Hierarchy of Sophistication:

- Classical Classical light, classical matter

- Semiclassical Classical light, quantum matter

- Quantum Quantum light, quantum matter

Possible attitudes:

- Purist Most complete description possible

- Minimalist Quantum only when necessary

- Pragmatic Quantum or classical, based on

what is simplest and still works

OPTI 544: All of the above in turn

Classical Theory of Light-Matter Interaction

Self-consistent, fully classical description

Electromagnetic Field Atom/Molecule/Solid

Motivation: We will

- Develop <u>Concepts</u> ແພ), ທຸ %
- Develop Intuition
- Classical is often adequate, sometimes accurate
- A Quantum Theory has classical limits
 Identify/understand regime of validity
- The Classical description is a useful starting point for Nonlinear and Quantum Optics

Classical Theory of Light-Matter Interaction

Self-consistent, fully classical description

Electromagnetic Field Atom/Molecule/Solid

Motivation: We will

- Develop Concepts ແພງ, ທຸ %
- Develop Intuition
- Classical is often adequate, sometimes accurate
- A Quantum Theory has classical limits Identify/understand regime of validity
- The Classical description is a useful starting point for Nonlinear Optics

The Electromagnetic Field: Basic Eqs. in SI Units

Maxwell's eqs.

(no free charges, currents | dielectrics)

(i)
$$\nabla \cdot \vec{D} = g = 0$$

(i) $\nabla \cdot \vec{D} = g = 0$ \vec{D} : Dielectric displacement

(ii) $\nabla \cdot \vec{\mathcal{B}} = 0$ $\vec{\mathcal{B}}$: Magnetic induction

(iii)
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 \vec{E} : Electric field

(iv)
$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial E} + \vec{J}$$
 \vec{H} : Magnetic field

Material Response:

(v)
$$\vec{B} = \mu_0 \vec{H} + \vec{M}$$

(v) $\vec{B} = \mu_0 \vec{H} + \vec{M}$

Non-magnetic $\vec{N} = 0$ (vi) $\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$

Info about response in dipole moment density (polarization density)

The Electromagnetic Field: Basic Eqs. in SI Units

Maxwell's eqs.

(no free charges, currents | dielectrics)

(i)
$$\nabla \cdot \vec{D} = Q = 0$$

(i) $\nabla \cdot \vec{D} = g = 0$ \vec{D} : Dielectric displacement

(ii) $\nabla \cdot \vec{B} = 0$ \vec{g} : Magnetic induction

(iii)
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 \vec{E} : Electric field

(iv)
$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial E} + \vec{J}$$
 \vec{H} : Magnetic field

Material Response:

(vi)
$$\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$$

(v) $\vec{B} = \mu_0 \vec{H} + \vec{M}$ Non-magnetic $\vec{D} = \vec{M} = \vec{O}$ (vi) $\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$ Info about response in dipole moment density (polarization density)

We need equations that describe:

- the behavior of \vec{E} for given $\vec{\rho}$
- the medium response 💆 for given 🖹

Wave Equation:

Take curl of (iii), then use (iv)

$$\nabla \times (\nabla \times \vec{E}) = -\nabla \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{B}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Next, use the identity

$$D \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$$

to obtain
$$\vec{D} = \nabla (\nabla \cdot \vec{E}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Finally, let $\vec{D} = \mathcal{E}_{\rho} \vec{E} + \vec{P}$ and use $\mathcal{E}_{\rho} N_{\rho} = \frac{1}{2}$

to obtain

$$-\nabla(\nabla \cdot \vec{E}) + \nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} + \frac{1}{\xi_0 c^2} \frac{\partial^2 \vec{p}}{\partial t^2}$$

This is the Wave Equation, still exact in this form

We need equations that describe:

- the behavior of \vec{E} for given $\vec{\rho}$
- the medium response 💆 for given 🖹

Wave Equation:

Take curl of (iii), then use (iv)

$$\nabla \times (\nabla \times \vec{E}) = -\nabla \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{B}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Next, use the identity

$$\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$$

to obtain

$$\vec{D} = \nabla (\nabla \cdot \vec{E}) = -\mu_0 \frac{\partial^2 \vec{D}}{\partial t^2}$$

Finally, let $\vec{D} = \mathcal{E}_0 \vec{E} + \vec{P}$ and use $\mathcal{E}_0 N_0 = \frac{1}{C^2}$

to obtain

$$-\nabla(\nabla \cdot \vec{E}) + \nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} + \frac{1}{\xi_0 c^2} \frac{\partial^2 \vec{p}}{\partial t^2}$$

This is the Wave Equation, still exact in this form

Transverse Fields

Definition: a field for which $\nabla \cdot \vec{E} = 0$ is <u>Transverse</u>

Example: a plane wave, $\vec{E}(\vec{r},t) = \vec{E}(t) e^{i\vec{k}\cdot\vec{r}}$, where $\vec{E}(t) \perp \vec{k}$, is transverse.

The physical field is $\text{Re}[\vec{E}(\vec{r},t)]$

For transverse fields the wave equation simplifies to

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = \frac{1}{\mathcal{E}_{c} c^2} \frac{\partial^2}{\partial t^2} \vec{\rho}$$

This version of the wave equation can be a poor approximation in non-isotropic media!

