Light-Matter Interaction

Hierarchy of Sophistication:

- Classical Classical light, classical matter

- Semiclassical Classical light, quantum matter

- Quantum Quantum light, quantum matter

Possible attitudes:

- Purist Most complete description possible

- Minimalist Quantum only when necessary

- Pragmatic Quantum or classical, based on

what is simplest and still works

OPTI 544: All of the above in turn

Classical Theory of Light-Matter Interaction

Self-consistent, fully classical description

Electromagnetic Field Atom/Molecule/Solid

Motivation: We will

- Develop <u>Concepts</u> ແພງ, ທຸ %
- Develop Intuition
- Classical is often adequate, sometimes accurate
- A Quantum Theory has classical limits
 Identify/understand regime of validity
- The Classical description is a useful starting point for Nonlinear and Quantum Optics

Light-Matter Interaction

Classical Theory of Light-Matter Interaction

Self-consistent, fully classical description

Electromagnetic Field Atom/Molecule/Solid

Motivation: We will

- Develop <u>Concepts</u> ແພງ, ທຸ %
- Develop Intuition
- Classical is often adequate, sometimes accurate
- A Quantum Theory has classical limits Identify/understand regime of validity
- The Classical description is a useful starting point for Nonlinear Optics

The Electromagnetic Field: Basic Eqs. in SI Units

Maxwell's eqs.

(no free charges, currents | dielectrics)

(i)
$$\nabla \cdot \vec{D} = g = 0$$

(i) $\nabla \cdot \vec{D} = g = 0$ \vec{D} : Dielectric displacement

(ii) $\nabla \cdot \vec{\mathcal{B}} = 0$ $\vec{\mathcal{B}}$: Magnetic induction

(iii)
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 \vec{E} : Electric field

(iv)
$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial E} + \vec{J}$$
 \vec{H} : Magnetic field

Material Response:

(v)
$$\vec{B} = \mu_0 \vec{H} + \vec{M}$$

(v) $\vec{B} = \mu_0 \vec{H} + \vec{M}$
Non-magnetic $\vec{N} = 0$ (vi) $\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$
Info about response in dipole moment density (polarization density)