Classical Theory of Light-Matter Interaction Self-consistent, fully classical description Electromagnetic Field Atom/Molecule/Solid Motivation: We will - Develop <u>Concepts</u> ແພງ, ທຸ % - Develop Intuition - Classical is often adequate, sometimes accurate - A Quantum Theory has classical limits Identify/understand regime of validity - The Classical description is a useful starting point for Nonlinear Optics The Electromagnetic Field: Basic Eqs. in SI Units #### Maxwell's eqs. (no free charges, currents | dielectrics) (i) $$\nabla \cdot \vec{D} = g = 0$$ (i) $\nabla \cdot \vec{D} = g = 0$ \vec{D} : Dielectric displacement (ii) $\nabla \cdot \vec{\mathcal{B}} = 0$ $\vec{\mathcal{B}}$: Magnetic induction (iii) $$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$ \vec{E} : Electric field (iv) $$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial E} + \vec{J}$$ \vec{H} : Magnetic field ### **Material Response:** (v) $$\vec{B} = \mu_0 \vec{H} + \vec{M}$$ (v) $\vec{B} = \mu_0 \vec{H} + \vec{M}$ Non-magnetic $\vec{N} = 0$ (vi) $\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$ Info about response in dipole moment density (polarization density) The Electromagnetic Field: Basic Eqs. in SI Units #### Maxwell's eqs. (no free charges, currents | dielectrics) (i) $$\nabla \cdot \vec{D} = Q = 0$$ (i) $\nabla \cdot \vec{D} = g = 0$ \vec{D} : Dielectric displacement (ii) $\nabla \cdot \vec{B} = 0$ \vec{g} : Magnetic induction (iii) $$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$ \vec{E} : Electric field (iv) $$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial E} + \vec{J}$$ \vec{H} : Magnetic field ### **Material Response:** (vi) $$\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$$ (polarization density) We need equations that describe: - the behavior of \vec{E} for given $\vec{\rho}$ - the medium response 🔁 for given 🖹 #### **Wave Equation:** Take curl of (iii), then use (iv) $$\nabla \times (\nabla \times \vec{E}) = -\nabla \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{B}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$ Next, use the identity $$D \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$$ to obtain $$\vec{D} = \nabla (\nabla \cdot \vec{E}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$ Finally, let $\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$ and use $\mathcal{E}_0 N_0 = \frac{1}{2}$ to obtain $$-\nabla(\nabla \cdot \vec{E}) + \nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} + \frac{1}{\xi_0 c^2} \frac{\partial^2 \vec{p}}{\partial t^2}$$ This is the Wave Equation, still exact in this form We need equations that describe: - the behavior of \vec{E} for given \vec{o} - the medium response 💆 for given 🖹 ### **Wave Equation:** Take curl of (iii), then use (iv) $$\nabla \times (\nabla \times \vec{E}) = -\nabla \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{B}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$ Next, use the identity $$D \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$$ to obtain $$\vec{D} = \nabla (\nabla \cdot \vec{E}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$ Finally, let $\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$ and use $\mathcal{E}_0 N_0 = \frac{1}{C^2}$ to obtain $$-\nabla(\nabla \cdot \vec{E}) + \nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} + \frac{1}{\xi_0 c^2} \frac{\partial^2 \vec{p}}{\partial t^2}$$ This is the Wave Equation, still exact in this