Transverse Fields

Definition: a field for which ∇⋅ € = 0 is <u>Transverse</u>

Example: a plane wave, $\vec{E}(\vec{r},t) = \vec{E}(t) e^{i\vec{k}\cdot\vec{r}}$, where $\vec{E}(t) \perp \vec{k}$, is transverse.

The physical field is $\text{Re}\left[\vec{E}(\vec{r},t)\right]$

For transverse fields the wave equation simplifies to

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = \frac{1}{\mathcal{E}_{c} c^2} \frac{\partial^2}{\partial t^2} \vec{\rho}$$

This version of the wave equation can be a poor approximation in non-isotropic media!

Isotropic Media

Absent a preferred direction, the induced properties must be parallel to the driving field because it is a second control of the driving field because it is a second control

Linear response, most general case:

$$\vec{D}(t) = \mathcal{E}_0 \vec{E}(t) + \vec{P}(t)$$

$$= \mathcal{E}_0 \vec{E}(t) + \mathcal{E}_0 \int_{-\infty}^{t} dt' R(t - t') \vec{E}(t')$$

where the response function R(t-t') is a scalar and we have R(t) = 0 for t < 0

Take divergence on both sides and use M.E. (i)

$$\nabla \cdot \vec{D}(t) = \mathcal{E}_{\bullet} \nabla \cdot \vec{E}(t) + \mathcal{E}_{\bullet} \int_{-\infty}^{t} dt' R(t-t') \nabla \cdot \vec{E}(t') = 0$$

It follows that $\nabla \cdot \vec{E}(t) = 0$ for all t,

OR
$$R(T) = -2\delta(T)$$

Isotropic Media

Absent a preferred direction, the induced property must be parallel to the driving field be a second property of the driving field be a second field be a se

Linear response, most general case:

$$\vec{D}(t) = \varepsilon_0 \vec{E}(t) + \vec{P}(t)$$

$$= \varepsilon_0 \vec{E}(t) + \varepsilon_0 \int_{-\infty}^{t} dt' R(t - t') \vec{E}(t')$$

where the response function R(t-t') is a scalar and we have R(T) = 0 for T < 0

Take divergence on both sides and use M.E. (i)

$$\nabla \cdot \vec{D}(t) = \mathcal{E}_{0} \nabla \cdot \vec{E}(t) + \mathcal{E}_{0} \int_{-\infty}^{t} dt' R(t-t') \nabla \cdot \vec{E}(t') = 0$$

and $\nabla \cdot \vec{E}(t) = -\int_{-\infty}^{t} dt' \mathcal{R}(t-t') \nabla \cdot \vec{E}(t')$ for all t

It follows that $\nabla \cdot \vec{E}(t) = 0$ for all t,

OR
$$R(T) = -2\delta(T)$$

Note: if $R(\tau) \propto \delta(\tau)$ (instantaneous response) then

The case $\mathcal{R}(\mathcal{T}) = -2\delta(\mathcal{T})$ is an example of negative susceptibility, $\mathcal{X} < 0$, which only occurs in certain engineered metamaterials.

Electric fields are transverse in linear, isotropic dielectric media

(including the vacuum)

Wave Equation in free space

$$\nabla^2 \vec{E} - \frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

Note: if $R(\tau) \propto \delta(\tau)$ (instantaneous response) then

The case $\mathcal{R}(\mathcal{T}) = -2\delta(\mathcal{T})$ is an example of negative susceptibility, $\mathcal{X} < 0$, which only occurs in certain engineered metamaterials.

Electric fields are transverse in linear, isotropic dielectric media

(including the vacuum)

Wave Equation in free space

$$\nabla^2 \vec{E} - \frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

Monochromatic trial solution $\vec{E}(\vec{r},t) = \vec{E}_{\rho}(\vec{r}) e^{-i\omega t}$

$$\nabla^2 \vec{E}_0(\vec{r}) e^{-i\omega t} + \frac{\omega^2}{c^2} \vec{E}_0(\vec{r}) e^{-i\omega t} = 0$$

Equation for the spatial component alone:

$$\nabla^2 \vec{E}_0(\vec{r}) + |\vec{k}|^2 \vec{E}_0(\vec{r}) = 0$$
, $|\vec{k}| = \frac{\omega}{c}$

Plane wave solutions

Optical Cavities: Here we need to solve the wave equation subject to boundary conditions. See, e. g., Millony & Eberly for examples such as rectangular cavities, Fabryt-Perot etalons, and spherical mirror resonators.

Monochromatic trial solution $\vec{E}(\vec{r},t) = \vec{E}_{i}(\vec{r}) e^{-iNt}$

$$\nabla^2 \vec{E}_0(\vec{r}) e^{-i\omega t} + \frac{\omega^2}{c^2} \vec{E}_0(\vec{r}) e^{-i\omega t} = 0$$

Equation for the spatial component alone:

Plane wave solutions

Optical Cavities: Here we need to solve the wave equation subject to boundary conditions. See, e. g., Millony & Eberly for examples such as rectangular cavities, Fabryt-Perot etalons, and spherical mirror resonators.

