light-Matter Interaction

Isotropic Media

Absent a preferred direction, the induced P
must be parallel to the driving field E

Linear response, most general case:
= -
D) = &,Elt)+ Pl)

N +t
= EaEl'é)'\'&ofdi'R('f"ﬁ')E[{')

)
where the response function R (£ -1' ) is a scalar
and we have R(T)=0 for T<O

Take V- on both sides, divide by & & use M.E. (i)

- 4
vOlt)=s VB t)te, | db' Rit-1)9.E)=0
-0
- + B
» v E@=-| de'Rt-¢)V-E¢) forall &
~D

It follows that V- é(-l,—} =0 (Transverse) for all ©
OR RIT)=-Ld[T)

Note: if R(T) e« d(T) (instantaneous response) then

£, dt' R [£- t')E(-L‘) g ‘XE(‘&J
L susceptibility

The case R[T) = -24(T) is an example of negative
susceptibility, %< 0 , which only occurs in certain
engineered metamaterials.

-

Electric fields are transverse in linear,
isotropic dielectric media

(including the vacuum)

p
(@

Wave Equation in 72€ 1
free space cl

i
e




Light-Matter Interaction

Note: if R(T) e« (T) (instantaneous response) then

£, dﬁ' R [£- t')E(—L') g ‘XE(-E)
L susceptibility

The case R[T) = -24(T) is an example of negative
susceptibility, %< 0 , which only occurs in certain
engineered metamaterials.

-

Electric fields are transverse in linear,
isotropic dielectric media

(including the vacuum)

Wave Equation in v2
free space

'T'L
.-l"‘
|1
o

,3__
ct a¢?

Monochromatic trial solution Ef#.4)= E(V') i
‘
VI (Pleeh 5 B e -

Equation for the spatial component alone:
VE, 7 +IRPE (M =0, IRl =%
—-_—

Plane wave solutions

Eo(f) = EEOQ;P ®IRI= wle

Optical Cavities: Here we need to solve the
wave equation subject to boundary conditions.
See, e. g., Millony & Eberly for examples such
as rectangular cavities, Fabryt-Perot etalons,
and spherical mirror resonators.
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Theory of Atomic Response

So far, we have a model for the field. Next, we
need a model of how the constituents of the
medium responds to the field.

This will allow us to find the polarization density
=
P as function of the field £

Classical “atom” Simple model:

nucleus + electron

Lorentz Force

— & L, =
r& r, r:—.g,_Le+u>T<3)

origin ~ 0 if non-relativistic

Newton:

(2

() m,2e Re) = —e EG4)-E

.o d." o=h =2 - )
(ii) meﬁ,_ rel€)= e E(V, 4)¢ F,

This is a standard 2-body problem which we can
re-cast as in terms of relative and COM motion.

We define:

A 0
X Relative coord.

-9
R Center-of-mass

M:MNM

(A
Mo + m,

M= ch-f-m" vm,

M  Reduced mass

M Total mass
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Newton:

Sub into (i), (ii) and rewrite:

(A

0 my2s Re) e EGA)-E (7 4)

€n €uI

S

d"
(ii) Mo i el6)= e E(¥, )¢ F, (e..,il

This is a standard 2-body problem which we can
re-cast as in terms of relative and COM motion.

We define:
- Mo M
?zr.:m:rf/“?w m:#(\’m&
me_'!' Wln

M= ch-f-m" vm,

-
X Relative coord. M  Reduced mass

-9
R Center-of-mass M Total mass

41'2 =L E(me 2£)+ E("’ "”'xf)]

* ﬁén[)’é) *j,' (my,- "4230({;2 a

Basic result, no approximations !

Set Ra ¥, , Xz,
Throw away eq. for @

Milloni & Eberly,
main text

Electric Dipole approximation

Atomic dimensions Optical Wavelength

(%]~ 14 & A~ 10%A
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Sub into (i), (ii) and rewrite:

# E;,,mfli(m,,-wgdfz g

Basic result, no approximations !

Milloni & Eberly, Set Ra ¥, , X=1,

main text

Electric Dipole approximation

Throw away eq. for R

EDA: the field is nearly constant on the
scale of an atom

Good approximation: 1%t order expansion in X

Atomic dimensions Optical Wavelength

R]~18 « A~ 10%A

AL 5
— R = : M
M 5 e (R 9)ElRt) co

w@’* R e By
—rf-?g”(?)

Do o (- 7)ER )
Rel. Coord.

10




Light-Matter Interaction

EDA: the field is nearly constant on the
scale of an atom

Good approximation: 1%t order expansion in X

-
E(R- 582 ¢) « E(8) - e (¥ 7) E iy
é(ﬁ*-’%‘—k';{) E(ﬁ++ e [X-v)E(dy))

.

Physical Interpretation:

,f,‘ =eX : electric dipole moment of the atom

e

The Egs. Of motion can then be recast as

AL y
— R = .2)E COM
Maw- e (R 9)El@¢)

mdf"? eB@ Y2 o (%.9)BR 4]

+E, (?) Rel. Coord.

g— 2 (A-O)ERE) = F= -V V(XL
g

X es(nu+p (X)=-Z V(R R4)

where \/(5?‘?'-(,) = /B'\.E (VL)

q

electric-dipole interaction

Note: The COM Eq. is the foundation for a range

of laser Atom Traps and Optical Tweezers. We will
not explore this further in OPTI 544 lectures, but
good review articles can be found in the published
literature.

11
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Physical Interpretation:

,f.‘ =eX : electric dipole moment of the atom

-

The Egs. Of motion can then be recast as

d’. s I _ —h‘_ - =
mo, B2 (F-P)ERE) = F= -V V(X E )

2 e L~ o - 7]
m%{x’wﬂﬂ,ih R ==Y V(X RA)

where v(i?‘?'-l;) = i‘;.E[?.L)

T'

The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:

2>
. e
HOW = - 2>
’\ T
resonance frequency
origin

This is meant as a model of the atomic response,
not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a

electric-dipole interaction

Note: The COM Eq. is the foundation for a range
of laser Atom Traps and Optical Tweezers. We will
not explore this further in OPTI 544 lectures, but
good review articles can be found in the published
literature.

point-like nucleus and a spherical electron cloud

Electron cloud Force from charge inside 7 as if

entire charge was at the center

Force from charge outside 7 is zero
7’3
Force F o S ecr

t

nucleus harmonic restoring force

12
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Now substitute E;,l =-mw, % into eq. for X

—-_
AL + W, X = E.[IR([;)

Combine with 3-1\!7"1, 1= eX where N is the
number den5|ty of atoms. This reIates the
macroscopic P to the microscopic ¥

Maxwell’s Equations

We now have
whav The Lorentz model

— -

Maxwell-Lorentz Equations
We can seek self-consistent
solutions to wave propagation

13
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Light-Matter Interaction

=D

Now substitute £, =-mw,% into eq. for X

-
X w2 E(R¢)

Combine with 3:1\!7"1, , ,}{: ex where N is the
number densEy of atoms. This relg_ses the
macroscopic P to the microscopic ¥

Maxwell’s Equations

We now have
whav The Lorentz model

e

Maxwell-Lorentz Equations
We can seek self-consistent
solutions to wave propagation

Classical Model of Absorption & Dispersion

14