form #### **Transverse Fields** Definition: a field for which $\nabla \cdot \vec{E} = 0$ is <u>Transverse</u> Example: a plane wave, $\vec{E}(\vec{r},t) = \vec{E}(t) e^{i\vec{k}\cdot\vec{r}}$, where $\vec{E}(t) \perp \vec{k}$, is transverse. The physical field is $\text{Re}\left[\vec{E}(\vec{r},t)\right]$ For transverse fields the wave equation simplifies to $$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = \frac{1}{\mathcal{E}_{,C}^2} \frac{\partial^2}{\partial t^2} \vec{\beta}$$ This version of the wave equation can be a poor approximation in non-isotropic media! #### **Transverse Fields** Definition: a field for which ∇⋅ € = 0 is <u>Transverse</u> Example: a plane wave, $\vec{E}(\vec{r},t) = \vec{E}(t) e^{i\vec{k}\cdot\vec{r}}$, where $\vec{E}(t) \perp \vec{k}$, is transverse. The physical field is $\text{Re}\left[\vec{E}(\vec{r},t)\right]$ For transverse fields the wave equation simplifies to $$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = \frac{1}{\varepsilon_0 c^2} \frac{\partial^2}{\partial t^2} \vec{\rho}$$ This version of the wave equation can be a poor approximation in non-isotropic media! #### **Isotropic Media** Absent a preferred direction, the induced properties must be parallel to the driving field because it is a second control of the driving field because it is a second control Linear response, most general case: $$\vec{D}(t) = \mathcal{E}_0 \vec{E}(t) + \vec{P}(t)$$ $$= \mathcal{E}_0 \vec{E}(t) + \mathcal{E}_0 \int_{-\infty}^{t} dt' R(t - t') \vec{E}(t')$$ where the response function R(t-t') is a scalar and we have R(t) = 0 for t < 0 Take ∇- on both sides, divide by & use M.E. (i) $$\nabla \cdot \vec{D}(t) = \mathcal{E}_{0} \nabla \cdot \vec{E}(t) + \mathcal{E}_{0} \int_{-\infty}^{t} dt' R(t-t') \nabla \cdot \vec{E}(t') = 0$$ It follows that $\nabla \cdot \vec{E}(t) = 0$ (Transverse) for all t $$OR$$ $R(T) = -2\delta(T)$ ### **Isotropic Media** Absent a preferred direction, the induced property must be parallel to the driving field because of Linear response, most general case: $$\vec{D}(t) = \varepsilon_0 \vec{E}(t) + \vec{P}(t)$$ $$= \varepsilon_0 \vec{E}(t) + \varepsilon_0 \int_{-\infty}^{t} dt' R(t-t') \vec{E}(t')$$ where the response function R(t-t') is a scalar and we have R(t) = 0 for t<0 Take ♥ on both sides, divide by & use M.E. (i) $$\nabla \cdot \vec{D}(t) = \mathcal{E}_{0} \nabla \cdot \vec{E}(t) + \mathcal{E}_{0} \int_{-\infty}^{t} dt' R(t-t') \nabla \cdot \vec{E}(t') = 0$$ It follows that $\nabla \cdot \vec{E}(t) = 0$ (Transverse) for all t OR $$R(T) = -2\delta(T)$$ Note: if $R(\tau) \propto \delta(\tau)$ (instantaneous response) then $$\mathcal{E}_{\bullet} \int_{-\infty}^{t} dt' \, \mathcal{R}[t-t'] \vec{E}(t') = \mathcal{E}_{\bullet} \times \vec{E}(t)$$ $$\text{susceptibility}$$ The case $\mathcal{R}(\mathcal{T}) = -2\delta(\mathcal{T})$ is an example of negative susceptibility, $\mathcal{X} < 0$, which only occurs in certain engineered metamaterials. Electric fields are transverse in linear, isotropic dielectric media (including the vacuum) Wave Equation in free space $$\nabla^2 \vec{E} - \frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$ Note: if $R(\tau) \propto \delta(\tau)$ (instantaneous response) then The case $\mathcal{R}(\mathcal{T}) = -2\delta(\mathcal{T})$ is an example of negative susceptibility, $\mathcal{X} < 0$, which only occurs in certain engineered metamaterials. Electric fields are transverse in linear, isotropic dielectric