Wave Equation in Fourier Space:

In Configuration Space:

$$\nabla^2 \vec{E}(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E}(\vec{r},t) = \frac{1}{\mathcal{E}_{c}c^2} \frac{\partial^2}{\partial t^2} \vec{P}(\vec{r},t)$$

In Fourier Space:

$$k^2 \vec{E}(\vec{k}, \omega) - \frac{\omega^2}{c^2} \vec{E}(\vec{k}, \omega) = \frac{\omega^2}{\epsilon_0 c^2} \vec{P}(\vec{k}, \omega)$$

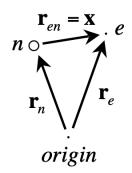
<u>Note</u>: In the Fourier domain the wave equation is purely algebraic – there are no derivatives or integrals. This becomes important later in the course when we quantize the electromagnetic field.

Theory of Atomic Response

So far, we have a model for the field. Next, we need a model of how the constituents of the medium responds to the field.

This will allow us to find the polarization density \vec{p} as function of the field \vec{E}

Classical "atom"



Simple model: nucleus + electron

Lorentz Force

Newton:

(i)
$$m_n \frac{d^2}{dt^2} \vec{r}_n(t) = -e \vec{E}(\vec{r}_n, t) - \vec{F}_{en}(\vec{r}_{en}, t)$$

(ii)
$$m_e \frac{d^2}{dt^2} \vec{r}_e(t) = e \vec{E}(\vec{r}_e, t) + \vec{F}_{en}(\vec{r}_{en}, t)$$

This is a standard 2-body problem which we can re-cast as in terms of relative and COM motion.

We define:

$$\vec{X} = \vec{r_e} - \vec{r_n}$$
 $m = \frac{m_e m_n}{m_e + m_n} \sim m_e$

$$\hat{R} = \frac{m_{e}r_{e} + m_{n}r_{n}}{M} = m_{e} + m_{n} \sim m_{n}$$

Relative coord. M Reduced mass

Newton:

(i)
$$m_n \frac{d^2}{dt^2} \vec{r}_n(t) = -e \vec{E}(\vec{r}_n, t) - \vec{F}_{en}(\vec{r}_{en}, t)$$

(ii) $m_e \frac{d^2}{dt^2} \vec{r}_e(t) = e \vec{E}(\vec{r}_e, t) + \vec{F}_{en}(\vec{r}_{en}, t)$

This is a standard 2-body problem which we can re-cast as in terms of relative and COM motion.

We define:

$$\vec{x} = \vec{r_e} = \vec{r_e} - \vec{r_n}$$

$$\vec{x} = \vec{r_e} = \vec{r_e} - \vec{r_n}$$
 $m = \frac{m_e m_n}{m_e + m_n} \sim m_e$

$$M = M_e + M_n \sim M_n$$

Relative coord.

M Reduced mass

Center-of-mass

Total mass

Sub into (i), (ii) and rewrite:

$$M\frac{d^{2}}{dt^{2}}\vec{R} = e\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}_{i}t\right) - \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}_{i}t\right)\right]$$

$$m\frac{d^{2}}{dt^{2}}\vec{x} = \frac{e}{2}\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}_{i}t\right) + \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}_{i}t\right)\right]$$

$$+ \vec{F}_{en}(\vec{X}) + \frac{1}{2}(m_{n} - m_{e})\frac{d^{2}}{dt^{2}}\vec{R}$$

Basic result, no approximations!

main text

Milloni & Eberly, Set $\vec{R} \approx \vec{r}_n$, $\vec{x} \approx \vec{r}_{en}$ Throw away eq. for $\mathbf{\vec{Q}}$

Electric Dipole approximation

Atomic dimensions Optical Wavelength

Sub into (i), (ii) and rewrite:

$$M\frac{d^{2}}{dt^{2}}\vec{R} = e\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{X}_{i}t\right) - \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{X}_{i}t\right)\right]$$

$$m\frac{d^{2}}{dt^{2}}\vec{x} = \frac{e}{2}\left[\vec{E}\left(\vec{R} + \frac{m_{n}}{M}\vec{x}_{i}t\right) + \vec{E}\left(\vec{R} - \frac{m_{e}}{M}\vec{x}_{i}t\right)\right]$$

$$+ \vec{F}_{en}(\vec{x}) + \frac{1}{2}(m_{n} - m_{e})\frac{d^{2}}{dt^{2}}\vec{R}$$

Basic result, no approximations!

Milloni & Eberly, main text

Electric Dipole approximation

Atomic dimensions Optical Wavelength

EDA: the field is <u>nearly constant</u> on the scale of an atom

Good approximation: 1^{st} order expansion in \vec{x}

$$\vec{E}(\vec{R} - \frac{m_e}{M}\vec{x}, t) \approx \vec{E}(\vec{R}, t) - \frac{m_e}{M}(\vec{X} \cdot \vec{V}) \vec{E}(\vec{R}(t))$$

$$\vec{E}(\vec{R} + \frac{me}{M} \vec{x}, t) \approx \vec{E}(\vec{R}, t) + \frac{me}{M} (\vec{X} \cdot \nabla) \vec{E}(\vec{R}(t))$$

$$M \frac{d^2}{dt^2} \vec{R} \approx e(\vec{X} \cdot \nabla) E(\vec{R}, t)$$
 COM

EDA: the field is <u>nearly constant</u> on the scale of an atom

Good approximation: 1^{st} order expansion in \vec{x}

$$\vec{E}(\vec{R} - \frac{m_e}{M}\vec{x}, t) \approx \vec{E}(\vec{R}, t) - \frac{m_e}{M}(\vec{X} \cdot \vec{V}) \vec{E}(\vec{R}(t))$$

$$\vec{E}(\vec{R} + \frac{me}{M}\vec{x},t) \approx \vec{E}(\vec{R},t) + \frac{me}{M}(\vec{X} \cdot \nabla) \vec{E}(\vec{R}(t))$$

$$M \frac{d^2}{dt^2} \vec{R} \approx e(\vec{X} \cdot \nabla) E(\vec{R}, t)$$
 COM

$$m\frac{d^{2}}{dt^{2}}\vec{x} = e\vec{E}(\vec{R},t) + \frac{m_{n} - m_{e}}{M}e(\vec{x}\cdot \vec{V})\vec{E}(\vec{R},t) + \vec{F}_{en}(\vec{x})$$
 Rel. Coord.

Physical Interpretation:

 $\vec{n} = e\vec{x}$: electric dipole moment of the atom

The Eqs. Of motion can then be recast as

$$M\frac{d^2}{dt^2}\vec{R} \approx (\vec{\eta} \cdot \nabla)\vec{E}(\vec{R}_l t) = \vec{F} = -\nabla_R V(\vec{x}_l \vec{R}_l t)$$

$$m\frac{d^2}{\partial t^2}\vec{x} = e\vec{E}(\vec{R},t) + \vec{F}_{en}(\vec{x}) = -\nabla_{x} V(\vec{x},\vec{R},t)$$

where
$$\bigvee (\vec{x}, \vec{r}, t) = -\vec{\eta} \cdot \vec{E}(\vec{r}, t)$$

electric-dipole interaction

Note: The COM Eq. is the foundation for a range of laser Atom Traps and Optical Tweezers. We will not explore this further in OPTI 544 lectures, but good review articles can be found in the published literature.

Physical Interpretation:

 $\vec{n} = e\vec{x}$: electric dipole moment of the atom

The Eqs. Of motion can then be recast as

$$M \frac{d^2}{dt^2} \vec{R} \approx (\vec{\eta} \cdot \nabla) \vec{E} (\vec{R}_i t) = \vec{F} = -\nabla_R V(\vec{x}_i \vec{R}_i t)$$

$$m\frac{d^2}{\partial t^2}\vec{x} = e\vec{E}(\vec{R},t) + \vec{F}_{en}(\vec{x}) = -\nabla_{x} V(\vec{x},\vec{R},t)$$

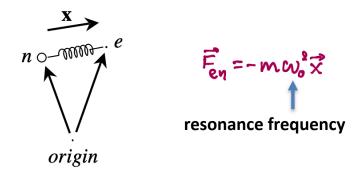
where ヾ(ぇ゙゚ゖ゚ =- ゕ゚゙゠゙゚ゖ゙゚゙゙゚゙゚゙ゖ)

electric-dipole interaction

Note: The COM Eq. is the foundation for a range of laser Atom Traps and Optical Tweezers. We will not explore this further in OPTI 544 lectures, but good review articles can be found in the published literature.

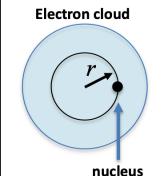
The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:



This is meant as a model of the atomic <u>response</u>, not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a point-like nucleus and a spherical electron cloud



Force from charge inside r as if entire charge was at the center

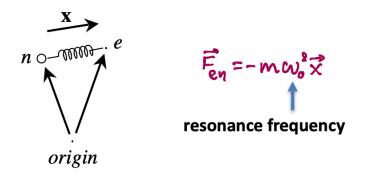
Force from charge outside r is zero

Force
$$F \propto \frac{r^3}{r^2} \propto r$$

harmonic restoring force

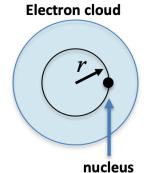
The Electron Oscillator/Lorentz Oscillator

Simple model w/a harmonically bound electron:



This is meant as a model of the atomic <u>response</u>, not a model of the atom itself.

Nevertheless: QM suggest the atom consists of a point-like nucleus and a spherical electron cloud



Force from charge inside r as if entire charge was at the center

Force from charge outside r is zero

Force
$$F \propto \frac{r^3}{r^2} \propto r$$

harmonic restoring force

Now substitute $\vec{F}_{e\eta} = -m\omega_0^2 \vec{x}$ into eq. for \vec{x}

$$\frac{\partial^2}{\partial t^2} \vec{X} + \omega_0^2 \vec{x} = \frac{e}{m} \vec{E}(\vec{R}, t)$$

Combine with $\overrightarrow{P} = N\overrightarrow{p}$, $\overrightarrow{A} = e\overrightarrow{x}$ where N is the number density of atoms. This relates the macroscopic \overrightarrow{P} to the microscopic \overrightarrow{x}