media (including the vacuum) Wave Equation in free space $$\nabla^2 \vec{E} - \frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$ Monochromatic trial solution $\vec{E}(\vec{r}, t) = \vec{E}_{o}(\vec{r}) e^{-i\omega t}$ **Equation for the spatial component alone:** $$\nabla^2 \vec{E}_0(\vec{r}) + |\vec{k}|^2 \vec{E}_0(\vec{r}) = 0$$, $|\vec{k}| = \omega/c$ Plane wave solutions Optical Cavities: Here we need to solve the wave equation subject to boundary conditions. See, e. g., Millony & Eberly for examples such as rectangular cavities, Fabryt-Perot etalons, and spherical mirror resonators. ### **Theory of Atomic Response** So far, we have a model for the field. Next, we need a model of how the constituents of the medium responds to the field. This will allow us to find the polarization density \vec{p} as function of the field \vec{E} #### Classical "atom" Simple model: nucleus + electron **Lorentz Force** #### **Newton:** (i) $$m_n \frac{d^2}{dt^2} \vec{r}_n(t) = -e \vec{E}(\vec{r}_n, t) - \vec{F}_n(\vec{r}_n, t)$$ (ii) $$m_e \frac{d^2}{dt^2} \vec{r}_e(t) = e \vec{E}(\vec{r}_e,t) + \vec{F}_{en}(\vec{r}_{en},t)$$ This is a standard 2-body problem which we can re-cast as in terms of relative and COM motion. We define: $$\vec{X} = \vec{r_e} = \vec{r_e} - \vec{r_n}$$ $m = \frac{m_e m_n}{m_e + m_n} \sim m_e$ $$\vec{R} = \frac{m_e \vec{r}_e + m_n \vec{r}_n}{M} \qquad M = m_e + m_n \sim m_n$$ #### **Newton:** (i) $$m_n \frac{d^2}{dt^2} \vec{r}_n(t) = -e \vec{E}(\vec{r}_n, t) - \vec{F}_{en}(\vec{r}_{en}, t)$$ (ii) $m_e \frac{d^2}{dt^2} \vec{r}_e(t) = e \vec{E}(\vec{r}_e, t) + \vec{F}_{en}(\vec{r}_{en}, t)$ This is a standard 2-body problem which we can re-cast as in terms of relative and COM motion. #### We define: $$\vec{x} = \vec{r_e} = \vec{r_e} - \vec{r_n}$$ $m = \frac{m_e m_n}{m_e + m_n} \sim m_e$ Relative coord. M Reduced mass **Center-of-mass** M Total mass ### Sub into (i), (ii) and rewrite: $$M\frac{d^{2}}{dt^{2}}\vec{R} = e\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}_{i}t\right) - \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}_{i}t\right)\right]$$ $$m\frac{d^{2}}{dt^{2}}\vec{x} = \frac{e}{2}\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}, t\right) + \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}, t\right)\right]$$ $$+ \vec{F}_{en}(\vec{X}) + \frac{1}{2}(m_{n} - m_{e})\frac{d^{2}}{dt^{2}}\vec{R}$$ ### Basic result, no approximations! main text ### **Electric Dipole approximation** **Atomic dimensions** Optical Wavelength Sub into (i), (ii) and rewrite: $$M\frac{d^{2}}{dt^{2}}\vec{R} = e\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}_{i}t\right) - \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}_{i}t\right)\right]$$ $$m\frac{d^{2}}{dt^{2}}\vec{x} = \frac{e}{2}\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}, t\right) + \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}, t\right)\right]$$ $$+ \vec{F}_{en}(\vec{X}) + \frac{1}{2}(m_{n} - m_{e})\frac{d^{2}}{dt^{2}}\vec{R}$$ Basic result, no approximations! Milloni & Eberly, main text **Electric Dipole approximation** Atomic dimensions Optical Wavelength # EDA: the field is <u>nearly constant</u> on the scale of an atom Good approximation: 1st order expansion in \$\vec{x}\$ $$\vec{E}(\vec{R} - \frac{m_e}{M}\vec{x}, t) \approx \vec{E}(\vec{R}, t) - \frac{m_e}{M}(\vec{x} \cdot \vec{r}) \vec{E}(\vec{R}(t))$$ $$\vec{E}(\vec{R} + \frac{me}{M}\vec{x}, t) \approx \vec{E}(\vec{R}, t) + \frac{me}{M}(\vec{X} \cdot \nabla) \vec{E}(\vec{R}(t))$$ $$M \frac{d^2}{dt^2} \vec{R} \approx e(\vec{X} \cdot \nabla) E(\vec{R}, t)$$ COM # EDA: the field is <u>nearly constant</u> on the scale of an atom Good approximation: 1st order expansion in \$\vec{x}\$ $$M \frac{d^2}{dt^2} \vec{R} \approx e(\vec{X} \cdot \nabla) E(\vec{R}, t)$$ COM $$m \frac{d^{2}}{dt^{2}} \vec{x} = e \vec{E}(\vec{R}, t) + \frac{m_{n} - m_{e}}{M} e(\vec{x} \cdot \vec{V}) \vec{E}(\vec{R}, t) + \vec{F}_{en}(\vec{x}) \quad \text{Rel. Coord.