We now have

Maxwell's Equations
The Lorentz model

Maxwell-Lorentz Equations We can seek self-consistent solutions to wave propagation

Now substitute $\vec{F}_{e\eta} = -m\omega_0^2 \vec{x}$ into eq. for \vec{x}

$$\frac{d^2}{dt^2}\vec{X} + \omega_0^2\vec{X} = \frac{e}{m}\vec{E}(\vec{R},t)$$

Combine with $\overrightarrow{P} = N\overrightarrow{n}$, $\overrightarrow{A} = e\overrightarrow{x}$ where N is the number density of atoms. This relates the macroscopic \overrightarrow{P} to the microscopic \overrightarrow{x}

We now have

Maxwell's Equations
The Lorentz model

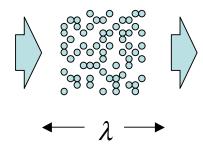
Maxwell-Lorentz Equations We can seek self-consistent solutions to wave propagation

Classical Model of Absorption & Dispersion

Maxwell's Eqs: Oscillating dipole loses energy

Must include damping in Eq, of Motion

Note: In perfectly homogeneous media the coherently scattered light from a collection of Lorentz oscillators interferes constructively only in the forward direction



No energy loss for a propagating fields (See note set "Classical Light-Matter")

QM to the rescue: Part of the radiation from quantum mechanical atoms is incoherent.

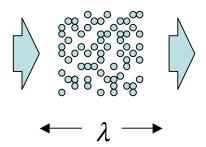
For now we add damping "by hand"

Classical Model of Absorption & Dispersion

Maxwell's Eqs: Oscillating dipole loses energy

Must include damping in Eq, of Motion

Note: In perfectly homogeneous media the coherently scattered light from a collection of Lorentz oscillators interferes constructively only in the forward direction



No energy loss for a propagating fields (See note set "Classical Light-Matter")

QM to the rescue: Part of the radiation from quantum mechanical atoms is incoherent.

For now we add damping "by hand"

The Lorentz Model with Damping

We add an ad hoc friction term $w/\beta \ll \omega_0$ damping rate

This gives us our basic equation for the atomic response:

$$\frac{d^2}{dt} \vec{x} + 2\beta \frac{d}{dt} \vec{x} + \omega_0^2 \vec{x} = \frac{e}{m} \vec{E}(\vec{R}, t)$$

This type of differential equation generally has both oscillating and decaying terms. Solutions without source terms generally decay as e-bt

We adopt a trial solution

Driving Field
$$E(\vec{R},t) = \vec{E}E_0e^{-i(\omega t - kz)}$$

Response $\vec{X}(\vec{R},t) = \vec{\alpha}e^{-i(\omega t - kz)}$

complex amplitude

The Lorentz Model with Damping

We add an ad hoc friction term w/ △ ⇔ ⇔ damping rate

This gives us our basic equation for the atomic response:

$$\frac{d^2}{dt} \vec{x} + 2\beta \frac{d}{dt} \vec{x} + \omega_0^2 \vec{x} = \frac{e}{m} \vec{E}(\vec{R}, t)$$

This type of differential equation generally has both oscillating and decaying terms. Solutions without source terms generally decay as e-bt

We adopt a trial solution

Driving Field
$$E(\vec{R},t) = \vec{E}E_0e^{-i(\omega t - kz)}$$

Response $\vec{X}(\vec{R},t) = \vec{Q}e^{-i(\omega t - kz)}$

complex amplitude

Solution for $\vec{\alpha}$:

$$\vec{\alpha} = -\vec{E} \frac{(c/m)E_0}{\omega^2 - \omega_0^2 + 2i\beta\omega}$$

Physical Quantities:

Field

$$Re[\vec{E}(\vec{R},t)] = \vec{E}E_0\cos(\omega t)$$

Dipole (real)

Re[
$$\vec{\eta}(\vec{R},t)$$
]= Re[$e\vec{\chi}(\vec{R},t)$]
$$= \vec{E}E_0 \frac{e^2}{m} \frac{(\omega_0^2 - \omega^2)\cos(\omega t - \kappa_0^2) + 2\beta\omega\sin(\omega t - \kappa_0^2)}{(\omega_0^2 - \omega^2) + 4\beta^2\omega^2}$$

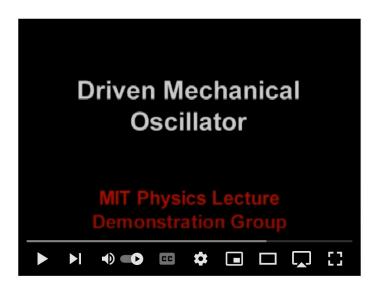
Note: $\overrightarrow{\eta}$ and \overrightarrow{E} generally oscillate out of phase

$$\omega \ll \omega_o \Rightarrow \vec{7} \& \vec{E} \text{ in-phase}$$
 $\omega = \omega_o \Rightarrow \vec{7} \text{ lags } \vec{E} \text{ by } \sqrt{2}$
 $\omega \gg \omega_o \Rightarrow \vec{7} \text{ Lags } \vec{E} \text{ by } \sqrt{7}$

Best to stick with complex notation!

Video of driven – damped harmonic oscillator

https://www.youtube.com/watch?v=aZNnwQ8HJHU



Complex polarizability:

$$\vec{R} = e\vec{X} = e\vec{\alpha}e^{-i(\omega t - k2)} = \alpha(\omega)\vec{E}E_0e^{-i(\omega t - k2)}$$

$$\alpha(\omega) = \frac{e^2/m}{\omega_0^2 - \omega^2 - 2i\beta\omega} = \frac{e^2}{m} \frac{\omega_0^2 - \omega^2 + 2i\beta\omega}{(\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2}$$

Easy to show that if
$$\vec{E}(\vec{R},t) = \vec{E}\vec{E}_{e}e^{-i(\omega t - kz)}$$

and $\vec{P} = N\vec{R}$

then the wave equation reduces to

$$\left(-\kappa^{2}+\frac{\omega^{2}}{c^{2}}\right)\vec{\epsilon} = e^{-i(\omega t - \kappa^{2})} = -\frac{\omega^{2}}{c^{2}}\frac{N\alpha(\omega)}{\epsilon_{o}}\vec{\epsilon} = e^{-i(\omega t - \kappa^{2})}$$

 \Rightarrow plane wave solutions with $\kappa = n(\omega) \frac{\omega}{c}$ where

$$K^2 = \frac{\omega^2}{c^2} \left[1 + \frac{N\alpha(\omega)}{\epsilon_0} \right] = \frac{\omega^2}{c^2} n(\omega)$$

Complex index of refraction

Easy to show that if $\vec{E}(\vec{R},t) = \vec{E}\vec{E}_e^{-i(\omega t - k \cdot z)}$ and $\vec{P} = N\vec{R}$

then the wave equation reduces to

$$\left(-\kappa^{2}+\frac{\omega^{2}}{c^{2}}\right)\vec{\epsilon} = e^{-i(\omega t - \kappa^{2})} = -\frac{\omega^{2}}{c^{2}}\frac{N\kappa(\omega)}{\epsilon_{o}}\vec{\epsilon} = e^{-i(\omega t - \kappa^{2})}$$

 \Rightarrow plane wave solutions with $k=n(ω)^{ω}/c$ where

$$K^2 = \frac{\omega^2}{c^2} \left[1 + \frac{N \kappa(\omega)}{\epsilon_0} \right] = \frac{\omega^2}{c^2} n(\omega)$$

Complex index of refraction

Complex Index of Refraction – Physical discussion

Let
$$n(\omega) = n_{\varrho}(\omega) + i n_{i}(\omega)$$

Plane wave propagation $\vec{E}(\xi_{i}+t) = \vec{E} E_{i} e^{-i(\omega t - k + t)}$ $= \vec{E} E_{i} e^{-i(\omega t - [n(\omega)\omega/c] + t)}$ $= \vec{E} E_{i} e^{-n_{i}(\omega)\omega + t} e^{-i\omega(t - n_{R}(\omega) + tc)}$

We can now identify

$$\frac{C}{\omega_n;(\omega)}$$
 attenuation length
$$\frac{C}{\nu_R(\omega)}$$
 phase velocity

Complex Index of Refraction – Physical discussion

Let

$$n(\omega) = n_{\varrho}(\omega) + i n_{i}(\omega)$$

Plane wave propagation $k = n(\omega) \omega / c$

$$k = n(\omega)^{\omega/\zeta}$$

$$\vec{E}(\xi,t) = \vec{E} E_0 e^{-i(\omega t - k\xi)}$$

$$= \vec{E} E_0 e^{-i(\omega t - [n(\omega)\omega/c]\xi)}$$

$$= \vec{E} E_0 e^{-n_1(\omega)\omega \xi/c} e^{-i\omega(t - n_R(\omega)\xi/c)}$$

We can now identify

$$\frac{C}{\omega_{n_{i}}(\omega)}$$
 attenuation length
$$\frac{C}{\omega_{n_{i}}(\omega)}$$
 phase velocity

Absorption

The intensity of a plane wave field E is

$$I_{\omega}(2) = \frac{1}{2} n_{R}(\omega) c \mathcal{E}_{0} [E(c_{1}2)]^{2} = I_{0}(0) e^{-2n_{1}(\omega) \omega 2/c}$$

$$= I_{0}e^{-a(\omega)2}$$

where the absorption coefficient is

$$\Delta(\omega) = 2n_{\rm T}(\omega)^{\omega}/_{\rm C} = \frac{2\omega}{c} \, \text{Im} \left[\left(1 + \frac{N\kappa(\omega)}{\varepsilon_{\rm o}} \right)^{\ell_2} \right]$$

Possibility of gain?

No – there is no energy source!