}$$ **Physical Interpretation:** ポコピス: electric dipole moment of the atom The Eqs. Of motion can then be recast as $$M \frac{d^{2}}{dt^{2}} \vec{R} \approx (\vec{\eta} \cdot \nabla) \vec{E}(\vec{R}_{i}t) = \vec{F} = -\nabla_{R} V(\vec{x}_{i} \vec{R}_{i}t)$$ $$m \frac{d^{2}}{dt^{2}} \vec{x} = e \vec{E}(\vec{R}_{i}t) + \vec{F}_{en}(\vec{x}) = -\nabla_{x} V(\vec{x}_{i} \vec{R}_{i}t)$$ $$where \qquad V(\vec{x}_{i} \vec{r}_{i}t) = -\vec{\eta} \cdot \vec{E}(\vec{r}_{i}t)$$ ### electric-dipole interaction Note: The COM Eq. is the foundation for a range of laser Atom Traps and Optical Tweezers. We will not explore this further in OPTI 544 lectures, but good review articles can be found in the published literature. ### **Physical Interpretation:** $\vec{n} = e\vec{x}$: electric dipole moment of the atom The Eqs. Of motion can then be recast as $$M \frac{d^{2}}{dt^{2}} \vec{R} \approx (\vec{\eta} \cdot \nabla) \vec{E}(\vec{R}_{i}t) = \vec{F} = -\nabla_{R} V(\vec{x}_{i}\vec{R}_{i}t)$$ $$M \frac{d^{2}}{dt^{2}} \vec{x} = e \vec{E}(\vec{R}_{i}t) + \vec{F}_{en}(\vec{x}) = -\nabla_{x} V(\vec{x}_{i}\vec{R}_{i}t)$$ $$\text{where} \quad V(\vec{x}_{i}\vec{r}_{i}t) = -\vec{\eta} \cdot \vec{E}(\vec{r}_{i}t)$$ ### electric-dipole interaction Note: The COM Eq. is the foundation for a range of laser Atom Traps and Optical Tweezers. We will not explore this further in OPTI 544 lectures, but good review articles can be found in the published literature. ### The Electron Oscillator/Lorentz Oscillator Simple model w/a harmonically bound electron: This is meant as a model of the atomic <u>response</u>, not a model of the atom itself. Nevertheless: QM suggest the atom consists of a point-like nucleus and a spherical electron cloud Force from charge inside r as if entire charge was at the center Force from charge outside r is zero Force $$F \propto \frac{r^3}{r^2} \propto r$$ harmonic restoring force Now substitute $\vec{F}_{e\eta} = -m\omega_o^2 \vec{x}$ into eq. for \vec{x} $$\frac{\partial^2}{\partial t^2} \vec{X} + \omega_0^2 \vec{X} = \frac{e}{m} \vec{E}(\vec{R}, t)$$ Combine with $\overrightarrow{P} = N\overrightarrow{p}$, $\overrightarrow{r} = e\overrightarrow{x}$ where N is the number density of atoms. This relates the macroscopic \overrightarrow{P} to the microscopic \overrightarrow{x} We now have Maxwell's Equations The Lorentz model Maxwell-Lorentz Equations We can seek self-consistent solutions to wave propagation Now substitute $\vec{F}_{e\eta} = -m\omega_o^2 \vec{x}$ into eq. for \vec{x} $$\frac{d^2}{dt^2} \vec{X} + \omega_0^2 \vec{x} = \frac{e}{m} \vec{E}(\vec{R}_1 t)$$ Combine with $\vec{P} = N\vec{p}$, $\vec{r} = e\vec{x}$ where N is the number density of atoms. This relates the macroscopic \vec{P} to the microscopic \vec{x} We now have Maxwell's Equations The Lorentz model Maxwell-Lorentz Equations We can seek self-consistent solutions to wave propagation ### **Classical Model of Absorption & Dispersion**