Absorption and Dispersion in Gases

Approximations:

$$|\omega_0 - \omega| \ll \omega_0, \omega$$
 near resonance $|\omega_0 - \omega| \approx 1$ weakly polarizable

Let
$$\omega_0^2 - \omega_2^2 = (\omega_0 + \omega)(\omega_0 - \omega) \approx 2\omega(\omega_0 - \omega)$$

$$\alpha(\omega) = \frac{e^{2}/m}{\omega_{o}^{2} - \omega^{2} - 2i\beta\omega} = \frac{e^{2}/2m\omega}{\omega_{o} - \omega - i\beta}$$
$$= \frac{e^{2}}{2m\omega} \frac{\omega_{o} - \omega + i\beta}{(\omega_{o} - \omega)^{2} + \beta^{2}}$$

Furthermore

$$n(\omega)^2 = 1 + \frac{N\alpha(\omega)}{\varepsilon_0} = 1 + \varepsilon, \varepsilon \ll 1$$

Expand to 1st order $(1+\mathcal{E})^{\frac{1}{2}} \approx 1+\mathcal{E}/2$

Putting it together

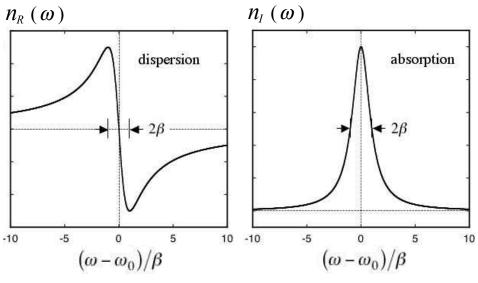
$$n_{\mathbf{R}}(\omega) = 1 + \frac{Ne^2}{4\mathcal{E}_0 m \omega} \frac{\omega_0 - \omega}{(\omega_0 - \omega)^2 + \beta^2}$$

$$\text{dispersive line shape}$$

$$N_{\mathbf{T}}(\omega) = \frac{Ne^2}{4\mathcal{E}_0 m \omega} \frac{\beta}{(\omega_0 - \omega)^2 + \beta^2}$$

$$\text{Lorentzian line shape}$$

General behavior:



Putting it together

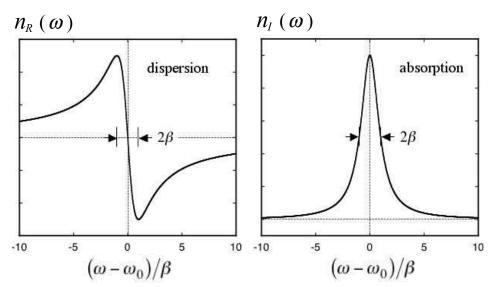
$$n_{\alpha}(\omega) = 1 + \frac{Ne^2}{4 \epsilon_0 m \omega} \frac{\omega_0 - \omega}{(\omega_0 - \omega)^2 + \beta^2}$$

dispersive line shape

$$N_{\pm}(\omega) = \frac{Ne^2}{4\epsilon_0 m \omega} \frac{\beta}{(\omega_0 - \omega)^2 + \beta^2}$$

Lorentzian line shape

General behavior:



dispersion
$$\propto \frac{1}{(\omega_o - \omega)}$$

Note: $|\omega_o - \omega| \gg \beta$ absorption $\propto \frac{1}{(\omega_o - \omega)^2}$

♦ We can have loss-less dispersive media

Note: If we introduce the detuning $\Delta = (\omega_0 - \omega)$ we can rewrite $n_{\alpha}(\omega)$, $N_{\underline{T}}(\omega)$ as

$$n_{R}(\Delta) = 1 + \frac{Ne^{2}}{4E_{0}m\omega} \frac{\Delta}{\Delta^{2} + \beta^{2}}$$

$$n_{T}(\Delta) = \frac{Ne^{2}}{4E_{0}m\omega} \frac{\beta}{\Delta^{2} + \beta^{2}}$$

From the above we see that

$$N_{R}(\omega) < 1$$
 for $\omega > \omega_{0} \Rightarrow \frac{C}{N_{R}(\omega)} > C$

Superluminal propagation?

Note:

dispersion
$$\propto \frac{1}{(\omega_o - \omega)}$$
 for absorption $\propto \frac{1}{(\omega_o - \omega)^2}$

We can have loss-less dispersive media

Note: If we introduce the detuning $\Delta = (\omega_0 - \omega)$ we can rewrite $n_2(\omega)$, $N_T(\omega)$ as

$$n_{R}(\Delta) = 1 + \frac{Ne^{2}}{4E_{0}m\omega} \frac{\Delta}{\Delta^{2} + \beta^{2}}$$

$$n_{I}(\Delta) = \frac{Ne^{2}}{4E_{0}m\omega} \frac{\beta}{\Delta^{2} + \beta^{2}}$$

From the above we see that

$$M_{R}(\omega) < 1$$
 for $\omega > \omega_{0} \Rightarrow \frac{C}{M_{R}(\omega)} > C$

Superluminal propagation?

Free Electrons

Consider the limit *ω* ≫ *ω*₀

effectively unbound electrons

This is a reasonable model of plasmas & metals

In this limit we have

$$\alpha(\omega) = \frac{e^{2/m}}{\omega_0^2 - \omega^2 - 2i\beta\omega} \approx -\frac{e^2}{m\omega} \Rightarrow$$

$$N(\omega) = \sqrt{1 + \frac{N(\alpha)}{\epsilon_o}} \approx \sqrt{1 - \frac{Ne^2}{\epsilon_o m \omega^2}} \equiv \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

We introduce the Plasma Frequency

Note:

dispersion
$$\propto \frac{1}{(\omega_o - \omega)}$$
 for absorption $\propto \frac{1}{(\omega_o - \omega)^2}$

We can have loss-less dispersive media

Note: If we introduce the detuning $\Delta = (\omega_0 - \omega)$ we can rewrite $n_2(\omega)$, $N_T(\omega)$ as

$$n_{R}(\Delta) = 1 + \frac{Ne^{2}}{4E_{0}m\omega} \frac{\Delta}{\Delta^{2} + \beta^{2}}$$

$$n_{T}(\Delta) = \frac{Ne^{2}}{4E_{0}m\omega} \frac{\beta}{\Delta^{2} + \beta^{2}}$$

From the above we see that

$$N_{R}(\omega) < 1$$
 for $\omega > \omega_{0} \Rightarrow \frac{C}{N_{R}(\omega)} > C$

Superluminal propagation?

Free Electrons

Consider the limit $\omega \gg \omega_0$

effectively unbound electrons

This is a reasonable model of plasmas & metals

In this limit we have

$$\alpha(\omega) = \frac{e^{2/m}}{\omega_0^2 - \omega^2 - 2i\beta\omega} \approx -\frac{e^2}{m\omega} \Rightarrow$$

$$N(\omega) = \sqrt{1 + \frac{N(\alpha)}{\epsilon_0}} \approx \sqrt{1 - \frac{Ne^2}{\epsilon_0 m \omega^2}} \equiv \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

We introduce the Plasma Frequency

$$\omega_{\rm p} = \sqrt{\frac{Ne^2}{\xi_{\rm o} m}}$$

Note:

dispersion
$$\propto \frac{1}{(\omega_o - \omega)}$$
 for absorption $\propto \frac{1}{(\omega_o - \omega)^2}$

We can have loss-less dispersive media

Note: If we introduce the detuning $\Delta = (\omega_0 - \omega)$ we can rewrite $n_2(\omega)$, $N_T(\omega)$ as

$$n_{R}(\Delta) = 1 + \frac{Ne^{2}}{4E_{0}m\omega} \frac{\Delta}{\Delta^{2} + \beta^{2}}$$

$$n_{T}(\Delta) = \frac{Ne^{2}}{4E_{0}m\omega} \frac{\beta}{\Delta^{2} + \beta^{2}}$$

From the above we see that

$$M_{R}(\omega) < 1$$
 for $\omega > \omega_{0} \Rightarrow \frac{C}{M_{R}(\omega)} > C$

Superluminal propagation?

Free Electrons

Consider the limit *ω* ≫ *ω*₀

effectively unbound electrons

This is a reasonable model of plasmas & metals

In this limit we have

$$\alpha(\omega) = \frac{e^{2/m}}{\omega_0^2 - \omega^2 - 2i\beta\omega} \approx -\frac{e^2}{m\omega} \Rightarrow$$

$$N(\omega) = \sqrt{1 + \frac{N(\alpha)}{\epsilon_0}} \approx \sqrt{1 - \frac{Ne^2}{\epsilon_a m \omega^2}} \equiv \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

We introduce the Plasma Frequency

$$\omega_{p} = \sqrt{\frac{Ne^2}{\xi_{o}m}}$$

Free Electrons

effectively unbound electrons

This is a reasonable model of plasmas & metals

In this limit we have

$$\alpha(\omega) = \frac{e^{2/m}}{\omega_0^2 - \omega^2 - 2i\beta\omega} \approx -\frac{e^2}{m\omega} \Rightarrow$$

$$N(\omega) = \sqrt{1 + \frac{N(\alpha)}{\epsilon_0}} \approx \sqrt{1 - \frac{Ne^2}{\epsilon_0 m \omega^2}} \equiv \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

We introduce the Plasma Frequency

$$\omega_{p} = \sqrt{\frac{Ne^2}{\xi_{o}m}}$$

Let
$$\begin{array}{c} \omega_{o} \ll \omega \ll \omega_{p} \\ |\omega_{o} - \omega| \gg \beta \end{array}$$
 on (ω) purely imaginary - but no loss!

We now have

$$\vec{E}(2,t) = \vec{E}E_0 e^{-i\omega[t-n(\omega)2/c]}$$

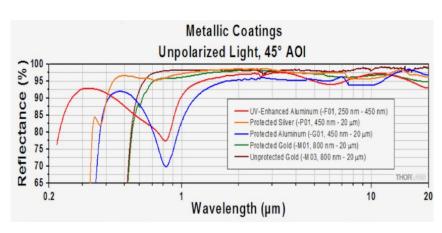
$$= \vec{E}E_0 e^{-i\omega t} e^{i(2/c)\sqrt{\omega^2-\omega_0^2}}$$

$$= \vec{E}E_0 e^{-i\omega t} e^{-b(\omega)2}$$

where

$$b(\omega) = -\frac{1}{c}\sqrt{\omega^2 - \omega_p^2}$$

Reflection at surface. ~ 1/b(w) penetration depth



Begin 01-16-2025 End 01-16-2025

Examples of this kind of medium includes plasmas, and metals such as aluminum, silver and gold which are known to be excellent mirrors for visible and IR radiation.

